From 3b58d272407cd50d9e41b8d618923ca8d5f2980c Mon Sep 17 00:00:00 2001 From: Silver-T Date: Fri, 4 May 2018 14:19:09 +1000 Subject: [PATCH] Finished week 8 :D --- wk8/A1_data.xlsx | Bin 8739 -> 12204 bytes wk8/wk8.ipynb | 335 ++++++++++++++++++++++------------------------- 2 files changed, 155 insertions(+), 180 deletions(-) diff --git a/wk8/A1_data.xlsx b/wk8/A1_data.xlsx index 4900a5014b6df9fbc8b3f1de0f18ffb7ca10531d..e7392ed4aaa427cd109ab9c6d20b762c87a72e66 100644 GIT binary patch delta 9112 zcmZ8n1ymeMv&MtFyIb%8K^F*w?BXN@*FbQW0EOT$G zC<-5HgQ@}S4+;yQ%W#xNYl{8dY$TG$3M=nJc9+perlqcDK`hx;zXzFSPEw(d(UXfAmBxZbyZ|saoqve^GPLXJ27k-L7kdFwNzQ zhp5-B0x7Gh&Rfqll%HS@Z)wycBO@Vwdc6K?B~+09qYyo|Eu3HsXvBb8w*X<=1zEz$ z7g&9LztWpCjjtM55n7Cnm2d~V2=lpP79b8L{8^UGu~l+oF8k_pow**G&ksc{*T{9b zV3hds^%stxt<%T4X-FxR*@|DXnMK+PSf>~jsSs(~cugmxIH0F>VnO87GV&`LB2DdQ z$(3v|VwvcgE8QU#%2xo!(?QT4hBNU?bHl)*Ed5BDE)DOO?unbj%B9(S`pBaKq#A+s z7=1yMfE({F!qE2zv(@nHS^ch;wgk}YaZGh7TKu5y>Y|og^Iwf#P@9U-7ouhFKGt3e zW13Nypwo*XBN`48X4W3$L9g_Pd!L&LW5ZnNUs(tDmd?#088GV1*_+QgCnE7GN@F`djd-HpN|na04Lcyd?s$Uo|PvA#>El>&dQ@ z?vDU}4h|mXZf^H&YJ9zX9P@wvvj2VR?cM72^XTX{Ec3c-{nw$5v`=&P5a z<8{USLktdrYYPvDd%NAEwl0!}Qo~ylSNoZNPJt8|{h|9xF{R3ZHGa^D&d^=Z)Or*D z3xBZ=gBd`z(yGIF?4;=8_GoP-rlaDd2zDUT{=22Eil#YxWu$$n>M1s2$+hABS8Lk& z^{-FoKjFe(eal;{M@~*wa!fKW>c+?#IgYFbZs$5uhpJ|Bt!~z3Ncx`0#EAlxG8IzN zSr0Y88qZSyIEY018}R{Epwju6vV*3Y{PSNM<pHH^Xj&-LNn zpGFF0e?61o(!K5zPn`-lm9`Lm8-LHmlJ}O*r<9zN-|xbpH;VSa{I90-Zx4rOU(V}p z9#VUcj(mZEj?v$2G5voi2r~c3RQxGv)0%5-HUhkTa$dcEdAb#&x01#dLq#HPV0qP% zYc~hnrqDTk{W)f!<~xLCCmwr__}mJ}%(-qGsOb$slIDY|a_z)#cz4R*QzWxI+8xC8v68(?=l&C!{P58j?Gi+t`3(n zr_TH4Y~7UaejVAsf3?6{k0h6u?}Y<+KX|%bGVnEBM6Uh1|K%@_c1UYwyp~5&=LxQ52lT94%dL$CSxw1?c?t1(LMRWN9 zteAOz%#W7ecCY@oYx4J|z&HrBQm}q2cRfLm5G?!U)0M9x{xh&A{VjbvV}j)kpFc08 zWK`k0FukAt6gq2}4>p0Z2VRCdF)7@iC)VdLx)(8d*5;&7CH=W>`s`4DxMH%<(a}O0 z>zOIa>|wM}$dFw}nAp>j%@=5_N3-{78pp+PLD6dHYwJcB6N@ z_C!AVzEN;ii2j(ePg9fL?@LzrLkmxodw_XDCSz+4{3$W+!SP3k#Z!3MN=K z(|hvdkbDo-(4g}NJStol(gTG%=E+y&ZZ75EhZhU4WA8Z7_mY(4xJ7{cLU(HOy%$z* zk5S7=4wTbO;dJA~ z1>A!VRMWc$2zK8$*)o!tgGoz9@3g3GCVZGi9cFgz#XaptA%zoGx$)CfDW{tFw8Ulg zKFeX4H%8{wY*JE;<^9oMbuKS&mGVIZGxyudtoZ3#!$5_iNx~~2!7jRKlB2Rc6SBI0 z=@Ik5wm<6K{X)L?`bnVX94S#1SmL2aBI-&jR>5v6Er%@8OM2Ah)h)ZYO*=%lT@yo? zD2c17k?>u;IzJJNBHl$9Q%DVA&9)E?`$@FL>|r)P3+oowdZPIy#D*@=9%~?<;@y%O zbvEz8acsi?OMw-T;kRysPDQAG&@e?P$Y!y1!!-I(C^+j%Kb^&NV5$yb#&_MXjiowh ztJW-M_IiNKAMZ>WY@6^NeQT9v8=S zrJPk;8t(h_gnRWttPkuZ*gxoHg%5$j3<@_ zoc2psp8#kz1H*l(U7!R$k9jP4@MOD$lFKVS4oREofpGO_(sObepT3*mFe#d3C?iz9 zbgwA|F`ih&Xg7{X&iQ*6?bg?np$!_+p%vjH@B?`ul1$S_<>Pa;$J6CF&1Ba#b+5%; zWNGn4co4YL)i09n^~|e_q@{DbBZJt>tWS@d$rrx+^Fb zTt?&`?sg>JdKNzYJY!L^i-!~(A2|GkTnS2lk?>J#5Q~`){6pJUDf@%iu++1K0rd<| zS6YJAa(3ioTgoOv^DDM?)}vWkp*Tgk?E#t!-%M{;nS9q~qNbXv#jd;q#!?OUmSL~* z!(ag1bfIXa+|tUDO`br%=C|IfU=)MgwJC8yh|t6M!lBTT`y9gn(M@NgSH2f1e!b;N zGGwSo^<2@E+l}Qb1E-Z5I7%<0u(~om6qj-<=4|@o!05+(&J9jp664<;-z!N(EFB5Y zu}OxXC}4rv=HlA8(jJ^Clj?0!sb2=(s&fONUIl{rmS9N@(dHNgo)imeK#HQ)^!Wjzrws9BuTF!mB6bRPx$^d=d~)KPEulp`-3$= z{Z59PdV}{KG6M3bMN++*$MI1~ns6cvTmUn0V(v@R7U6(siw^o(-OaAZ-gzW>4Z_%S z64~fIvNJIQGYA4oaJ(Yoacx1=sCvcr^@9%6T%O8-#I~SW*wB^69wX;i-Vc@GK)D&5 z1jp2v(G+*jSM%>%q?S31_Mikc$`n94QKBpY>+C4?5yU6XeKYzao(hU;dM)6v>ofsZ z8~gxart8eooMJ1`qsZ0%BXaVrYUVaz4!T3lm8Xx4iieqMwVPG!?hSCD)liM2N9fjK zDZaQK(>6|?zDq(3q*>4ztvC@UDRJ>m#~VY5a7#%mk%_&>|wY_h&!Z0TBJP1|H5ybGfT{cb~p>uzCgj3{duAS4dvI59q4`ZRcep8ieMj_ zwX$B`mf8;c`aL3@^SOjLdc(@Qo>>~fFEP$8>95$zw`W(!v7G~%(Csael%hbj-`#E3 zdFAl-sIvT-L(#8uwGxMI-XcQ#bqiDu!Z4Lm@AT1NKv#W4J!;%{^kl?$h~>Gy&6@+S zs|n5|H!c0_4CA~Mc1kDPPX5>%=LDPoF4l#S(#Xlmw+>Lj=l)Ea^_ zOu_FnfjswgF5KH5MhlskZs*d=H`KOn`a}&(``XQVB2-GL@%p%heKTyxMVz*1q@N2F zUMEt#$;?)2obQ@}L`3E_R43#al9Qc!@sAf#C#D1@+M2DL9kz=2K$N)(*|y)n*T!U_ z5HZ%g;edWYun{H1_I!Rn1B&ePfdyf5>`F=u#9&pIbE{S#jPVum5~m^k%c-jIJ0qF| zDvIvjHcM1(yYji_a5>cTfNtmSq*^lfJXb=C=uv0f*=ujUwRP!X=y+mUPE3R`#RWa3UG-E&gYFB2yAl=!&=d_6+-+ES^AB20Z8IG z^`ZPV)bIup22GGMU2LHIX!LH<>`4R;14Pp}63$`ViON_mlUe*zfd84mQ=Uj>y(qqC z2_Sk?YT+0CkjV4I!+A_|3u4{QH}FCOqoZaf$`oFZGwo!Smz{QT3B_)$$@C<8)R9b? zShjYKL%5?TV*P+!ZV&5qlHYy5yIz%jZa}$yM9rs+gTeukD&j0E8`gy# zUdR{lR?-9NF^*G9VVs!VrsXpR>f3pCKU@%>6aIa1_fnya{$P_-%MRxxU`KlKBDC1( zRe6)J^4Xd2_N^GdrbMS=u6ucM%S0aDH&s^{g~Nr_z%o8Fjo-U5gw#c5kxcPFC zy$YTC)LkLdJ&jc3;Dj*En8_nOV2VUTLIk~N@kRT_fT!JgL>Ek>L>VVLBRt38#2pW- z1g&@dp3%dM^>MN-H~!Co^cY#n|IBi$-mYG5i7 z!;hqyvA4HYeco05&_WT>B95Kv$&W}dsU`$o4r$1+9f}se{XoNP94e^`%X2Sm!c=tf zGpSu(-3xmvYnH;zs_gCEG-u;UQnpb!a`$v?H4;AnGX3Lz#Rvs}*$|YU1iosH-gyCQykK0x3;m-I`kctj$fMWg%oEXz%QaIh^dw)tUt# z<$*K$ePYuaJosjJhySo_>*8!wn5nB%hAlV*TI1HZ{pysmiZHY=?;33<(k=V}GU zlk?~}j>e(u%{#HCWols17E`JqM6*S7l9e;YrY2=IOSz{laBhq&@3efVnd#wng3oS= ze{t;5>eU7jMOR+CW3h)!>GAg){1leR@$?*%3>cpR0=l0Ji@}Er@O9F;zy`Cz7&+I@ z>VU!1-gH>Be34k)2$>*xAD4F!tlZ`Y%Gxxg4-R_+`ji}cf_CTQ8PFiH9x50V6GlK= z)YK(IoHk7%HIb+W;SZ{@{#^%wNmr;X5}!Q-N%m>nWr+rkkF}c+N9Xt&A!A%5B=~N= zTyLCyDj(B00(DCO6_s_HvQ2--QemgR145^95ES}}DQzmg>M~(rqj&tLcOSit$^_E` zyfS3tn@>U;zPMZ-&iB`+^oue*I%lA7{v#<7+_VVj7Y%%NnM>uH~lXG`8pWJaX;m zf2|?D6q=hlk%|d!8Gu*w)xOjcE2CEpQn$6A#G?@IoK+!(oTVvALHCMPZ&_GeVdB#OnR`~S=&>1QfmuOWcQ9LE7&nyvD z&({FapiDw5xQay!G7!@F_$_akl@q=`Zh8L=6OC;xDae~{8x0e(&G~@o#}78*gvdg_ zZsb6jE{HMvt0$gBlMU-eOstVpB}rocJrK&h511#yp|8&~my0=?+a!*uZ6&noOP4@+ z2#R;a5yrrt?u7c_rt|%o7`}ShNu7crI&nF>e3w4~5n_*H$;L@Q2QTv8p3iKz*Y88| zNUiwj+X(vdkDlfpn8SJ{x9(K9tn-h!HDgQIo$~X!j*qA>%*;2`Okz7c2%P%Ur@rxV-kyyxhvmnPnS`sfd&u-UR1eRU*`U*@(W ziq26pB*slI!az4@O!B%6s~=$kt;m2k z5H9*53j9Cyel)%0@dfh>E;0nU@~#2Wr)^;(C$!k#Sf-8aHMBvNowf4{p$_=lcdQ}I zox;|^@i4E)55O<7rJ>|UKgkl#Y*vV<>bxco6ax`wV8)h0XNZ8s944o)rp03X?_Xui zb`23BI@khgwM;Mc87lvYwIrc;HbJ{`6{Eq0UY`OG8O#>M6qDGN!c=j z4R;?E^54S)9L%C98KnA2Feur}w>ua=v$V8qL(n=vz%Ck&4x10`p(FnpS8!H8Py4En zz&X+wmbY3oi&j7(nOgsxmmG~yu^_?va-G(bk$7A^RB#?k3N*)5-P7q~*NPT8Msyi? z7?O-uFta^*Si$6xMFBMXbuL!U#Nnb|Og%a@EM2<|;>WTiMLT7~xl@@cmo*H-QZRkO zQ&r5r`=N)YlhYh6x15O|WL@pM<{;8bCX(bJ4=ZMO&z7rEJQ26?TaUwrk~f|*_p zM9XhqkZuT;3=wUkj`=pOw@rH3!i1vK$GHrt>>x5pwojvXH+ zC6KmNGRdkDG$f`rcsXh!W-RRJpH76W12te8i}2$%(JpQD5UU)*55;e{#F!1cZjOmb zrRKf~v?R$3cop)06d)zRdRaB-GT>iXN}$KIqz5GVd!`YX^3AZ7>_?M5T&nSdO{^bv zijkTsa8b{IW-)t$YRS4tm%id5$ngjguq@PU^wWyj7T7p1+e+XG9f@H=foXE5t5mcb z^(KECD>aJiQ@=a~~iT{C=w!t=HM9)6AEJ@h#o-U!92fw{UdQ=czm&`E40OO|q4h@`$O zeIc(sD>rG-owPYMdvHNByW^DdE(`qOvKa+q-fP z8`e@4)O`uCY}un9tegev#*RdUStT9-L>7Yk0!h|P%JOkD<2J5$z;bU(Ms(K-r0BN8 zi1$AjDKfC8JX&35Y>zrYT*NPG;w$LF7psBx9g7r_k}Ma*^@{#>=udi7q|uI0G_TKaSWQh zcYF$?(A?aM>J1{T-DX3SiKp(10lH|B5-PfAJ5e5#ZX|oITB)6^eYTpif0at}C3d#- zJ*nEe{bzSjoJ5zf_pIXjSjO-x5ZLf1SPL4Xrn=Y_>8@}$)Z1>Tj6!)MrEY2_XqHp8 zT=$txLXIRj1FbN1_s|b;Dh+GQ@xer7Yv*r-$D^~kp`nw}<)a07uuA{Hu&k7eiG9k- z2v_VQyXOUCg1O7Pc){G;<2Mt0<|lcS3x91V;soQ*Zzh`Xp@(5hAg_RhuxPPhbB%nK z@+Uc0&L{58^0hbU8#YhP1Cj=48*+8+qDxe2>vam3k9ZXbG{~EJ*|8RnZk8D1 zxl*V-o@6<1+)@X80$|#%4#ad(3f%<+Pgae?xa>6YSpK!%k2M7P?uN=@lrX_U7Kvh^ zMYq8Xy1?Lrc5&c8I-h6{U7~@g7P~Gi&XWG61#zx0bJ?)~^VL#9-sNwWfZd}5!IEfUmV`4d0RPphN5cPLv#RO>q zcfQX8yX3Ef>O)k`S8WJxKw%_QiqWq%zq$GVD$aT-a*>(U$k;m2zXC*UJ_fwL@O%}v zP2aa>QzVW>GPG;(3YJ&z-1<`BC-m)f_Odq`?)Og#VwZ?4i{h#unVOH@qVd58O!fiU zdL<2)!sHb=qmvmc)9y=gk(2%D{F8{`6@9eMUlk{$^4m_u<^m-HM9ZjSKFv2x%N{^s zd-?u%=uCp3C*M;Sc>nIsXQWkO>!50w*kwi*9B<0UPYG`9`*8UlWMVQpUFYdUuM-t^ z_0t8e3zEwAOCNKjAn1^ua=Bi3jJYMrvg8_$g$zKiDk2xRY|l=%x}hIdGGxkk%KS)k z{BoN<+R67W2Yc6;G z#oMblwkkx$S2MSBORitHJI?*E&z$0{;_CWt_n~Jew+k1xwM?WtQ&D@pU7k@>6Hw;P z@usQ{NBvTe!3qzcw^-SM+5e|m8FKD6b?DV#=HB}2%=zN|ZvpZlHuVbfcfil`^W%k! zzAamL2JiHa)k@AbZ1Ch_YU`Kd^^rgP=A`PTZmh#ZYVr5^`guVy-R=iEh;D|zF=V-7g?zHKh4to!n-{>sT`W3XB`E_Hfjcn+A*UkA+WA9Pl)lFFTK%7iU*~)X&%cVc4 zf8)z&uTx-qbVx|Lb^kBC47;Rd1G1C5Y`X<;Lr;7nSMT>l1B8?k=|!