Add some steps
This commit is contained in:
parent
9b4c4bf909
commit
2a00c812fb
@ -3,6 +3,7 @@ from keras.models import Model, load_model
|
||||
from keras.utils import to_categorical
|
||||
import cv2
|
||||
from skimage import color, exposure
|
||||
from _cutter import image_cut
|
||||
|
||||
def man_result_check():
|
||||
pred_y = np.load("predicted_results.npy")
|
||||
@ -14,7 +15,7 @@ def man_result_check():
|
||||
z = 0
|
||||
for i in range(0, len(test_y)):
|
||||
print(pred_y[i], test_y[i], file=f)
|
||||
# Calculates correct predictions
|
||||
# Calculates correct predictions
|
||||
if pred_y[i][0] == test_y[i][0]:
|
||||
z+=1
|
||||
|
||||
@ -25,7 +26,7 @@ def man_result_check():
|
||||
Purpose:Loads a trained neural network model (using Keras) to classify an image
|
||||
Input: path/to/trained_model
|
||||
image [or] path/to/image [if from_file=True]
|
||||
Returns:Boolean variable
|
||||
Returns:Boolean variable
|
||||
'''
|
||||
def is_Wally(trained_model_path, image, from_file=False):
|
||||
if from_file:
|
||||
@ -50,5 +51,22 @@ def is_Wally(trained_model_path, image, from_file=False):
|
||||
# Mark Wally image somehow (colour the border)
|
||||
# Stitch original image back together
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Read image
|
||||
image = cv2.imread("10.jpg")
|
||||
# Split image
|
||||
cuts = image_cut(image, 64, 64)
|
||||
for i in len(cuts):
|
||||
# Transform block
|
||||
hsv = color.rgb2hsv(cuts[i])
|
||||
hsv[:, :, 2] = exposure.equalize_hist(hsv[:, :, 2])
|
||||
block = color.hsv2rgb(hsv)
|
||||
block = np.rollaxis(block, -1)
|
||||
if is_Wally("Waldo.h5", block):
|
||||
# Border block
|
||||
cuts[i] = cv2.copyMakeBorder(cuts[i],5,5,5,5,cv2.BORDER_CONSTANT,value=RED)
|
||||
|
||||
is_Wally("Waldo.h5", image)
|
||||
# Stitch image TODO!
|
||||
# Show image
|
||||
cv.imshow('Image', image)
|
||||
cv.waitKey(0)
|
||||
|
Reference in New Issue
Block a user