*67Q``MIp9WQ z>8shS_&XwE=)YHgsDA(w{Rh5p{T8~Mqmnjwl{{ZQ%`Gof+2CG2xzl%l5j7}=)bK;{ zo03t&RJ%WSx;(k&x{?P|v}DDcyBJc{VmPTf{wM+AI)XtYj{egYz924q6qq@vpzll^ zjLziLDh=1;s4d1a0Yvu`9gIdHAEW{!zM7LN0*Y^&uC-xZuftjLyE3BQwMO;ecb@UTG4^@ zb%tS2hrR5?y(p7Q34gLHiodHGchSot^q5*YJ$AmiUB{~P-MC-VO{6XQP$8q9@}f#ENa`spnc@%V=AF+G6#KPZrp>S0xk zT>t!HfsqDz6n4W%Z}4|SO&kqV)gv`AF%lBqe~rMyLPGMg=XZ1Wwtw%&=jC9pp^S_| ziu8Y3GAjQG7Rvt`dV>Qa!li~qGU5Ki`hU)!^uGw%xnYe=%>S~*M1zv?6!w#e4TGHb HFVX)1a1KW) delta 5610 zcmZ8l2{hDS|F#UqK9=la%viGTqL45QgRw7>Z7d-oRJO0|F_Ia}C}k&GmLXL3vDL^L zEktD~WhvRWzkcukec#{jz31F>pL5TB?)Tp3`JDSb=c#cmFhlwi4|}&dFplu_ z+SBJR_DQ4!)CMkm_)3e#K)vt8Hh5@TIs~6KV>cf-|BjIVI>X!=_vP;X6C(Yi7w^tp z_{)O@W9PC3^k-I0ccLDb)R2PL3X;7!tkA%(z(4T? zyL&yt+Qi`Mk0o$j#i;{%gx(eW+au#Sp_{m_vPKg&DV>Ejo_4Pz?_*#eKkDlc53mbi9toP-kh^{Gu& zQV(FDQ_~)}$2ODotZ=F?ppTy+mE7Ed$_8rmTlv6mKP;=uI~OGcVbNpu5%w45Yr`d5?QGGJ` z>|5&f71ziTMFC6#3AS`C)V+?&_niOPltnh{arMnBD$VcebYtJ)#S2>BGCk<6oJj-% zRSs$Xn4$pPJQI3i2*(o5|F}ZzrsMrreSV-nPxDuy3NSAH1@IsiSs?HWf-`!q4)S|d zeZS|@d~iJuW!ad;{{t@QHmAy?%_ElPbmytc?%vg9@5Oov|%)QgL?0PJ!w+E%x)_iUl*1d>~kmY$}H&{imkPbT9bARgGQdg%g&{5;G zO}u4W(@&Xv5Urb6$9(*pvJm;R`Ekspz!=v9cjtFGm|Ep+ngGxR4`3D8aVsr z?d@EVw(#$DjZp^?8hQJlCiJfT-cWd;n_DnNt9}1KszCiq^Zr#~!?~BgGWJTG0@1D= z>Aag=3X)-@l^Wj`iKB@n4}Y@}q2m{a6H|Mg4@@b*jaFPUF#lz3ds_AbDT_UB)_5m) zBrU?G-Q6?efPwzm^V^z_)dj)EAVp?n&@D^p2KMd@#J$u zQ2Y-Y-@8XZG%BPCFQhbNSN2{!xh?~F_Xf^WUUP3Bhkv+`V0w3RtTO{?egkJMu^SJo zjz2tv9Lx>aiL9!H6ThM9>WX+`)?ZKTU$U5p9FgAM9yWdc*U;W57rk9{&7|P*p&Y^Aa)|$jBHgiTy z-{5BISD2WV;X+D^1qZDGydniEHf~Ll<5yC845Q&F(UQ0~?cV;oJ0yi~!k0vVJ?Ht5 zVu=8p*V*ElT0gra@CCO;7^JoeXn@3e#Pm~`v#`P-7rqiKxaZ(%Cw0(|9pJ3`#5?1CZf-w2u%0?yjGar179XYM+u>K5sP6jT#P>2=yPB!*T@tG`YJXDI4 zXZwz35e~6r@POrvn6bCG$6e0*fs7KM0R%vLB!#k(R;Cb)(>zW&oJKzxiw%)2G>{5~ zaNkj#HB4b6-Q0w5NuF%jSZUHn%7jX*-m8RQti<&tBwsV?(SFY7pj9+LRY9LX7V=w$ zQuX+h5`#T#L@RWZOJBpKbySWM)BEj=Jzm|pRU9u0ThdJ!%$kNl#8qb@sNyCpAZw6# zo3l_SE_9jMp2Lx(#_vdypyqG1%nCOA(GXm^0MZrX;Sahco8*UW{c1CVv@uLa*c$Z1 zaQw`AcUrYv5`5+Qi;PI6A?rbq1yxiWm`N_-R2&PVj6qq?D)moR6B#jjQyEZSQL{7$ zlTmK3J(EmD_HKqy%JAF_3&6&Da_H zeH{@W#iYY^M&QbgZ_!D5vT4ampK+56^OlrwPWvk*!P$+ioUm~{2)7eR>q;V@BEBM(Ka{>RuroY zRV_Y#06$O5X=lFk9)L=5sJKWNzfJ;Orw&_X#V=%WX@nu%)X_9=e59K#L*!rOS#fC7 z#$}@B?zz!`mCDIWa(N*}q3{ENv-j?#MSRQGKHWSaLD?DJ8xAr+=+omULgB8S# z^u0#VuXAmc+wOu#OJmruwJb`Xz5SX~H}m-Xa|qK3EOwdj=irxmSdM3WjeME3`w6IA zlXRBG8>7Gm$dd)_qj`I1-1mZF{Y^}cK0WMN+@yk1GmB#JC;^fq=_xTr>i&5&dL>rP zbke_vvDanXUCPlvjNh2eC?odbf(_%#Qrz@Q@Jobr<||{G=c8~kVHa2GR;ZYL8_^0d zFG%b4sUrgY4Pvjj;Hgc!5ySA+)|=;8o4s#EngL%ijt8M&V=JsnT=3}ng;sACm2wt` zLF_l?qRC}0hhok)1p{=*6A{HkT%B9V9TpvZei2N4+AuklGae;__l4Dx+Zc(C01@^Q8VHY&U1Cc{EM6eQx6iQJ*P&Lgp;3Trc(}-=HWA zASf~gA7}3JkpJT5Q{+r*#yvBtdH;KuJ^}vxK6i$Z>3`jz< zUWfS7o=(wI`3o06CSf|4xgAPfb|L4ZRdmi+9qJ0_8%L&>Dq<6TL&(oM>CN74(PqZi zT3xk3;tEl@Zg8$q&-ZQsC8@~jtHlriChzv8&FG2MJ0RIKeNOji;ctS6<4NK1-%%bB z^F}>g%CQ8mS_R)Cby$SH$d^556aSp$=>!!!9Az1j^@HxKGP02Y>n2}VO-VwI*H4as z$$MwSGu;tkFCXRSw}IuVf}WpUSaxeeK9w1#nsSAC+j^z}A%Sfw(RvJ07vk(UZkAJ+0;pLY2~*495%J zVenM`K$T4a=J~`|znl$?1kM3g(vmDH1p9bGnUn&A1!er`5#(^=9jm_pl4Iw)#gZ~lw!BXLP*DTLDKq4dtF6<7uz6-MbhYn5Se}g!fje3Y z`I%FAvAW2L-?Dl+T=Vh%o%e&uCECOW%zerMYf-kX*twTrre3TYe91zwwXxG3=b5M7%#8>vIr+HDO_;xoz0evGBMvZ*>s-Z($`fNgHt(7EqA;-2Pt-ba(oU1e^C1j z1gj`H-F**<(>_nt1vAk zD(uU=SjL>e{C46xD9)Rm6YPK;vceW(04zsJO;RLCUs_3GDAtUhIMdxG5M9odHhgfE zoq;TW)+W}s*Ic<=mPXl&+LMnUlSgr;)9XYNPOS)GQ3j8VE%B{Y^7dn@!DmT>h*UVivjBC^nlO4U`oNQVmvb0EiUiH!~~s5BB0j zeH4dYDEAg}!a^2w&UTY-yAEH7Z72y}er_DXLsop4G~lzHPwz;a><~|%?}|RT->Zt@ zXCTbHtP)KK^?DtOJDi9i?{H70p7)kyP!;?_wc0vJ?*T}aWGq+;ztI!@&w z4(iENB(0BC*e{ZWv1<_4cOJL7WHnevdoWOX37U=~6W3M?hrRP+OmBwGn2AYA?J*9q z+VXo0e&a=1T>vXTgNfoV7kq1~rx~8xy0*^7o{SPS-~-NK2izykTm#nqDD<){N)O6HJL{1`)=W$C5mw zOOSnMO&cR8)l!ZKFm{Pu(#XgoHR-f(pII@0DBj|ivL2Et>~qR|u~eKOhWupyXW=7+J(0W9v-CNc zM>r0bu@TBh&%Wlq4A(#?HZH#c_Z!w*AknvRte-Wnn}^hqHQPLdl$UC-a^9`!T~!?_eJ1#5K*5L`i&T-BjW^y!yx ze$<6nnk~+HSe~jb(J(sCTkRK~+}S$QA$jGzV|2l-zKvo3q^Q2u$e*LD`&G_?9UIJx zL0**J$m5CL#TCO%i=rtco(tL-niV;AMgai9Hn|1STwXmi7D-r5-FF38*Bs6ROzJ8I# z=%ZXcNk@0#mb-%EEp^C3S#56Zs^g`o1FX*FUbsBrtBx! zzb%Bytk0br{N?*d^*Rro_$r045rs}&Nuj>Uf}WbHTHBCx>VjOKR@Up$V;VfXh^0xd6m48+p%~npP!si z0ln!5ns;J9+teFlpS@(2>2Kx4k!{XitS2og8i+f=R_w)PX9)FXeuk6kVUkBCm5rYk z8U9Grn$0->^+W&>+J8&L@c&6Bu|g*DUkRqTocf=n2!B~lhxKGc{U`IoSIQ}g{+aoA z;PfYN;`p1iR8+^b_&qt1zvx2pf;5eE_)$6`8MG-i4L8+)LQ~Y2FT9&HC*1IpQ?UPo zPsYc}pZ<$pBrizKjBl4068ZDRzgx@q55^{bM_%%;Q~mvJe@y;wTN1+SDv15H2%d+J dJ9m1 concerning the reference days and the change that occured on Day 62 (the initial event). This data describes the measured variables with relation to the geographical distance from the event.\n", - "\n", - "TO DO:\n", - "\\*\\* Need to test the statistical significance of the data" + "from scipy import stats\n", + "from tabulate import tabulate" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -57,19 +48,48 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "For each of the variable in the given data (number of customers, median spending amount, number of transactions, and sales totals) we construct a histogram of the decrease of of each on Day 62. We then compute the mean and median of the data to perform a one-sample hypothesis test." + "## Introduction and Method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The purpose of this report is to re-analyse the data presented in the paper by Dong et al.1, which investigates the effect that protests (as an example of disruptive social behaviours in general) have on consumer behaviours. Dong et al.1 hypothesise that protests decrease consumer behaviour in the surrounding area of the event, and suggest that consumer spending could be used as an additional non-traditional economic indicator and as a gauge of consumer sentiment. Consumer spending was analysed using credit card transaction data from a metropolitan area within a country that is part of The Organisation for Economic Co-operation and Development (OECD). Although Dong et al.1 investigate temporal and spatial effects on consumer spending, for the purposes of this analysis, only the spatial effect of variables (with relation to the geographical distance from the event) is considered. The dataset consists of variables measured as a function of the distance from the event (in km), including: the number of customers, the median spending amount, the number of transactions, and the total sales amount.\n", + "\n", + "The re-analysis is conducted on the data provided in the paper1, using Python in conjunction with packages such as pandas, matplotlib, numpy and seaborn, to process and visualise the data. As aformentioned, only spatial data and the variables mentioned above are considered, for the reference days and the change occuring Day 62 (day of first socially disruptive event). The distribution of the difference between the reference period and Day 62 is visualised by plotting a histogram for each variable. Since the decrease of each the variables from the reference period to Day 62 is provided, the mean and the median of these distributions can be used to perform a one-sample (as we have are given the difference) hypothesis test to assess whether the protests on Day 62 had a discernable effect.\n", + "\n", + "Assuming the mean of each variable over the reference period is the midpoint between their respective maximum and minimum values, we can reconstruct approximate actual values for Day 62 (given the decrease in value on Day 62 from the reference period). By comparing these value to the range over the reference period, another assessment can be made to determine whether the data presents a discernible effect on consumer spending as a result of social discuption, scaling with distance.\n", + "\n", + "Although time series data was not explicitely provided, by extrapolating information from a graph in Dong et al.1 we can quantify the decrease in number of customers and median spending on Day 62 using information about the reference days (from 43 to 61). After collecting the values for each of the reference days (43-61), the mean and standard deviation of this sample can be calculated. Assuming a normal distribution of the data, we can calculate a z-score for each observation on Day 62, and use this to assess the original hypothesis.\n", + "\n", + "By performing each of the above test, a re-analysis will be conducted on Dong et al.1's paper hypothesising that consumer spending decreases as a result of social events such as protests. In the Results section, we will perform the statistical analyses described above. The results of these tests will then be explored in the Discussion section, along with assumptions and limitations of the tests and what can be conclused from them." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Results" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For each of the variables in the given data (number of customers, median spending amount, number of transactions, and sales totals) we construct a histogram of the decrease of each (on Day 62). We then compute the mean and median of the data so we can proceed to perform a one-sample hypothesis test." ] }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtYAAAJGCAYAAAB/dsKFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4FFW6+PHvmwVCWCUEhIQlLAIJhAhhERBBBBQRHJcRxGVARxlEx9HR6zjuV6/jvb9xxl1xQQV3FMUBRdRhEUUBQXZlMZCEPUCAQMj2/v6oSk8nJKSTdKezvJ/n6SfdVXVOvdXddfqk6iyiqhhjjDHGGGMqJyTYARhjjDHGGFMbWMXaGGOMMcYYP7CKtTHGGGOMMX5gFWtjjDHGGGP8wCrWxhhjjDHG+IFVrI0xxhhjjPEDq1ibMonIiyJyv5/yaicix0Qk1H29SERu9Efebn6ficj1/sqvHPt9VEQOiMieqt63MaZmszLWp/0GrYwVkRQRucB9fq+IvFLVMVSVunSsgRIW7ABMcIlICtAKyAPygY3Am8B0VS0AUNUp5cjrRlX9srRtVHUn0KhyUXv29xDQWVWv8cr/In/kXc442gF3Au1VdV8V7XMRMEtVrdAzphqzMtYvcVR5GVsaVf2fYO6/KtWlY/Unu2JtAC5R1cZAe+BvwH8Br/p7JyJSW/+RawdkBLvAD5bCK2PGmFJZGVs5dbqMNTWLVayNh6pmqupc4CrgehHpASAir4vIo+7zFiLyLxE5LCIHRWSpiISIyEycwu9T9zbk3SLSQURURG4QkZ3A117LvH8AOonIDyJyREQ+EZHm7r6Gikiad4yFt6lE5ELgXuAqd38/ues9tz3duO4TkR0isk9E3hSRpu66wjiuF5Gd7i3Gv5b23ohIUzf9fje/+9z8LwAWAm3cOF4vJf04EVnjHuM2N/4it93c1w+JyCz3eYSIzBKRDPf9XiEirUTkMeBc4Fl3n8+62w90t8l0/w70yneReyv1WzfNpyISJSJvuTGtEJEOXtt3E5GF7mf8s4j81mvd6yLygojMF5EsYJiIjBaRjSJyVETSReTPpb2XxtRVVsYGpowtPA73PdknIrtF5FK3XPrFfR/v9do+RETuccviDBF5v/A9cddf68aQUTxm7zLaff2BiOxxy90lIpLgte51EXlOROa5ZeP3ItKplOMvsbz3es8fL+kzdNcPcMv2wyLyk4gM9Vq3SET+W0SWuTF8ISItynusZX2eItJARN4QkUMissn9LIp8t+oKq1ibU6jqD0AaTuWtuDvdddE4tzfvdZLotcBOnCszjVT1f73SnAd0B0aVssvrgMlAa5zbpU/7EOPnwP8A77n761XCZr9zH8OAjji3R58tts1goCswHHhARLqXsstngKZuPue5MU9yb8leBOxy4/hd8YQi0g/n1u9dQDNgCJBS1jEC17v7bAtEAVOAE6r6V2ApMM3d5zS3kJ2H895FAU8C80Qkyiu/8cC1QAzQCfgOmAE0BzYBD7rxNsT5IXsbaOmme15E4r3yuhp4DGgMfINz9e1m96pcD+BrH47PmDrJytgSVbiMdZ0JROCUbw8ALwPXAH1w3uf7RSTO3fZW4FJ3P22AQ8BzAG459wJOWdkGpzyNLWWfAJ8BXXDKyh+Bt4qtHw88DJwBbMUpN0tSYnnvtb7Ez1BEYnDK/kdxyvI/Ax+KSLRX2quBSW6M9dxtKnKsUPrn+SDQAefzG4Hz3tdJVrE2pdmFc5IWl4tzYrdX1VxVXaqqWkZeD6lqlqqeKGX9TFVdr6pZwP3Ab8U/zQsmAk+q6nZVPQb8BRhf7ErOw6p6QlV/An4CTvnxcGMZD/xFVY+qagrwd5zCyBc3AK+p6kJVLVDVdFXd7EO6XJyCrrOq5qvqKlU9Usq2FwNbVHWmquap6jvAZuASr21mqOo2Vc3E+THYpqpfqmoe8AFwtrvdGCBFVWe4ea0GPgSu9MrrE1Vd5h5PthtrvIg0UdVDqvqjb2+NMXWWlbEuP5Sx4Lxvj6lqLvAu0AJ4ys1vA07b9sJ9TwH+qqppqnoSeAi4wo37CuBfqrrEXXc/UFDaTlX1NXcfhfn0Krxq75qjqj+45exbQNJp4j9deV/aZ3gNMF9V57vl8UJgJTDaK+0MVf3F/X687xVDuY7VVdrn+Vvgf9zyPw0f/nmrraxibUoTAxwsYfn/4fzX/YWIbBeRe3zIK7Uc63cA4TiFYmW1cfPzzjsM5ypQIe8e5scpudNPCzem4nnF+BhHW2Cbj9t6mwksAN4VkV0i8r8iEl7KtsWPtaQY93o9P1HC68Jjbw/0d28rHhaRwzg/oGd6bV/8M70cpyDfISKLReScMo7NmLrOytj/qGwZC04b7Hz3eeE/GKcr4+Z4lW+bcDqWtsI5Js/75VZkM0raoYiEisjf3CYlR/jPnUjv99aX44eyy/vSPsP2wJXFyuvBOP+clRWDz8da3rwo+ztZa1nF2pxCRPriFGjfFF/n/md+p6p2BMYCd4jI8MLVpWRZ1tWWtl7P2+H8534AyAIiveIKxbk96mu+u3AKHe+88yha2PrigBtT8bzSfUyfitP0oiRFjhGvyqt7tephVY0HBuJcSb6ucHWxfIofa3ljLB7vYlVt5vVopKp/8NqmyP5VdYWqjsO51fgxzlURY0wJrIw9RWXL2PJKBS4qVsZFqGo6sBuv90tEInGuJJfkamAccAFOM44OhcnKG1AZ5T2U/hmm4lzN9j6Whqr6Nx92W55j9SUv72YkbUvbsLazirXxEJEmIjIG5zbaLFVdV8I2Y0Sks4gIkInzX37hraO9OO2ryusaEYl3T+pHgNnulYdfgAgRudj9z/0+oL5Xur1ABxEp7Xv8DvAnEYkTkUb8p71gXnmCc2N5H3hMRBqLSHvgDmDW6VN6vApMEpHh4nSaiRGRbu66NTi3TsNFJBnn1hwAIjJMRHq6P3ZHcArS0t7r+cBZInK1iISJyFVAPPCv8hyr619uXte6cYWLSN/S2kaKSD0RmSgiTd3bsEco+3aiMXWOlbEl80MZW14vuvtqDyAi0SIyzl03GxgjIoNFpB7O+1Xa8TcGTuJc5Y3EOf4KKaO8h9I/w1nAJSIyyr2CHiFOZ86y2kpD+Y61LO8DfxGRM9x239MqmE+NZxVrA04v86M4//n+Fafj26RStu0CfAkcw+n89ryq/ttd9zhwn3s7qjyjQswEXse5xRQB3AZOD3pgKvAKzpWLLJxOPYU+cP9miEhJbXpfc/NeAvwKZON0WqmIW939b8e5yvS2m3+Z1OmoNAn4B84P5WL+c2Xmfpyr2YdwOri87ZX0TJyC7wjOrcrF7vEAPIXTJvCQiDytqhk4VzjuxCnk7wbGqOqB8h6oqh4FRuK0edyF87k8QdEf3OKuBVLc26FTcJqOGGMcVsaWrcJlbAU8BczFaW5zFFgO9Adw22Pf4u5/N07ZXNroFm/iNMtIx2nDvbwSMZ2uvIfSP8NUnKvm9wL7cb5jd+FD/a6cx1qWR9y0v+J8f2fj/NNR50jZfSKMMcYYY0wwSA2cEExE/gCMV9Xzgh1LVbMr1sYYY4wxpsJEpLWIDHKbO3bFuXs6J9hxBUNtnaXJGGOMMcZUjXrAS0AccBinH8HzQY0oSKwpiDHGGGOMMX5gTUGMMcYYY4zxA6tYG2OMMcYY4wd1oo11ixYttEOHDsEOwxhjAFi1atUBVY0ue8u6ycpsY0x142u5XScq1h06dGDlypXBDsMYYwAQkeLTzxsvVmYbY6obX8ttawpijDHGGGOMH1jF2hhjjDHGGD+wirUxxhgARORCEflZRLaKyD0lrK8vIu+5678XkQ7u8n4issZ9/CQiv/FKkyIi69x11r7DGFOr1Yk21sb4Ijc3l7S0NLKzs4MdiqklIiIiiI2NJTw8PNihlElEQoHngBFAGrBCROaq6kavzW4ADqlqZxEZDzwBXAWsB5JVNU9EWgM/icinqprnphumqgcqE5+dn8bfatL5aWoOq1gb40pLS6Nx48Z06NABEQl2OKaGU1UyMjJIS0sjLi4u2OH4oh+wVVW3A4jIu8A4wLtiPQ54yH0+G3hWRERVj3ttEwH4feYxOz+NP9XA89PUENYUxBhXdnY2UVFR9qNt/EJEiIqKqklXWGOAVK/Xae6yErdxr0ZnAlEAItJfRDYA64ApXlerFfhCRFaJyE0VDc7OT+NPNfD8NDWEXbE2xov9aBt/qkvfJ1X9HkgQke7AGyLymapmA4NVNV1EWgILRWSzqi4pnt6tdN8E0K5duxL3UZfeTxN49n0ygWBXrI2pRkSEa665xvM6Ly+P6OhoxowZU2UxpKSk0KNHjyrbXyA8+eSTxMfHk5iYyPDhw9mx4z/Dj4aGhpKUlERSUhJjx44tMf2SJUvo3bs3YWFhzJ49u8i6u+++m4SEBLp3785tt92Gqt9bPQRLOtDW63Wsu6zEbUQkDGgKZHhvoKqbgGNAD/d1uvt3HzAHp8nJKVR1uqomq2pydHT1nDvHzk//ePHFF+nZsydJSUkMHjyYjRs3nrJNamoqw4YNIz4+noSEBJ566inPuquuuspzDnfo0IGkpKSqDN+Y07Ir1sZUIw0bNmT9+vWcOHGCBg0asHDhQmJiit+Nrxny8vIICwtOEXP22WezcuVKIiMjeeGFF7j77rt57733AGjQoAFr1qw5bfp27drx+uuv8//+3/8rsvzbb79l2bJlrF27FoDBgwezePFihg4dGpDjqGIrgC4iEodTgR4PXF1sm7nA9cB3wBXA16qqbppUt/Nie6AbkCIiDYEQVT3qPh8JPFJFx+N3dn76x9VXX82UKVMAmDt3LnfccQeff/55kW3CwsL4+9//Tu/evTl69Ch9+vRhxIgRxMfHe85lgDvvvJOmTZtWafzGnI5VrOuwt7/f6be8ru5f8q1bU36jR49m3rx5XHHFFbzzzjtMmDCBpUuXApCVlcWtt97K+vXryc3N5aGHHmLcuHGkpKRw7bXXkpWVBcCzzz7LwIEDWbRoEQ899BAtWrRg/fr19OnTh1mzZp1yC3TVqlVMnjwZgJEjR3qW5+fnc88997Bo0SJOnjzJLbfcws033wzAE088waxZswgJCeGiiy7ib3/7G0OHDiUpKYlvvvmGCRMmcN111zFlyhR27nS+a//85z8ZNGgQP/zwA3/84x/Jzs6mQYMGzJgxg65du7JhwwYmTZpETk4OBQUFfPjhh3Tp0oVZs2bx9NNPk5OTQ//+/Xn++ecJDQ0t9T0cNmyY5/mAAQOYNWtWuT6Dwum0Q0KK3tQTEbKzs8nJyUFVyc3NpVWrVuXKu7pyK8XTgAVAKPCaqm4QkUeAlao6F3gVmCkiW4GDOJVvgMHAPSKSCxQAU1X1gIh0BOa437cw4G1VLVqDqmHs/Kz8+dmkSRPP86ysrBKbZLRu3ZrWrVsD0LhxY7p37056ejrx8fGebVSV999/n6+//tr3DzDA/PW7ar+pNZdVrI2pZsaPH88jjzzCmDFjWLt2LZMnT/b8cD/22GOcf/75vPbaaxw+fJh+/fpxwQUX0LJlSxYuXEhERARbtmxhwoQJnimhV69ezYYNG2jTpg2DBg1i2bJlDB48uMg+J02axLPPPsuQIUO46667PMtfffVVmjZtyooVKzh58iSDBg1i5MiRbN68mU8++YTvv/+eyMhIDh486EmTk5Pj2ffVV1/Nn/70JwYPHszOnTsZNWoUmzZtolu3bixdupSwsDC+/PJL7r33Xj788ENefPFF/vjHPzJx4kRycnLIz89n06ZNvPfeeyxbtozw8HCmTp3KW2+9xXXXXceNN97IlClTSE5OLvX9fPXVV7nooos8r7Ozs0lOTiYsLIx77rmHSy+91OfP5pxzzmHYsGG0bt0aVWXatGl0797d5/TVnarOB+YXW/aA1/Ns4MoS0s0EZpawfDvQy/+RBo+dn/45P5977jmefPJJcnJyyqwYp6SksHr1avr3719k+dKlS2nVqhVdunQpxydoTGBZxdqYaiYxMZGUlBTeeecdRo8eXWTdF198wdy5cz1NFLKzs9m5cydt2rRh2rRprFmzhtDQUH755RdPmn79+hEbGwtAUlISKSkpRX64Dx8+zOHDhxkyZAgA1157LZ999plnf2vXrvW0M87MzGTLli18+eWXTJo0icjISACaN2/uye+qq67yPP/yyy+LtJ88cuQIx44dIzMzk+uvv54tW7YgIuTm5gJOxfWxxx4jLS2Nyy67jC5duvDVV1+xatUq+vbtC8CJEydo2bIlAK+88spp38tZs2axcuVKFi9e7Fm2Y8cOYmJi2L59O+effz49e/akU6dOp82n0NatW9m0aRNpaWkAjBgxgqVLl3Luuef6lN7UfHZ++uf8vOWWW7jlllt4++23efTRR3njjTdK3O7YsWNcfvnl/POf/yxypRvw3DEwpjqxirUx1dDYsWP585//zKJFi8jI+E/fMFXlww8/pGvXrkW2f+ihh2jVqhU//fQTBQUFREREeNbVr1/f8zw0NJS8vDx8pao888wzjBo1qsjyBQsWlJqmYcOGnucFBQUsX768SDwA06ZNY9iwYcyZM4eUlBRPG+Wrr76a/v37M2/ePEaPHs1LL72EqnL99dfz+OOP+xw3OJWGxx57jMWLFxd5DwrbxHbs2JGhQ4eyevVqnyvWc+bMYcCAATRq1AiAiy66iO+++84q1nWMnZ+VPz8LjR8/nj/84Q8lrsvNzeXyyy9n4sSJXHbZZUXW5eXl8dFHH7Fq1aoK7deYQLFRQYyphiZPnsyDDz5Iz549iywfNWoUzzzzjGckitWrVwPOlarWrVsTEhLCzJkzyc/P93lfzZo1o1mzZnzzzTcAvPXWW0X298ILL3iuWP3yyy9kZWUxYsQIZsyYwfHjzrwg3reavY0cOZJnnnnG87qw02BmZqangvv666971m/fvp2OHTty2223MW7cONauXcvw4cOZPXs2+/bt8+zLe5SPkqxevZqbb76ZuXPneq6eARw6dIiTJ08CcODAAZYtW1akzWZZ2rVrx+LFi8nLyyM3N5fFixfXqqYgxjd2flbu/NyyZYvn+bx580psyqGq3HDDDXTv3p077rjjlPVffvkl3bp181ztN6a6sIq1MdVQbGwst9122ynL77//fnJzc0lMTCQhIYH7778fgKlTp/LGG2/Qq1cvNm/eXOSqlC9mzJjBLbfcQlJSUpHh42688Ubi4+Pp3bs3PXr04OabbyYvL48LL7yQsWPHkpycTFJS0imjZxR6+umnWblyJYmJicTHx/Piiy8CzpB1f/nLXzj77LOLXKF7//336dGjB0lJSaxfv57rrruO+Ph4Hn30UUaOHEliYiIjRoxg9+7dnvgK24t6u+uuuzh27BhXXnllkWH1Nm3aRHJyMr169WLYsGHcc889nor1Aw88wNy5cwFYsWIFsbGxfPDBB9x8880kJCQAcMUVV9CpUyd69uxJr1696NWrF5dcckm53mtT89n5Wbnz89lnnyUhIYGkpCSefPJJTzOQXbt2eZrXLFu2jJkzZ/L11197htabP/8/zf/fffddawZiqiWpRWOwlio5OVlLOrnrOhsVpKhNmzYVufroz/cHasd7ZMqv+PcKQERWqWrpPS7ruJLKbDs/TSCUdH5Who0KUnv5Wm7bFWtjjDHGGGP8wCrWxhhjjDHG+IFVrI0xxhhjjPEDq1gbU42ICNdcc43ndV5eHtHR0YwZM6Zc+QwdOtTTaWj06NEcPnzYr3GCMzvhgQMH/J5vVcnJyWHSpEmejoiLFi0qcbsPPviAhIQEQkJCTumI9fjjj9O5c2e6du162iHOTO1g52fV27lzJ40aNSq1A+bEiRPp2rUrPXr0YPLkyZ4RUlSV2267jc6dO5OYmMiPP/5YlWGbOswq1sZUIw0bNmT9+vWcOHECgIULF3qGvaqo+fPn06xZM3+E53flGbPX315++WUA1q1bx8KFC7nzzjspKCg4ZbsePXrw0UcfeSboKLRx40beffddNmzYwOeff87UqVPLNYyaqXns/Kx6d9xxR5GZU4ubOHEimzdvZt26dZw4ccIzKc1nn33Gli1b2LJlC9OnTy91rGxj/M0q1sZUM6NHj2bevHnAqTOLZWVlMXnyZPr168fZZ5/NJ598AjiznY0fP57u3bvzm9/8xvPDD0WvXF166aX06dOHhIQEpk+f7tmmUaNG/PWvf6VXr14MGDCAvXv3nhJXRkYGI0eOJCEhgRtvvLHIsF+zZs2iX79+JCUlcfPNN3sqmJ9//jm9e/emV69eDB8+HHAmy7j22msZNGgQ1157Lfn5+dx111307duXxMREXnrpJcCZcW348OH07t2bnj17eo41KyuLiy++mF69etGjRw/ee+89AFatWsV5551Hnz59GDVqlGfIr9Js3LiR888/H4CWLVvSrFmzEocG6969+ykTfgB88sknjB8/nvr16xMXF0fnzp354YcfTrtPU/PZ+Vk15yfAxx9/TFxcnGe4y9I+DxFBROjXr59nVtRPPvmE6667DhFhwIABHD582Kd9GlNZNvOiMaUI1nBH48eP55FHHmHMmDGsXbuWyZMns3TpUgAee+wxzj//fF577TUOHz5Mv379uOCCC3jppZeIjIxk06ZNrF27lt69e5eY92uvvUbz5s05ceIEffv25fLLLycqKoqsrCwGDBjAY489xt13383LL7/MfffdVyTtww8/zODBg3nggQeYN28er776KuAMV/Xee++xbNkywsPDmTp1Km+99RYXXXQRv//971myZAlxcXFFJqnYuHEj33zzDQ0aNGD69Ok0bdqUFStWcPLkSQYNGsTIkSNp27Ytc+bMoUmTJhw4cIABAwYwduxYPv/8c9q0aeOp3GRmZpKbm8utt97KJ598QnR0NO+99x5//etfee211zxj806ZMqXI8fTq1Yu5c+cyYcIEUlNTWbVqFampqfTr18+nzyk9PZ0BAwZ4XsfGxpKenu5TWlN5dn7W7vPz2LFjPPHEEyxcuLDUZiDecnNzmTlzJk899RTgnJ9t27b1rC88P1u3bl1mXsZUhlWsjalmEhMTSUlJ4Z133vFMllDoiy++YO7cuZ4fmuzsbHbu3MmSJUs8E1YkJiaSmJhYYt5PP/00c+bMASA1NZUtW7YQFRVFvXr1PO1E+/Tpw8KFC09Ju2TJEj766CMALr74Ys444wwAvvrqK1atWkXfvn0B5+pcy5YtWb58OUOGDCEuLg6A5s2be/IaO3YsDRo08BzT2rVrmT17NuD8EG/ZsoXY2FjuvfdelixZQkhICOnp6ezdu5eePXty55138l//9V+MGTOGc889l/Xr17N+/XpGjBgBQH5+vucHtPgPdqHJkyd7Joxp3749AwcOJDQ0tJRPxRiHnZ9Vc34+9NBD/OlPf6JRo0alfBJFTZ06lSFDhnDuuef6tL0xgWIVa2OqobFjx/LnP/+ZRYsWkZGR4Vmuqnz44YclNk0oy6JFi/jyyy/57rvviIyMZOjQoWRnZwMQHh6OiAAQGhparraVqsr111/P448/XmT5p59+Wmoa75nnVJVnnnmGUaNGFdnm9ddfZ//+/axatYrw8HA6dOhAdnY2Z511Fj/++CPz58/nvvvuY/jw4fzmN78hISGB7777zue4w8LC+Mc//uF5PXDgQM466yyf08fExJCamup5nZaWVun2tqZmsPMz8Ofn999/z+zZs7n77rs5fPgwISEhREREMG3atFO2ffjhh9m/f7+nmQrY+WmCx9pYG1MNTZ48mQcffJCePXsWWT5q1CieeeYZT/vJ1atXAzBkyBDefvttANavX8/atWtPyTMzM5MzzjiDyMhINm/ezPLly8sVk/c+PvvsMw4dOgTA8OHDmT17Nvv27QPg4MGD7NixgwEDBrBkyRJ+/fVXz/KSjBo1ihdeeMHTm/+XX34hKyuLzMxMWrZsSXh4OP/+97/ZsWMH4Ex7HBkZyTXXXMNdd93Fjz/+SNeuXdm/f7/nhzs3N5cNGzac9niOHz9OVlYW4HRCCwsL80xv7ouxY8fy7rvvcvLkSX799Ve2bNniczMSU7PZ+Rn483Pp0qWkpKSQkpLC7bffzr333ltipfqVV15hwYIFvPPOO4SE/KdKM3bsWN58801UleXLl9O0aVNrBmKqRECvWIvIhcBTQCjwiqr+rdj6+sCbQB8gA7hKVVNEpB9Q2HNDgIdUdY4veRpTG8TGxnpuHXu7//77uf3220lMTKSgoIC4uDj+9a9/8Yc//IFJkybRvXt3unfvTp8+fU5Je+GFF/Liiy96OuN5tw/2xYMPPsiECRNISEhg4MCBtGvntHGNj4/n0UcfZeTIkRQUFBAeHs5zzz3HgAEDmD59OpdddhkFBQW0bNmyxFvYN954IykpKfTu3RtVJTo6mo8//piJEydyySWX0LNnT5KTk+nWrRvgjOJx1113ERISQnh4OC+88AL16tVj9uzZ3HbbbWRmZpKXl8ftt99OQkJCqW049+3bx6hRowgJCSEmJoaZM2cWiWnKlCkkJyczZ84cbr31Vvbv38/FF19MUlISCxYsICEhgd/+9rfEx8cTFhbGc889Z01J6gg7PwN/fp7O6NGjeeWVV2jTpg1Tpkyhffv2nHPOOQBcdtllPPDAA4wePZr58+fTuXNnIiMjmTFjRrneT2MqSrx7Dvs1Y5FQ4BdgBJAGrAAmqOpGr22mAomqOkVExgO/UdWrRCQSyFHVPBFpDfwEtAG0rDxLkpycrCX19q/r3v5+p9/yClZHIn/atGkT3bt3D3YYppYp6XslIqtUNTlIIVV7JZXZdn6aQPD398pfv6u14Te1tvG13A5kU5B+wFZV3a6qOcC7wLhi24wD3nCfzwaGi4io6nFVLWxEFoFTofY1T2OMMcYYY6pcICvWMUCq1+s0d1mJ27gV6UwgCkBE+ovIBmAdMMVd70ueuOlvEpGVIrJy//79fjgcY4wxxhhjSldtOy+q6veqmgD0Bf4iIhHlTD9dVZNVNTk6OjowQZpaJ1BNo0zdZN8n/7L30/iTfZ9MIASyYp0OtPV6HesuK3EbEQkDmuJ0YvRQ1U3AMaAd4JPQAAAgAElEQVSHj3kaUyERERFkZGRYYWv8QlXJyMggIqJc1wRMKez8NP5k56cJlECOCrIC6CIicTiV3/HA1cW2mQtcD3wHXAF8rarqpkl1Oy+2B7oBKcBhH/I0pkJiY2NJS0vDmg4Zf4mIiCA2NjbYYdQKdn4af7Pz0wRCwCrWbqV4GrAAZ2i811R1g4g8AqxU1bnAq8BMEdkKHMSpKAMMBu4RkVygAJiqqgcASsozUMdg6pbw8HDPLGTGmOrFzk9jTE0Q0HGsVXU+ML/Ysge8nmcDV5aQbiYws/jy0vI0xhhTeTb3gDHGVE617bxojDGm6rhzDzwHXATEAxNEpPhUlDcAh1S1M/AP4Al3+XogWVWTgAuBl0QkzMc8jTGm1rCKtTHGGLC5B4wxptKsYm2MMQaCPPeAMcbUBlaxNsYYU2mVnXvAJvUyxtQGVrE2xhgDQZ57wCb1MsbUBlaxNsYYA15zD4hIPZzhT+cW26Zw7gEoNveAW9Gm2NwDvuRpjDG1RkCH2zPGGFMz2NwDxhhTeVaxNsYYA9jcA8YYU1nWFMQYY4wxxhg/sIq1McYYY4wxfmAVa2OMMcYYY/zAKtbGGGOMMcb4gVWsjTHGGGOM8QOrWBtjjDHGGOMHVrE2xhhjjDHGD6xibYwxxhhjjB9YxdoYY4wxxhg/sIq1McYYY4wxfmAVa2OMMcYYY/zAKtbGGGOMMcb4gVWsjTHGGGOM8QOrWBtjjDHGGOMHVrE2xhhjjDHGD6xibYwxxhhjjB8EtGItIheKyM8islVE7ilhfX0Rec9d/72IdHCXjxCRVSKyzv17vleaRW6ea9xHy0AegzHGGGOMMb4IC1TGIhIKPAeMANKAFSIyV1U3em12A3BIVTuLyHjgCeAq4ABwiaruEpEewAIgxivdRFVdGajYjTHGGGOMKa9AXrHuB2xV1e2qmgO8C4wrts044A33+WxguIiIqq5W1V3u8g1AAxGpH8BYjTHGGGOMqZRAVqxjgFSv12kUvepcZBtVzQMygahi21wO/KiqJ72WzXCbgdwvIuLfsI0xpuYSkeYlPMKDHZcxxtQF1brzoogk4DQPudlr8URV7Qmc6z6uLSXtTSKyUkRW7t+/P/DBGmNM9fAjsB/4BdjiPk8RkR9FpE9QIzPGmFouYG2sgXSgrdfrWHdZSdukiUgY0BTIABCRWGAOcJ2qbitMoKrp7t+jIvI2TpOTN4vvXFWnA9MBkpOT1U/HZIwx1d1CYLaqLgAQkZE4d/5mAM8D/YMYmzHVztvf7wx2CKYWCeQV6xVAFxGJE5F6wHhgbrFt5gLXu8+vAL5WVRWRZsA84B5VXVa4sYiEiUgL93k4MAZYH8BjMMaYmmZAYaUaQFW/AM5R1eWA9VUxxpgACljF2m0zPQ1nRI9NwPuqukFEHhGRse5mrwJRIrIVuAMoHJJvGtAZeKDYsHr1gQUishZYg3PF++VAHYMxxtRAu0Xkv0Skvfu4G9jrjtRUcLqENkSqMRV3IiefQ1k5qNpN8roskE1BUNX5wPxiyx7wep4NXFlCukeBR0vJ1toIGmNM6a4GHgQ+dl8vc5eFAr8tLZENkWpM+eXmF7Ay5SAbdh8h5UAWBQrNIsPpHN2I/h2jiGnWINghmioW0Iq1McaYqqWqB4BbS1m99TRJPUOkAohI4RCp3hXrccBD7vPZwLOFQ6R6beMZIrXYaE7G1ConcvKZuXwHKRlZRDeuz7ldomkSEca2/VmsS89kTephxiW1oU/75sEO1VQhq1gbY0wtIiJnAX8GOuBVxqvq+aWlcZU0RGrxjo5FhkgVkcIhUg94bVPaEKn5wIfAo2r3yk0Nl3kil9e//ZUDR3O4Krktvdo286w7p1MLsk7m8e6KnXz4Yzpph04wJrENoSE2OnBdYBVrY4ypXT4AXgReAfKrcsdeQ6SO9Fo8UVXTRaQxTsX6WkoYyUlEbgJuAmjXrl0VRGtMxZzIyeelJds4kZPP7wZ1oFN0o1O2aVg/jN8NjOOLDXtYuvUAISHCJYltghCtqWpldl4Uka98WWaMMaZayFPVF1T1B1VdVfjwIV15hkilIkOkAoVDpJ5CVaerarKqJkdHR/tynMYExadrd3HkRC6TB8WVWKkuFBoiXNSzNYM6RfHdtgx+3HmoCqM0wVJqxVpEIkSkOdBCRM7wmsGrA6fOoGiMMaZ6+FREpopIa+/ZF31IZ0OkGlOG9W7b6WHdWtK2eaRPaS7s0Zq4Fg35eHU66YdOBDhCE2ynu2J9M7AK6Ob+LXx8Ajwb+NCMMcZUwPXAXcC3/KfcLnNEDhsi1ZjTO5qdy8dr0olp1oChZ/k+amRoiDChXzsa1g/jre93cDK3SltomSpWahtrVX0KeEpEblXVZ6owJmOMMRWkqnGVSGtDpBpTinnrdpOTV8AVfWLL3RGxUf0wJvRty0tLtvPV5n2M7tk6QFGaYCuz86KqPiMiAzm1h/kpnU+MMcYEh4icr6pfi8hlJa1X1Y+qOiZjaovdmSdYm5bJ0K7RtGoSUaE82kU1pG+H5ny77QBJbZvRxsa4rpXKrFiLyEygE85tvML7F0oJvbqNMcYEzXnA18AlJaxTwCrWxlTQ15v3UT8shHM7V65j7aiEM9mwK5NP1qRz83mdCBEbgq+28WW4vWQg3sYdNcaY6ktVH3T/Tgp2LMbUJrsOn2DDriOc360lDeqFViqvBvVCGd2zNR+sSmNFykH6x0X5KUpTXfhSsV4PnAnsDnAsxhhjKkhE7jjdelV9sqpiMaY2+XrzPiLCQxjUqYVf8ktq24yVOw7x5ca9JMU2o3545SrrpnopcxxroAWwUUQWiMjcwkegAzPGGFMujd1HMvAHnGFRY4ApQO8gxmVMjbXr8Ak27j7CoM4tKn21upCIcGHCmWTl5LNs24GyE5gaxZcr1g8FOghjjDGVo6oPA4jIEqC3OyELIvIQzhjTxphy+nbbAeqF+e9qdaG2zSOJb92EpVsO0D8uiob1bSLs2sKXUUEWV0Ugxhhj/KIVkOP1OsddZowph+Mn81iblkmf9mcQEYDmGiPiW7HpqyMs/mW/Db9Xi/gyKshRnB7lAPWAcCBLVZsEMjBjjDEV8ibwg4jMcV9fCrwRxHiMqZFW7TxEXoHSv2NgOhi2ahLB2e3OYPn2DAZ2iqJZZL2A7MdUrTLbWKtqY1Vt4lakGwCXA88HPDJjjDHlpqqPAZOBQ+5jkqr+T3CjMqZmKVDl+18P0iEqkjMrOG61L4Z3b4kqLP5lf8D2YaqWL50XPdTxMTAqQPEYY4ypvDXAB8AcIENE2gU5HmNqlK37jnEwKydgV6sLnRFZj97tnVFCjpzIDei+TNXwpSmI9yxeITg9zrMDFpExxpgKE5FbgQeBvTiTeglOc77EYMZlTE3y/fYMGtYPI6FN4Fu9nndWS1btOMTSLfu5OLFNwPdnAsuXbqjes3jlASnAuIBEY4wxprL+CHRV1YxgB2JMTZR5IpfNe44y5KxowkLKdWO/Qpo3rEev2Gb8kHKQ87q2pJGNEFKj+TIqiM3iZYwxNUcqkBnsIIypqX5KPYwCye3PqLJ9Du3akjWph1m29QCjEs6ssv0a//OlKUgs8AwwyF20FPijqqYFMjBjjDEVsh1YJCLzgJOFC23mRWN8syb1MG3PaEBUo/pVts/oxvXpEdOU77ZnMKRLdJXt1/ifL/c4ZgBzgTbu41N3mTHGmOpnJ7AQZ3jUxl4PY0wZdmeeYM+RbJLaVd3V6kJDu0aTk1fA8l+tFVdN5ktDnmhV9a5Ivy4itwcqIGOMMRXnNQNjpKoeD3Y8xtQka1IPEyKQGNO0yvfdumkDurZqzLdbD5Cdmx+QSWlM4PlyxTpDRK4RkVD3cQ1g/04ZY0w1JCLniMhGYLP7upeI2NwDxpShQJWfUg9zVqvGQZtifMhZ0WTl5PPBytSg7N9Uni8V68nAb4E9wG7gCsA6NBpjTPX0T5y5BjIAVPUnYEhQIzKmBti+P4sj2XkktW0WtBg6REXSrnkkLy3ZTl5+QdDiMBXny8yLO1R1rKpGq2pLVb1UVXf6krmIXCgiP4vIVhG5p4T19UXkPXf99yLSwV0+QkRWicg69+/5Xmn6uMu3isjTIiK+H64xxtR+qlr8cld+UAIxpgZZk3qY+mEhdG8d+LGrSyMinHdWNGmHTjBv3e6gxWEqrsyKtYi8ISLNvF6fISKv+ZAuFHgOuAiIByaISHyxzW4ADqlqZ+AfwBPu8gPAJaraE7gemOmV5gXg90AX93FhWbEYY0wdkioiAwEVkXAR+TOwKdhBGVOd5eUXsGFXJgltmhIeGvixq0+n65mN6dKyES8s2oaqBjUWU36+fHsSVfVw4QtVPQSc7UO6fsBWVd2uqjnAu5w6scw44A33+WxguIiIqq5W1V3u8g1AA/fqdmugiaouV+fb9iZwqQ+xGGNMXTEFuAWIAXYBSe5rY0wptu47xsm8AnrGBO9qdaEQEW4a0pHNe46yZMuBYIdjysmXinWIiHjGnRGR5vg2mkgMzkQFhdLcZSVuo6p5OJMaRBXb5nLgR1U96W7vPX52SXkWxnmTiKwUkZX79+/3IVxjjKn5VPWAqk5U1VZuE75rbBZGY05vXXomEeEhdGrZKNihADAuKYYzm0Tw0uJtwQ7FlJMvFeu/A9+JyH+LyH8D3wL/G9iwHCKSgNM85ObyplXV6aqarKrJ0dE22Loxpm4QkY4i8qmI7BeRfSLyiYh0DHZcxlRXeQUFbNpzhPjWTapkCnNf1AsL4YbBcXy7LYO1aYfLTmCqDV86L74JXAbsdR+XqerM06cCIB1o6/U61l1W4jYiEgY0xe3J7s74OAe4TlW3eW0fW0aexhhTl70NvA+0xpnU6wPgHV8SWodzUxdt23eM7NwCegRh7OrTGd+vLY0jwnhp8fZgh2LKwad/zVR1o6o+6z42+pj3CqCLiMSJSD1gPM4Mjt7m4nROBGcYv69VVd3OkvOAe1R1mVccu4EjIjLALZyvAz7xMR5jjKkLIlV1pqrmuY9ZQERZiazDuamr1qUfoX5YCJ2jq0czkEKNI8K5ZkB7Plu/m5QDWcEOx/goYPc83DbT04AFOD3S31fVDSLyiIiMdTd7FYgSka3AHUDhFZJpQGfgARFZ4z5auuumAq8AW4FtwGeBOgZjjKmBPhORe0Skg4i0F5G7gfki0tztI1Ma63Bu6pycvAI27s50moEEeTSQkkwa1IGwkBBeXmpXrWuKgE4tpKrzgfnFlj3g9TwbuLKEdI8Cj5aS50qgh38jNcaYWuO37t/ifVPGAwqU1t66pA7n/UvbRlXzRKSww7n30AWeDuci4nOHc2OCYdm2A9WyGUihlo0juLxPDB+sSuP2C84iunH9YIdkylD9/j0zxhhTYaoad5pHQDsxVqbDuY3kZIJhwfo9TjOQajIaSEluGtKJ3PwCZiz7NdihGB+UWrEWkaMicqS0R1UGaYwxxjcicqWINHaf3yciH4mIL3MPBLXDuY3kZKpafoGycONezmrVOOiTwpxOXIuGXNTjTGYu38HR7Nxgh2PKUOo3SVUbq2oT4Cmcts8xOIXifwH/rJrwjDHGlNP9qnpURAYDF+D0ZXnRh3TW4dzUKT/uPERGVg4JbYI/KUxZppzXiaPZebz9/c5gh2LK4Mu/aGNV9XlVPaqqR1T1BU7t0GKMMaZ6yHf/XgxMV9V5QL2yElmHc1PXLFi/h3qhIZzVqnGwQylTYmwzBnWO4tVvfuVkXn7ZCUzQ+NJ5MUtEJuL0EFdgAmDjvhhjTPWULiIvASOAJ0SkPr4PrWodzk2doKos2LiHgZ2jiAgPDXY4PplyXieuffUHPvoxnQn92gU7HFMKXwrbq3F6mRdOEHOlu8wYY0z181ucq86jVPUw0By4K7ghGVO9bN5zlNSDJxiVcGawQ/HZ4M4t6BnTlJcWbyO/QIMdjimFLzMvpqjqOFVtoarRqnqpqqZUQWzGGGPKSVWPq+pHqrrFfb1bVb8IdlzGVCcLNuxBBC7o3irYofhMRJg6tBMpGceZv253sMMxpSizYi0iZ4nIVyKy3n2dKCL3BT40Y4wxxhj/W7BhL33anVHjxoUelXAmHaMb8vyibThzLpnqxpemIC8DfwFyAVR1LU5vcWOMMcaYGiX14HE27T5So5qBFAoJEaac14lNu4+w6Bcb77068qViHamqPxRblheIYIwxxhhjAmnhxr0AjIivOc1AvF2aFEPrphG88O9tZW9sqpwvFesDItIJZ0QQROQKwBr3GGNMNWKTehnjm4Ub99KlZSM6tGgY7FAqpF5YCL8/tyM/pBxkRcrBYIdjivGlYn0L8BLQTUTSgduBPwQ0KmOMMeVik3oZU7bDx3P4IeVgjb1aXWhCv3Y0b1iP5/+9NdihmGJ8GRVku6peAEQD3VR1sI0KYowx1ZZN6mVMKf798z7yC5SRNbB9tbcG9UK5YXAc//55P+vTM4MdjvHiy6ggfxSRJsBx4B8i8qOIjAx8aMYYYyogS0QmikioiIS4E3zZpF7G4DQDadm4PokxTYMdSqVdM6A9jeuH8cIia2tdnfjSFGSyqh4BRgJRwLXA3wIalTHGmIqySb2MKcHJvHwW/7yfC+JbERIiwQ6n0po2COfac9ozf/1utu0/FuxwjMuXinXht2808KaqbvBaZowxphqxSb2MKdm32zLIysmv8e2rvU0eHEf9sBC7al2N+FKxXiUiX+BUrBeISGOgILBhGWOMqQib1MuYki3cuJeG9UIZ2Ckq2KH4TYtG9Rnftx0fr04n/fCJYIdj8K1ifQNOD/O+qnocqAdMCmhUxhhjKsom9TKmmIIC5atNezmvazT1w0KDHY5f3TSkIwAvL9ke5EgMnKZiLSLd3KdJ7t+OItIbaA+EBTowY4wxFWKTehlTzNr0TPYeOVmrmoEUatOsAZf1juGdH3Zy4NjJYIdT552ugnwn8Hvg7yWsU+D8gERkjDGmMmxSL2OKWbhxD6EhwrCuLYMdSkBMOa8TH6xK47VvfuXuC7uVncAETKkVa1X9vft3WNWFY4wxppJuAabzn0m9fgWuCW5IxgTXwo176dehOc0i6wU7lIDoGN2I0T1bM/O7Hdx8XieaNggPdkh1VqkVaxG57HQJVfUj/4djjDGmMlR1O3CBiDQEQlT1aLBjMiaYUg5k8cveYzwwpl2wQwmoqUM7MW/tbmYt38EtwzoHO5w663RNQS45zToFrGJtjDHVjIj8EZgBHAVedvvG3KOqXwQ3MmOCY+HGvQC1sn21t4Q2TTnvrGhmLPuVGwbHERFeuzpp1hSnawpiI38YY0zNM1lVnxKRUfxnUq+ZgFWsTZ20cONeup3ZmLbNI4MdSsBNHdqJq6Yv54OVqVx7Todgh1Mn+TLcHiJysYjcLSIPFD58THehiPwsIltF5J4S1tcXkffc9d+LSAd3eZSI/FtEjonIs8XSLHLzXOM+amdPBGOMqRib1MsY18GsHFbuOMjIWn61ulC/uOb0bteMl5ZsJy/fphwJhjIr1iLyInAVcCtO4XwlzpB7ZaULBZ4DLgLigQkiEl9ssxuAQ6raGfgH8IS7PBu4H/hzKdlPVNUk97GvrFhM5eXmF/DznqP8uOMQR07kBjscY0zpbFIvY1xfbdpLgcKI+DODHUqVEBH+MLQzaYdOMG+dDQYUDL6MRz1QVRNFZK2qPiwifwc+8yFdP2Cr25EGEXkXGAds9NpmHPCQ+3w28KyIiKpmAd+IiLW+D7KMYyeZt243W/cdI69APctjmjXg3C4tSIxtFsTojDEluAFn/oHtqnpcRKKwSb1MHfXFxr20bhpBj5gmwQ6lygzv1pIuLRvxwqJtjO3VBhG7YVWVfGkKUjhH5nERaYMzm1drH9LFAKler9PcZSVuo6p5QCZOm8CyzHCbgdwv9o0JmJ0ZWbyweBs7Mo7TL645vxvYgWnDOjMqvhX5Bcq7K1JZuHEvqlp2ZsaYgLJJvYwp6nhOHkt+2c/I+FZ1qnIZEiLcfF4nNu85yuJf9gc7nDrHl8L2XyLSDPg/4EecEUFeCWhUpzdRVdPd25sf4nTMebP4RiJyE3ATQLt2tXuInUDYsCuT91ak0rRBOL8b2IGoRvU969o0a8CgLi2Yu2YX//55HweOneTyPrHWA9mY4Kr0pF4iciHwFBAKvKKqfyu2vj5OedsHyACuUtUU96r4bKAv8LqqTvNKswjnYkzhRZqR1oTPVIUlvxzgZF4BoxLqRjMQb2N7teH/Fmzm5aXbGVpLJ8Wprsq8Yq2q/62qh1X1Q5wrH91U9X4f8k4H2nq9jnWXlbiNiIQBTXEK69PFk+7+PQq8jdPkpKTtpqtqsqomR0dH+xCuKZR++ATv/LCTNs0aMOW8TkUq1YXCQkL4zdkxXJhwJuvSM/nvf20sISdjTFXxntSrhIcvlWrrF2NqlS827KFpg3D6xjUPdihVrl5YCJMGxbFsawbr0zODHU6dUuYVa7ewvRjoULi9iKCqT5aRdAXQRUTicCrQ44Gri20zF7ge+A64AvhaT9OuwK18N1PVAyISDowBvizrGIzvcvMLeH9lKo3qh3HdOe2JrFf6V0REGHJWNMdz8njr+52c0ymKMYltqjBaY0whP0zqZf1iTK2Rm1/AV5v3Mbx7S8JDfRoArda5un87nv16K9OXbOfpCWcHO5w6w5emIJ/iXI1YRzl6lqtqnohMAxbg3FZ8TVU3iMgjwEpVnQu8CswUka3AQZzKNwAikgI0AeqJyKXASGAHTi/3cDfPL4GXfY3JlO3z9XvYf/QkkwZ1OG2l2tuI+DM5ejKPez5cR8+YprSPahjgKI0xJajspF4l9YvpX9o2bhlf2C/mQBl5zxCRfJzme4+e7gKKMf7ww68HyTyRy8g6MhpISZpEhDO+b1tmfJvC3Rd2JfaM2j+Od3XgS80pVlUTK5K5qs4H5hdb9oDX82yc4ftKStuhlGz7VCQWU7Yte4/y3fYMzukURZeWjX1OFxoiPDPhbEY/tZRpb69mztSBhNXRKwTGBEs1ntTL+sWYKvfFhj1EhIdw3ll1uyno5MFxvP5tCq99k8IDlxRv2WUCwZfaz2ciMjLgkZigyi9QPl27ixaN6nNhBTp6xJ4Ryf9c1pN16Zm8syK17ATGmICp4KRe1i/G1Aqqyhcb9zKkSzQN6tXtTvVtmjXg4sTWvL8ylaPZNgdFVfClYr0cmCMiJ0TkiIgcFZEjgQ7MVK01qYc5cCyHUQmtKtwe7eKerekf15x/LPyFTJtExpigqOikXnj1ixGRejhN8+YW26awXwz42C9GRFq4zwv7xawvx+EYU25r0zLZnZnNyDo4GkhJJg+K49jJPD5YmRbsUOoEX2pQTwLnAJGq2kRVG6tq3RlpvQ7IKyjg6817iWnWgPjWFf9oRYT7x8Rz6HgOz369xY8RGmPKYaCqXoczesfDOOX3WWUlcucSKOwXswl4v7BfjIiMdTd7FYhy+8XcAdxTmN7tF/Mk8DsRSXNHFKmP0y9mLbAG54q39YsxAfXZ+j2EhQgXdLdh5gB6tW1GcvszeP3bFPILrHtDoPnSxjoVWG+dTWqvlSmHOHQ8l3FJMZUeRL9HTFOu6B3L69+mMLF/ezq0sI6MxlSx4pN6ZeDbpF7WL8bUKG9/v/OUZarKBytT6dCiIfPX7QlCVP5R0rFVRpdWjVm54xAPfrKB+DYVu4B2dX/r++ALX65YbwcWichfROSOwkegAzNVIze/gEU/76N9VCRdWjbyS553jepKeGgI/7tgs1/yM8aUS/FJvVKAd4IakTFVZM+RbDKyckioYOWxtopv3YRmDcJZtq2sAXxMZflSsf4V+AqoBzT2ephaYNWOQxzJzmNEd/9N+dqySQQ3DI5j/ro9bNl71C95GmN8U4lJvYyp8TbsOoJApZo11kahIcI5naL49UAWuw6fKDuBqbDTNgVxJ4dprKqlzaZlajBV5bttGcSe0YCO0f65Wl1o0qA4Xln6K88v2sY/rkrya97GmNJVYlIvY2q89emZdGjRkMYR4cEOpdpJbt+cLzftZfn2DC7rHRvscGqt016xVtV8YFAVxWKq2Nb9x9h/7CTndIzye97NG9ZjYv92zP1pFzszjvs9f2NMqT4FfoczcYvdZTR1xr6j2ew7etKagZSiQb1QktqewU9phzmRkx/scGotXzovrhGRucAHQFbhQh+mxzXV3HfbMmhYL5SeMU0Dkv/vh3Tkze928MLibTx+Wc+A7MMYc4oKT+plTE22YZczEnBCm8D8ptUGAzo2Z0XKQVbtOMjgLjZefCD40sY6AqdX+fk4U+ZegjMWqanBdmYc5+c9R+kb1zxgsyS2ahLBlcmxfLgqjT2Z2QHZhzHmFDapl6mTNqRn0vaMBjRtYM1AStO6aQPaR0Wy/NeDFNhgbwFRZo1KVSeV8JhcFcGZwJm5PAUR6B/n/2Yg3qac14l8VWYs+zWg+zHGeNikXqbOyTh2kl2Z2fQI0B3Y2uScjlEczMphy95jwQ6lViqzYi0isSIyR0T2uY8PRcRavddg2bn5vLcilfg2TQP+n33b5pFcmHAm7/ywk+M5eQHdlzEGsEm9TB20Lj0TIGBNG2uT+DZNaFw/jOXbM4IdSq3kSxuAGTjT2LZxH5+6y0wNtWDDHo5k59GvQ/Mq2d+kQR04kp3HRz+mV8n+jKnjbFIvU+esTcukXfNImkXWC3Yo1V5YSAh945rzy96jHMzKCXY4tY4vFetoVZ2hqnnu43XAWrzXYLNXpRHTrAEdo6tmVsQ+7c+gZ0xTZiz7lQKbTtWYQLNJvUydsu9oNnuOZNvV6nLo615YW5FyMMiR1D6+VKwzROQaEQl1H9fgdGY0NdCezGyWbT3A5b1jCPHThDBlEREmDerAtv1ZLN1qsz4ZE2A2qZepU9alZSJYM5DyaNognG5nOtOc5xUUBDucWsWXiqwrOtEAACAASURBVPVk4LfAHmA3cAUwKZBBmcD5aHUaBQqX96naZvL/n737Do+rOBc4/Pu06r3ZsuUiuXe525hqQokpgXCBUEO/lFwSQkhoaYSEACGhEyABQgfTEhxTjCmm2diWe+9NcpEsy6pWWWnuH2dk1kLN1kpnd/W9z7OPzp4y+52i2dk5c2bOyOlJenyUPsSoVAfyGdTrD41fbsemVEdZkV9CVlocidobyGGZ1C+Vimova3bpCMn+1JZeQbYZY84yxnQzxnQ3xvzQGLO9M4JT/mWM4a1FeUzKTiUrrXOagTSICvfw46OymLOukM2F+iSyUh1BB/VSXc3uUmdQmFG9tbb6cA3KSCA5NoL5W7QRgj81O0CMiPyuhe2MMeaPHRCP6kBLduxnc2EF1x8/wJXPv2hyHx77dAOvzN/Ob88c7koMSnUBOqiX6jJW5O1HgJE62uJhCxNhYnYqs1fvYW95NenxUW6HFBJaqrGuaOIFcDVwWwfHpTrA24vyiInwcHpOT1c+v3tCNNNG9uDN3B06nKpSHUcH9VJdgjGGZXkl9OsWR0K0NgM5EuOzUggTWLBFH2L0l2ZrrI0xf2uYFpEE4CacttWvA39rbjsVmGq89cxcvotTR2QQH9WWkew7xqVHZTFz+S7+u3wnP5rQx7U4lApVxhh9BkZ1CXnFB9hXUcPUwdpR2ZFKjI5gWM9EFm8v5tThGR02EnNX0uIRFJFUEfkTsBynED7OGHObMaagU6JTfvPlhkJKDtRy9phMV+OY3C+VQd3jefmbba7GoVSo0kG9VFexdMd+wsNER1tsp4nZqVTW1LFmtz7E6A/NFqxF5AFgIVAGjDLG3GWMKe60yJRfzVi2k+TYCI4d6O4vexHhx1OyWJ5XwrId+12NRakQpYN6qZDnratneX4JQ3okEB3hcTucoDawezzJMRHkap/WftFSjfUtOJnyb4CdIlJqX2UiUto54Sl/OFBTx+zVezhtZE8iw92/zXPO2F7ERnp4SWutleoIOqiXCnlfbyqiotrLmD7JbocS9MJEGJ+VwsaCcop1JMZ2a7aUZYwJM8bEGGMSjDGJPq8EY4w+fhtEPl6zh8qaOs4a7W4zkAYJ0RH8cGwv/rtsJyWVtW6Ho1So0UG9VMh7d0k+0RFhDMnQsY/8YXxWCgC527RhQnt1aPWliEwTkXUislFEbm9ieZSITLfL54tItp2fJiKfiUi5iDzeaJvxIrLCbvOoSCcNHxjEZizbSUZiFJP6pbodykGXTs6i2lvPW4vz3A5FqVCjg3qpkHagpo5Zq3YzMjNJH7bzk+TYSAZlxLNo2z7qjXE7nKDWYVekHQHsCeA0YDhwkYg07rz4aqDYGDMQeAi4386vAn4L/LKJpJ8E/hcYZF/T/B996Cg5UMvn6wo5MycTT1jg/AYZnpnI2L7JvDJ/G0b/iZXyGx3US4W6j1bvpqKmjtHaDMSvJmSlUlrlZf0efYixPTqy37VJwEZjzGYAEXkdOBtY7bPO2cBddvot4HEREWNMBfCViAz0TVBEegKJxphv7PsXgR8CH3TgfgS1Wat2U1NXHzDNQHxdMjmLX765jHmbizh6QLrb4SgV1HRQL9VVvL04n8ykaPqld+4IwqFuWM9E4iI95G4tZmgPbfF7pDryHkovYIfP+zw7r8l1jDFeoARIayVN37YDTaWpfMxcvou+qbHkBOBwr2fm9CQpJoJX5mtlmlJ+0O5BvbT5ngp0u0uq+GpDIeeO702YXkp+5QkTxvZNYe3uUsqrvW6HE7RCtnGSiFwrIrkikltYWOh2OK4orqjh6417OSOnJ4H4XRYd4eG88b2ZtXI3BWVVboejVFAzxvyt4QX8A4jh20G9+re2vTbfU8Hg30vyqTdw7jjtmr0jjM9Kod7Aku36EOOR6siCdT7gO7RebzuvyXVEJBxIouWn1/NtOi2lCYAx5h/GmAnGmAndunXNnqZmrdpNXb3hjFHuDGHeFhdP7ou33vDGwh2tr6yUalE7B/U62HzPGFODUyA/u9E6ZwMv2Om3gJMamu8ZY77CKWD7xnOw+Z5xHqZoaL6n1GEzxvDWoh1MzE4hW5uBdIiMxGj6pMSwaFuxPv90hDqyYL0QGCQi/UQkErgQZ9ACXzOAy+30ecCnpoUzaYzZBZSKyFH2duJlwLv+Dz00vLdiF9lpsYzIDNy2UgO6xXPMwDRenb8db1292+EoFbT8MKiXNt9TAW3pjv1sKqzgvPFaW92RJmSnUlBWzY7iA26HEpQ6rGBtM90bgVnAGuANY8wqEblbRM6yqz0LpInIRuAXwME2fSKyFXgQuEJE8nxuSf4EeAbYCGxCH1xsUlF5NXM3FQVsMxBfPz4qm50lVXyyti2VakqpZgT1oF7afE+15u3FeURHhHF6AN+FDQU5vZKI8AiLtulIjEeiI3sFwRjzPvB+o3m/85muAs5vZtvsZubnAiP9F2VomrVqj20GEni9gTR28rDuZCZF89K8bXx/RA+3w1EqKBlj2ltRcjjN9/I6ovkeTttwJkyYoPeg1SGqauuYsXQn00b0ICE6wu1wQlpUhIdRvZJZllfCGaMyA2LE5mCiRytEvbdiJ/3S4xjWM/BHpQr3hHHx5L58tXEvmwrL3Q5Hqa5Km++pgPXhyt2UVnk5f0Kf1ldW7TYhK4Uabz0r8kvcDiXoaME6BO0tr2bepiLOGBX4zUAaXDCxLxEe4aV529wORakuSZvvqUD22oLtZKXFMqV/S036lb9kpcWSHh9JrjYHOWwd2hREuePDlbupN3BGTvC0Q+uWEMXpo3ry9qI8fvX9IcRF6aWpVGfT5nsqEG0qLGf+ln3cNm0oYQE0gnAoExHGZ6Uya9VuCsuq6ZYQ5XZIQUNrrEPQe8t3MaBbHEN7BH4zEF+XTcmmrNrLO4vzWl9ZKaVUlzB94Q7Cw0R7A+lk4/omEyawaJv2aX04tGAdYgrKqpi/pYgzcjKDphlIg3F9kxndJ5nnvt5Kfb0+u6SUUl1dtbeOtxblccrwDK017WQJ0REMyUhgyfZi6vQ7uc20YB1iGpqBnBlEzUAaiAhXHZPNlr0VfLZOu95TSqmubvbqPeyrqOHCSX3dDqVLmpCdSlm1l/V7ytwOJWhowTrEzFy+i8EZ8QzOCK5mIA1OH9WTHonRPPf1FrdDUUop5bJX52+nV3IMxw1MdzuULmlwRgLxUeHkbtWHGNtKC9YhZE9pFQu37guKvqubE+EJ47Kjs/h6YxFrdgX8mBZKKaU6yMaCMuZuKuLiyX31oUWXeMKEcX1TWLenjILSKrfDCQpasA4hH6zYhTFwRk5wD7Jy8aS+REeE8S+ttVZKqS7rxXnbiAwP48KJ2ne1myZkp1Bv4M1F2rFAW2jBOoTMXL6LoT0SGNg9OJuBNEiOjeS88b35z5Kd7NFfyEop1eWUVdXy9qI8fpCTSVq8PrTopvT4KPqlxzF94Q7tWKANtGAdIvL3HyB3W3FQPrTYlP89rj/e+nqe+XKz26EopZTqZO8szqeipo7Lj85yOxQFTMxOYfu+Sr7ZXOR2KAFPC9Yh4r/LdgJw1uheLkfiH1lpcfxgdCavzN/O/soat8NRSinVSerrDS/M28qYPsnk9E52OxwFjMhMIikmgtcW7nA7lICnBesQ8e7SnYzpk0zftFi3Q/GbG6YOoLKmjhfm6jDnSinVVXy9aS+bCyu0tjqARHjCOGdsL2at3E1xhVZ2tUQL1iFgY0EZa3aVctbo4O0NpClDeyRy8rDu/GvuFiqqvW6Ho5RSqhM8+9UW0uMjOX1UaDRtDBUXTupDTV097yzJdzuUgKYF6xAwY+lOwiQ4B4VpzU9OHMj+ylpeW7Dd7VCUUkp1sHW7y5izrpDLp2QTFe5xOxzlY2iPRMb2TebV+dswRh9ibI4WrIOcMYZ3l+1kyoA0uidGux2O343rm8IxA9N4cs4mrbVWSqkQ98yXm4mOCOPSo7QZSCC6dHIWmwormKcPMTYr3O0AVPsszythW1ElP5k6wNU4Xp3vvxrliycfOnTtL08dwjl/n8u/vt7Cjd8b5LfPUUopFTgKSqv4z9J8LprUl5S4SLfDUU04I6cnd89czSvzt3P0AB0NsylaYx3k/rM0nwiPMG1E6DUDaTC2bwqnDM/g6S82aw8hSikVop6fuxVvveGqY/q5HYpqRnSEh/PH92bWyt0UlOk4E03RgnUQq62rZ8bSnZw8LIOk2Ai3w+lQt5w6mPJqL099rv1aK6VUqKmo9vLyN9v4/vAeZKfHuR2OasHFk/virTe8oV3vNUkL1kFszrpCiipqOHdcb7dD6XBDeyRy9uhMnp+7RUdjVEqpEPPyN9sorfJy7Qn93Q5FtaJ/t3iOGZjGawt2UKcjMX6HFqyD2NuL8kiPj+SEId3cDqVT3HzKYOrr4f4P17odilJKKT85UFPHP7/czLED0xnXN8XtcFQbXDo5i/z9B/hkzR63Qwk4WrAOUsUVNXyydg9nj+lFhKdrnMastDiuPq4f7yzOZ9G2fW6Ho5RSyg9eW7CdveU1/PR7A90ORbXRKcMz6JkUzfNzt7odSsDpGiWyEDRj2U5q60yXaAbi68YTB9IjMZrfvbtKb0EppVSQq6qt4+kvNjGpXyqT+6e5HY5qo3BPGD+eksXcTUWs3V3qdjgBRQvWQertxXkM75nI8MxEt0PpVHFR4fz6jGGs2lmqg8YopVSQe3NRHntKq/mZdqUadC6a2JfoiDBe0FrrQ2jBOgit31PG8rwSzh3ftWqrG5yZ05Oj+qfywKx12t2PUkoFqaraOp78bCNj+yZzzECtrQ42KXGRnDO2F+8szqe4QrvCbdChA8SIyDTgEcADPGOMua/R8ijgRWA8UARcYIzZapfdAVwN1AE/M8bMsvO3AmV2vtcYM6Ej9yEQvTp/O5GeMH44JtPtUFwhIvzph6M449EvuePtFTxz+QRExO2wlFLKL/w14FbjwbYCge++fbWhkJ0lVUwb2ZPXFmjXbcHoiqP78dqCHby2cDs/mapt5KEDa6xFxAM8AZwGDAcuEpHhjVa7Gig2xgwEHgLut9sOBy4ERgDTgL/b9BqcaIwZ0xUL1ZU1Xt5enMdpo3qQFh/ldjiuGdg9nlunDeWTtQW8uSjP7XCUCgkiMk1E1onIRhG5vYnlUSIy3S6fLyLZPsvusPPXicj3feZvFZEVIrJURHI7Z09UoKuqrWPO+kIGdo9nYPd4t8NRR2hIjwSOGZjGS/O2UeOtdzucgNCRTUEmARuNMZuNMTXA68DZjdY5G3jBTr8FnCRO1ePZwOvGmGpjzBZgo02vy/vvsp2UVXm59Kgst0Nx3ZVHZzO5Xyp3/3c1ecWVboejVFDTyhDVmb7cUEhlTR3fH9HD7VBUO11zXH92lVQxY9lOt0MJCB1ZsO4F+N7bybPzmlzHGOMFSoC0VrY1wEciskhErm3uw0XkWhHJFZHcwsLCdu1IIHll/nYGZ8QzIUv7+gwLE/56/miMMdw8fan+WlaqfbQyRHWKsqpavtq4l1G9kuiVHON2OKqdpg7uxtAeCTz1+SbqtbeuoHx48VhjzDicWpX/E5Hjm1rJGPMPY8wEY8yEbt1CYwCV5Xn7WZ5XwqVHZWmbYqtPaiz3npvDwq3F/Om91W6Ho1Qwc7UyRHUdH68poK7ecOrwDLdDUX4gItwwdQAbC8r5WAeM6dCCdT7Qx+d9bzuvyXVEJBxIwnmIsdltjTENfwuAf9OFakVe+WY7MREefji28Xdd13bW6EyuPb4/L87bxhsL9QEYpQJMmypDQvUuozpUfvEBcrfuY0r/tC79nFCoOWNUT/qkxvD3OZswpmvXWndkwXohMEhE+olIJE77uxmN1pkBXG6nzwM+Nc4ZmQFcaB+U6QcMAhaISJyIJACISBxwKrCyA/chYOyrqOHdZfn8cGwmidERbocTcG79/hCOG5TOb/6zkoVbdVRGpY6Aq5UhoXiXUR2qvt7w3+U7iYsK56RhWlsdSsI9YVx7/ACW7tjP/C1d+zu4wwrW9jbhjcAsYA3whjFmlYjcLSJn2dWeBdJEZCPwC+B2u+0q4A1gNfAh8H/GmDogA/hKRJYBC4D3jDEfdtQ+BJIX522lqraeq47p53YoASncE8ZjF42ld0oMV/1rIcvz9rsdklLBRitDVId6Z0k+2/dVMm1ED6IjPK1voILK+eN7kx4fxaOfbHA7FFd1aD/Wxpj3gfcbzfudz3QVcH4z294D3NNo3mZgtP8jDWwHaup4cd42ThranUEZCW6HE7CSYyN5+ZrJ/OjpeVz23AJev/YohvboWiNTKnWkjDFeEWmoDPEAzzVUhgC5xpgZOJUhL9nKkH04hW/seg2VIV5sZYiIZAD/ts+EhAOvdpXKEHWo0qpa7vtgLX1SYhjTN9ntcFQHiI7wcMPUAfxx5mrmbtrL0QPS3Q7JFR1asFb+8daiHeyrqOG6Ewa4HUqnaO/gCBdO7Ms/vtjEuX+fy6v/exSj+/gvE/fXwA0QmIM3qK5NK0NUR7ln5hr2VVRzwwkDCdOH70PWJZP78s8vNvO3j9Yz5fq0LtnRQjD2CtKl1NUb/vnlFsb0SWZitnax1xapcZFcc2x/IsPDuOAf8/hgxS63Q1JKqS5rzroCpufu4LoTBtArRbvXC2XRER5+etJAFm0rZs66rvkQshasA9yHK3ezfV8l1x3fv0v+8jtS6QlR3DB1IMN7JnLDK4t55OMNeOu0n2ullOpMpVW13PHOCgZ1j+emkwa5HY7qBOeP70Of1Bj++tG6LtlDiBasA1h9veGxTzfQLz2OU3V0qsMWHxXOq/97FOeM7cVDH6/nvKfmsbGg3O2wlFKqy7hn5hr2lFbxwPmj9YHFLiIyPIyfnzSYVTtLmbm8690x1oJ1AJuxbCdrd5dx8ymD8YRpbfWRiI7w8NAFY3jsorFsLargjEe/5MHZ6ymrqnU7NKWUCmnvLs1neu4Orj9hAGP8+KyLCnw/HNuL4T0Tuff9NRyoqXM7nE6lBesAVeOt52+z1zG8ZyJnjurpdjhB7wejM/no5uM5eXgGj36ygeP+8hlPfb6JkkotYCullL9t2FPGHe+sYGJ2CjefMtjtcFQn84QJd501gp0lVTz5+Sa3w+lUWrAOUNMXbmfHvgP8atoQwrS22i+6J0TzxMXj+O+NxzK6dzL3fbCWiX/+mJteX8KcdQVU1XatX9VKKdURKqq93PDKYmIjPTx+8TgiPFrU6Iom9UvlB6MzefrzTezYV+l2OJ1Gu9sLQJU1Xh75ZCOT+qUydbCOQOZvo3on8cJVk1iZX8IbuTv4z5J83l26k6jwMCb3T2NCVgrDeiYytEcCPZOiCdcvBaWUapO6esMtbyxjc2E5L18zmYzEaLdDUi6647ShfLx6D/e8t4anfjze7XA6hRasA9ATn21kb3k1T/94nPYE0oFG9kpiZK8k7jx9GPM2FfH5+kK+2riXB9d/20VQmDg13d0To0iMjqC4soZITxjhHsETJnhEEBHCRPCEQViYEB4WRoRHiPCEER3hISbCQ2ykh4TocOKiwrUPV6VUSDLG8Lt3V/Lhqt389szhXXaAEPWtzOQY/u/EAfz1o/XMWrWb73eBjhi0YB1g1u8p4+nPN3PuuN6Mz0p1O5wuITrCw4lDu3Pi0O6Acxtz7e4y1u8pY9f+A+wsqaKwrJqyqloKy6qpravHW2/w1hnqTcPL6cWltY6FPCIkxUaQHh/JhoIyhmQkMCIzicE94okKD4wn5nUQHKXUkXj0k428Mn87158wgKuP7ed2OCpAXHv8AN5fsZtf/3sFE7NTSY2LdDukDqUF6wBSX2+4850VJESH8+szhrkdTpcVFxXO+KwUxmd9d0Ce1gqd9cZQV2+oraunxltPlbeeAzV1VFR7KauqpeSAl+LKGvaWV/P6gh0csO26IzzCiMwkxmelMDE7haP6p5EcG9qZj1IqNBhjePLzTTz08XrOHdeb26YNcTskFUAiw8P4249Gc9bjX/G7d1fy+MXj3A6pQ2nBOoBMz91B7rZiHjgvJ+R/0YWqMBHCbDOQ1srFF07sw/Z9lazaWcqK/BIWby/m5W+28exXWxCBEZmJHDMwnRMGd2NCViqR4drWWykVWOrrDXfPXM3zc7dy1uhM7jt3lDZhVN8xrGciN500iL9+tJ7TRu7ijJzQ7e1MC9YBIq+4knvfX8PkfqmcN7632+GoThAWJmSnx5GdHncwk6nx1rM8bz9zNxXx9ca9PPfVFp7+fDNxkR6OHpjO94Z258Qh3emRpA8EKRWqyqu97Nx/gJ37D1BQVk15lZfyai+1dfWE2Wc7EqLDSYqJICUuksykaDKTY0iIjuj0OG97aznvrdjF1cf249enD9NerFSzrj9hALNX7+H2d5YzPDORfulxbofUIbRgHQBqvPXc+OoSjIG/nJejv/a7sMjwMCZkpzIhO5WfnTSI8mov8zYV8dm6AuasLWD26j2A8+v/e0O7MXVId8b2SdaeS5QKYsYYVuaXMnv1bj5dV8DK/NKDy5JiIkiMDiclNoKI8DDqDdTV1VNW7WV3SRVl1d6D66bERjCwezwDusUzsHt8h8a8aFsxN09fyo7iSu44bSjXHt9fv7tUi8I9YTx+8TjOevwrrnspl3//5BjiokKvGBp6exSE7vtgLUt37OfJS8aRlRaav+DUkYmPCueU4RmcMjwDYwwbCsr5dG0Bn60t4KnPN/PEZ5tIiArnmIHpHDMonWMGpNEvPU6/4JQKAoVl1byzOI+3FuWxoaCcMIHxWSmcOjyDvqmx9EyKISay5Yeaq2vr2FlSRX5xJVuLKlmeV8LCrcWECXy0eg+nDMvgpGHd6d/NPwXt4ooanvp8E898tYUeidFMv3YKk/rpg/aqbfqkxvLYReO47Ln53Pr2ch6/aGzIfV9pwdplH67cxXNfb+GKo7M5TUdYVC0QEQZnJDA4I4HrTxhAyYFa5m7cy+frC/lifSEfrtoNQI/EaCZkpzAhK4VxWSkM6ZEQMD2OKKVgZX4Jz329hZnLdlFTV8/4rBTu/Z9RTBvRg5S4yMPqmScqwkO/9Dj6pcdx7CCnH+n84krW7iljd0kV97y/hnveX0P/bnGcNLQ7xw/uxsTsVKIjDi9P2F1Sxavzt/Hc11upqPFy3rje/PYHw0ns5OYnKvgdOyidW6cN5b4P1jKgWzy/CLGRObVg7aKFW/fx8+lLGd0nmTtP115A1OFJiongtFE9OW1UT4wxbC2qZO6mvczbVETu1mJmLt8FOD2ODO2RyLCeCQcL5v3S43TwG6U6kTGGuZuK+PucjXy9sYjYSA8XTurDZVOy/dpswxMm9E2Lo29aHBdP7ktecSWf2mZkL8zdxj+/3EJUeBhj+iQzpk8yOb2T6ZsaS2ZyNKlxkRjj9G60p6yajQXlrNlVyuzVe1i0rRiA00f14OcnD2ZwRoLfYlZdz3XH92dzYTmPfrKBuEgP150wwO2Q/EYL1i5ZmV/CVf9aSGZyDM9ePkF7fFDtIiIHa60umZyFMYb8/QdYumM/K/JLWJlfwqdrC3gjN+/gNuFhQmZyDD3tg08ZidFO/9p7yomLCicuykNcZDixkR4tgCt1hIwxfLKmgMc+28iyHfvplhDFHacN5cJJfUmK6fja3t4psVw2JZvLpmRTWeNl/uZ9fLGhkCXb9/Ovr7dSU1ffahrDeyZyyymDOT2nJwP81KREdW0iwr3/k0NlTR33frCW2EgPP56S7XZYfqEFaxes213G5c8tIDEmgpevnkx6fJTbIakQIyL0Tomld0osZ+ZkHpxfVF7NhoJythdVsrWogh3FB9i1/wALtuyjsKy62S/ZqPAwYiM9xEWFE9/wig4nITqCpOgIkmIiSI6NIDbSE3Lt5ZQ6EvX1hlmrdvPYpxtZvauU3ikx3HPOSM4d1/uwm2H4S2xk+CGDYVV769iwp5x82wNJcWUtYeJ0G5oaF8nA7s5DkPodpTqCJ0x46IIxVNXW8dt3V1Fa5eUnUwcE/XeIFqw72efrC7nxlcXERHp4+ZrJZCbHuB1SSPPnKIL+5nZsDQXvBsYYqmrrKa2qpdIOalNR4z043fC39EAtO/cfoLzaS32joSajwsNIi4skLT6K7glRJMaEM7RHAtlpcVrrrboEb109M5fv4vHPNrKxoJx+6XE8cF4OPxzbi4gA+x+ICvcwslcSI3sluR2K6qIiPGE8cck4bn1rOQ/MWseWvRX8+ZxRQX0XXwvWncQYw4vztvGH/65iSI9Enr18ghaqVUAREWIiPa32QtCg3hgqqr2UHKhlf2Ut+w/Usq+ihn0V1eQVV7Iyv4RP1hYAToF7SI8ERvVKIqd3Ejm9kxmckYBH+7xVIaKyxsv0hTt49qst5BUfYEhGAo9eNJYzRvXU61ypFkSFe3j4gjH0S4/j4Y83sGVvBQ/+aHTQ9pKmBetOsKvkAHe+s4LP1hVy8rDuPHLh2JDsu1F1LWEiJERHkBAdQe/vjv5Ore3tYN3uMtbuLmVlfikzlu3kFVtTHxvpIad30sHh48f1TdFh3FXQ2V5UycvztzF94Q5KDtQyMTuF3/9gBCcN7a6DpSjVRiLCz08eTP9u8fz6nRWc9siX3HH6MC6d3DfomoZo6a4DVXvreH3BDv46ax3eesPvzhzO5Udna+2F6hIiPGHfuc1cX2/YWlTBsrz9LN2+nyU79vP055vx2jYlA7rFMSEr1SloZ6UwoJv2ya0CT1VtHR+v2cObuXl8saGQMBGmjejBVcf2Y3xWE78ylVJtctboTCZkpXDb28v57X9W8taiPG77/hCOHpjudmhtpgXrDnCgpo43F+3gyTmb2FVSxTED07j3nBz6psW2vrFSISwsTOjfLZ7+3eI5Z2xvwPl/WZ63n9xtxSzaVsyHq3YzPXcHAMmxEYztk8yYPimM6ZtMTq8kUuK0Vlt1vmpvHXM3FvHBmGG71gAAIABJREFUyl3MWrWHkgO19EyK5qcnDuTiyVn0SIp2O0SlQkJmcgwvXjWJtxbl8eDs9Vz8zHyOHZjOVcdmc8Lg7gFfOdmhBWsRmQY8AniAZ4wx9zVaHgW8CIwHioALjDFb7bI7gKuBOuBnxphZbUnTLbV19Szcuo//LMnn/RW7Ka/2MjE7hQfOG80xA9O01k2pZsREepjcP43J/dMAp1Z7895yFm/bT+62fSzdsZ856wsx9kHJPqkxjMxMYljPRIb1TGRojwR6JcfobXc/6Ep5dmvq6w2bCsuZu6mILzfs5ZvNRZRXe0mICuekYd05d3xvjh6QHvBf8koFIxHh/Al9+MHoTF7+ZhtPfb6Zq57PpVdyDOeO68XJwzMYmZkUkPl+hxWsRcQDPAGcAuQBC0VkhjFmtc9qVwPFxpiBInIhcD9wgYgMBy4ERgCZwMci0jA0T2tpdor9lTWs3lnKqp2lfLO5iPlb9lFe7SUu0sPpo3py/oQ+TMxO0QK1UocpLEwY2D2Bgd0T+NHEPgCUVtWyIq+EFfklrMgrYdXOEj5YufvgNtERYQzoFk92ehzZabFkpcbRKyWGXskx9EiKdq17s2AS6nl2S8qrvWwrqmDDnnLW7i5j1c4Slu7YT1mVF4C+qbGcNSaTU4ZncPSANB3JVKlOEh3h4Zrj+nPZlGw+XrOHV+dv57HPNvLopxvpnhDFlAFpzl3NvikM6h4fEM+vdWQEk4CNxpjNACLyOnA24Juhng3cZaffAh4XpyR6NvC6MaYa2CIiG216tCHNdttYUM6e0irKqmoprfKyr6KGvWXVFJRVs6O4kh37KtlbXnNw/ay0WM4ek8mxA9OZOqR7m3tVUEq1TWJ0BMcMTOcYn3Z2FdVe1u4uY2NBGRv2lLOhoJxV+SV8uHI3dY36AUyMDqd7YjRpcZGkxkWSEhdJou1/Oz46nPgoD7F2MJzoCA/R4R6iIsKI9IQRGR5GuEeICAvD4xHCw4QwETz2b5gQKj+ggzbPrvHWc6C2jhpvPbV19VR766mqraOqto4DNXWUV3spr/Y6vddU1rC3ooaC0moKy6rIKz5AUcW3+XmEx/lh94PRmYztk8ykfqlB2zuBUqEiMjyM00f15PRRPSkqr2bOukI+XVvAvE1FvLt058H1eiRGk50eS8+kbwc9S46NJNnm9XGR4cRGeeibGtth3V92ZMG6F7DD530eMLm5dYwxXhEpAdLs/G8abdvLTreWZrv9+f01fGq7CWsQE+GhW0IUvVNiOHlYBtnpcQzvmcjwzETtPF8pF8RFhR/sUcRXbV09u/ZXkbe/kvziAxSUVbOntIqC0mr2VdSwoaCc4ooaSqtqqa0zzaTedv3S4/jsl1PbnU4ACNo8+/m5W/jz+2vbtK4IpMRG0j0him4JUZyamUif1Fj6psYyOCOBfulxAdfftFLqW2nxUZw7vjfnju+NMYZdJVUsz9vPpsIKNhU6A6At3LqPPaVVzebx8+88iYzEjnkuwv068w4iItcC19q35SKyrr1ptpBtpwN725t+gNF9Cg4BvU+XHNlmAb1PjW0D5FetrtZ4n7I6Kp5g1RF5dnO2tm/zoLk+LwmeWIMlTgieWP0e5xHm523R6ce0x/1HtFmb8u2OLFjnA3183ve285paJ09EwoEknAdiWtq2tTQBMMb8A/jHkQZ/OEQk1xgzoTM+q7PoPgUH3afgECT71GXy7PYIknMJBE+swRInBE+swRInBFesbdGR97sWAoNEpJ+IROI82DKj0TozgMvt9HnAp8YYY+dfKCJRItIPGAQsaGOaSimlDp/m2Uop1U4dVmNt29/dCMzC6WbpOWPMKhG5G8g1xswAngVesg+67MPJdLHrvYHzgIsX+D9jTB1AU2l21D4opVRXoXm2Ukq1nxjT/od3ujoRudbexgwZuk/BQfcpOITiPnVVwXQugyXWYIkTgifWYIkTgivWttCCtVJKKaWUUn6gfQoppZRSSinlB1qwbgcRuUtE8kVkqX2d7rPsDhHZKCLrROT7bsZ5uERkmo17o4jc7nY8R0pEtorICntucu28VBGZLSIb7N+U1tJxk4g8JyIFIrLSZ16T+yCOR+15Wy4i49yLvHnN7FPQ/i+JSB8R+UxEVovIKhG5yc4P6vOkvktEfioia+15/ovP/IC7RkXkFhExIpJu3wfcdSciD9jjuVxE/i0iyT7LAuqYBvL34uHmQW4TEY+ILBGRmfZ9PxGZb4/tdHEedA5exhh9HeELZwSyXzYxfziwDIgC+gGbAI/b8bZxnzw23v5ApN2P4W7HdYT7shVIbzTvL8Dtdvp24H6342xlH44HxgErW9sH4HTgA0CAo4D5bsd/GPsUtP9LQE9gnJ1OANbbuIP6POnrO+f5ROBjIMq+727/Btw1itPF4SycbtbT7byAu+6AU4FwO32/z/9IQB3TQP9ePNw8yO0X8AvgVWCmff8GcKGdfgq4we0Y2/PSGuuOcXB4X2PMFsB3eN9Ad3BYY2NMDdAwBHGoOBt4wU6/APzQxVhaZYz5Aqf3BV/N7cPZwIvG8Q2QLCI9OyfStmtmn5oT8P9LxphdxpjFdroMWIMz6mBQnyf1HTcA9xln2HaMMQ3D8wbiNfoQcCvg+xBVwF13xpiPjDFe+/YbnH7OIfCOaUB/Lx5BHuQaEekNnAE8Y98L8D3gLbtKQMTZHlqwbr8b7W2s53xuszQ1NHCv724akII59sYM8JGILBJnVDeADGPMLju9G8hwJ7R2aW4fgv3cBf3/kohkA2OB+YTueeqqBgPH2VvWn4vIRDs/oM6niJwN5BtjljVaFFBxNuEqnBp1CLxYAy2eZrUxD3LTwzg/+urt+zRgv88PrIA9tm0VskOa+4uIfAz0aGLRr4EngT/iFOD+CPwNJ3NQgeFYY0y+iHQHZovIIaPSG2OMiAR1tzihsA9W0P8viUg88Dbwc2NMqVMR4wih8xTSWsnvw4FUnGYUE4E3RKR/J4Z3UCtx3onTxCIgtBSrMeZdu86vcfo/f6UzYws1gZ4HiciZQIExZpGITHUzlo6kBetWGGNObst6IvJPYKZ925ahgQNVMMd+CGNMvv1bICL/xrmdt0dEehpjdtnboAUtJhKYmtuHoD13xpg9DdPB+L8kIhE4X2ivGGPesbND7jyFupbyexG5AXjHOA1BF4hIPZCOC+ezuThFZBROm+RltlDVG1gsIpPciBNa/w4VkSuAM4GT7LGFwPsfCbR4vuMw8yC3HAOcJc7D6dFAIvAITrOkcFtrHXDH9nBpU5B2aNQ+7RygoZeD5ob3DQYhMQSxiMSJSELDNE4NzkoOHZL5cuBddyJsl+b2YQZwmX36/yigxOc2YEAL5v8l20bwWWCNMeZBn0Uhd566uP/gPMCIiAzGeYhtLwF0jRpjVhhjuhtjso0x2Ti31ccZY3YTgNediEzDaRZwljGm0mdRwBxTK6C/F48gD3KFMeYOY0xve21eCHxqjLkE+Aw4z67mepztpTXW7fMXERmDc/t6K3AdtDy8b6AzzQxr7HJYRyID+LettQkHXjXGfCgiC3Fu4V6N88T8j1yMsVUi8howFUgXkTzg98B9NL0P7+M8+b8RqASu7PSA26CZfZoaxP9LxwA/BlaIyFI7706C/Dyp73gOeE6cbiJrgMttDWswXKMQmNfd4zg9f8y2efU3xpjrA+3/Pgi+Fw83Dwo0twGvi8ifgCU4PxKClo68qJRSSimllB9oUxCllFJKKaX8QAvWSimllFJK+YEWrJVSSimllPIDLVgrpZRSSinlB1qwVkoppZRSyg+0YK38RkTqRGSpiKwSkWUicouIBN01JiLPiMjwTv7MMbbTfKWUapXmt3757GzbfSIiMkFEHnUjjvYQkakiMtNOnyUit7sdU1en/VgrfzpgjBkDYIcRfxVnZKXftydRnxGZOoUx5prO+iwfY4AJOH3NdorOPq5KKb/S/NaPjDG5QK7bcbSHMWYGATRwTVcVdL9uVXAwxhQA1wI32pG+PCLygIgsFJHlInJdw7oicpuIrLC1LvfZeXNE5GERyQVuEpFuIvK23X6hiBxj15skIvNEZImIzBWRIXb+CBFZYGt0lovIIDv/Up/5T4uIp3Hs9rMn2OlyEbnHxvaNiGQ0sX68iPzL7sNyETm3YVufdc4Tkeft9PkistKm+YUdyetu4AIb1wUikioi/7HpfSMiOXbbu0TkBRH5UkS2icj/iMhf7Gd/KM6wtojIeBH5XEQWicgssSMbNnFcD4mlnaddKeWCLpbftjcPHG/TXwb8n0+6vjW/ze3nFSLyjv2cDSLyl6bOh4jcJyKr7bH4q533vIg8JSK5IrJeRM6085s8VzaeOSLyloisFZFXRJxRdERkmp23GPgfn8+9QkQe9/m8R238m0XkPDs/TET+brefLSLvNyxTfmKM0Ze+/PICypuYtx9nFMRrgd/YeVE4NQP9gNOAuUCsXZZq/84B/u6TzqvAsXa6L87QreDU0ITb6ZOBt+30Y8AldjoSiAGGAf8FIuz8vwOXNRHzHGCCnTbAD+z0Xxr2odH69wMP+7xPaXw8cIZrfd5OrwB62elk+/cK4HGf9R8Dfm+nvwcstdN3AV8BEcBonBHUTrPL/g380C6bC3Sz8y/AGSmsqeP6nVj0pS99Bf6rC+e37c0DlwPH2+kHgJV2eiows5X9vALYDCQB0TijGfZpFF8asI5vB+BryOOfBz7EqdAchDPcfHQL52oqUAL0ttvMA4612+ywaQjwhk/cV2C/R+znvWm3HQ5stPPPw7kzGgb0AIqB89y+nkPppU1BVGc5Fcjx+WWchJMxnAz8yxhTCWCM2eezzXSf6ZOB4fYHO0CiiMTbdF6wNSQGJ0MFJxP6tYj0Bt4xxmwQkZOA8cBCm04MUNBK3DXATDu9CDiliXVOBi5seGOMKW4lza+B58UZsvedZtY5FjjXpvepiKSJSKJd9oExplZEVuAMr/uhnb8CyAaGACP5dphgD7DLJ23f49qWWJRSwSWU81s4wjxQRJJxCroNd+dewvmx0Vhz+wnwiTGmBEBEVgNZOAXdBiVAFfCsrQGf6bPsDWNMPbBBRDYDQ2n+XNUAC4wxefazltp9Kwe2GGM22Pkv4xTOm/If+3mrfWr/jwXetPN3i8hnzWyrjpAWrFWHEZH+QB1OZirAT40xsxqt8/0WkqjwmQ4DjjLGVDXa/nHgM2PMOSKSjVP7gTHmVRGZD5wBvG9vrwnwgjHmjsPYjVpjf+bbfTmc/xnjMx19cKYx14vIZBvbIhEZfxhpAlTbdOpFxDe+ehufAKuMMVOa2f7gcW0qFmNM0WHGo5RyWRfLb48oD7QF67b4I03sp+9nNxejMcYrIpOAk3Bqh2/EuesIh34nNLxv7lxNbe2z2sB3e2l2LeVX2sZadQgR6QY8hXNbygCzgBt82r8NFpE4YDZwpYjE2vmpzST5EfBTn/TH2MkkIN9OX+GzvD+w2RjzKPAukAN8ApwnzoM+iNOOOcsPuzubQ9vqpdjJPSIyTJwn9c/xWT7AGDPfGPM7oBDoA5QBCT5pfglcYtefCuw1xpS2MZ51QDcRmWK3jxCREU2t2EwsSqkg0sXy27ZoMg80xuwH9ovIsXa9S5rZvsn9bIuGmn1jzPvAzTjNVRqcb9s4DwD62zibO1fNWQtk2zQALjqc+HDuUp5r48jAaXKi/EgL1sqfYsR2/wR8jJM5/8EuewZYDSwWp3ujp3HasH2I8xRzrr3V9ctm0v4ZMEGchztWA9fb+X8B7hWRJRz6a/5HwEqb5kjgRWPMauA3wEcishznS6anH/b7T0CK2IcAgRPt/NtxbgPO5dCmGA+I86DNSrtsGfAZzq3XpSJyAU47wvE2zvuAy9sajDGmBqem5H4bz1Lg6GZWbyoWpVTg66r5batayQOvBJ6wsTZXi9vcfrZFAjDT7vNXwC98lm0HFgAfANfbOwJNnqsW9q0Kp+nHe+I8vNha85rG3sZp370aeBlYjNN8RfmJfHsHRSmllFJK+Zs4vULNNMa8FQCxxBtjykUkDaegf4wxZrfbcYUKbWOtlFJKKdV1zLTtzSOBP2qh2r+0xloppZRSSik/0DbWSimllFJK+YEWrJVSSimllPIDLVgrpZRSSinlB1qwVkoppZRSyg+0YK2UUkoppZQfaMFaKaWUUkopP9CCtVJKKaWUUn6gBWullFJKKaX8QAvWSimllFJK+YEWrAOEiDwlIr/1U1p9RaRcRDz2/RwRucYfadv0PhCRy/2V3mF87p9EZK+IuDr8qohMFZE8Fz//HBHZYc/xWLfi6Gh2//q7HYdS/qb5fZs+19X8XkSMiAz0c5pbReRkf6apAo8WrDuB/Wc6ICJlIrJfROaKyPUicvD4G2OuN8b8sY1ptfiPaYzZboyJN8bU+SH2u0Tk5Ubpn2aMeaG9aR9mHH2BW4DhxpgenfnZAeivwI32HC9pvLAjvhA6WlOFAbt/m92KSakjofl9+7WW3x9u5YbblSFdnYhk2++lcLdj6QxasO48PzDGJABZwH3AbcCz/v6QEL5w+wJFxpgCtwPxpyM8X1nAqk7+TKVU22l+3z4hmd+rLsIYo68OfgFbgZMbzZsE1AMj7fvngT/Z6XRgJrAf2Ad8ifMj6CW7zQGgHLgVyAYMcDWwHfjCZ164TW8OcC+wACgF3gVS7bKpQF5T8QLTgBqg1n7eMp/0rrHTYcBvgG1AAfAikGSXNcRxuY1tL/DrFo5Tkt2+0Kb3G5v+yXaf620czzex7VQgD6eWowDYBVzps/xgzPb9FcBXPu8N8BNgA1AG/BEYAMy1x+wNILLRZ91p92krcIlPWlE4tcrbgT3AU0BMo21vA3YDLzWxL00eU5tuuY21AtjUxLZf+CwvBy5o6jOBFJxrrBAottO9Gx2vPwJf2+PxEZBul0UDLwNFONfoQiDDLrsSWGO32Qxc1yi+s4Gl9phuwrnG7gHqgCob8+M+52RgS9eG77m0x7wY2AKc1uhcb7YxbfE9V/rSl79faH7fofk9ENdoeTmQiZM/PgzstK+H7bzm1p8EzLPHfRfwODaPt59zMP9pIvYm8xSc74xPcfLGvcArQHJT14bd19tx8sEinO+YhvPUbB7bRCwNaZQBq4FzGsX5NfCQTWczcLSdv8Oew8tbOyd22V3Ayz7rNpxv3+uuue+M7XbdhuM/xe3/0w7NA9wOoCu8aCKjtfO3AzfY6ef5NqO9F6cwFmFfxwHSVFo+F/eLNgOJaeaCzwdG2nXebvgHoYWM1k4f8s/kk15DRnsVsBHoD8QD72ALiz5x/NPGNRqoBoY1c5xexPkSSLDbrgeubi7ORttOBbzA3faYnQ5UAimNY7bvr+C7Bet3gURghI3zE7tfSTgZ1uWNPutBnIz7BJyC7BC7/CFgBpBq9+W/wL2Ntr3fbhvTxL40e0x9Ym0yw29qeVOfCaQB5wKxNsY3gf80OsebgMF2/TnAfXbZdXafYgEPMB5ItMvOwPlyEXtcKoFxdtkkoAQ4BedLpRcwtKnz03g/Wrk2rsApDPyvjecGnC9WwbneS33OTU9ghNt5gr5C94Xm952V3zfej7uBb4DuQDecSpE/trD+eOAoINx+/hrg5z7Lm8xnW8pTgIE4+VuUjeEL4OFmjvVNNt7edv2ngdfssmbz2CbiOR/nh0IYTkVKBdDTLrsCJ++/0qbzJ5zr8An7mafiFILj23BODrk2aPq6a+4745B1Q/2lTUHctROn8NVYLc4/a5YxptYY86WxV2cL7jLGVBhjDjSz/CVjzEpjTAXwW+BHDQ+7tNMlwIPGmM3GmHLgDuDCRrco/2CMOWCMWQYsw8lwD2FjuRC4wxhTZozZCvwN+PFhxFIL3G2P2fs4v4yHHMb2fzHGlBpjVgErgY/sfpUAHwCNHxT8rTGm2hjzOfAezjEV4FrgZmPMPmNMGfBnu28N6oHf222bOl9tOaaH65DPNMYUGWPeNsZU2hjvwSkI+/qXMWa9jfENYIydX4tTMB9ojKkzxiwyxpQCGGPeM8ZsMo7PcWotjrPbXQ08Z4yZbYypN8bkG2PWthZ4G6+NbcaYfxqnnekLOP8/GT77PlJEYowxu+z5VaqzaX5v+Sm/byq2u40xBcaYQuAPLaVn861vjDFe+/lP8908sDlN5inGmI02f6u2MTzYQprX49To5xljqnEKrufZY9lsHtvEfrxpjNlp89TpOHddJ/msssUY8y+bN04H+uAcp2pjzEc4dykG+umcNPed0aVowdpdvXBu/TX2AE6twEcisllEbm9DWjsOY/k2nJqR9DZF2bJMm55v2uF8W6gBp/lBg0qcmo7G0m1MjdPqdRixFBljvG34rObs8Zk+0MR737SK7ZdWg204x6IbTi3DIvvg0n7gQzu/QaExpqqFONpyTA/XIZ8pIrEi8rSIbBORUpyaleRGX77NnbeXgFnA6yKyU0T+IiIRNt3TROQbEdln9/10vr3O+uDUaByutlwbB2M1xlTayXh7ji7A+RLbJSLvicjQI4hBqfbS/P5b/sjv2xJbZnMri8hgEZkpIrttHvhn2nCMWspTRCRDRF4XkXyb5sstpJkF/Nvne2INTpO4DFrIY5vYj8tEZKlPOiMbfWbj7zGMMU19t/njnLTl3Ic8LVi7REQm4lywXzVeZn8t3mKM6Q+cBfxCRE5qWNxMkq3VcPTxme6L84t4L85to1ifuDwcWghsLd2dOBmEb9peDv1nbou9NqbGaeUfZjrNOWQ/gfb2LJIiInE+7/viHIu9OBnVCGNMsn0lGWN8M5jOOqa+Gn/mLTi1+ZONMYnA8Xa+tJqQU6v2B2PMcJz2emcCl4lIFM5t57/itAdMBt73SXMHTjORtsTnq13XhjFmljHmFJxawbU4t6qV6jSa339He/P7puJsKradLaz/JE5+MMjmgXfShvwPWsxT/mw/a5RN89IW0tyB8yxIss8r2t7JazKPbZyAiGTZz74RSLN57sq27kcjrZ2T9nyHtnZdhRQtWHcyEUkUkTOB13HaK61oYp0zRWSgbVZQgvMrtt4u3oPTvu1wXSoiw0UkFqct2lv21tB6IFpEzrC/iH+D0/aqwR4g27erqEZeA24WkX4iEo+TsUxvVHPcKhvLG8A9IpJgM4xf4Pzi94elwP/YmtqBOM0S2usPIhIpIsfhZHxvGmPqcTK6h0SkO4CI9BKR7x9Guu09pm25RhJwfgDsF5FU4PdtDU5EThSRUfZLuRQnM64HInGunULAKyKn4bTha/AscKWInCQiYfa4NNQeNxtze64NW4N0tv0RVI3TPKi+lc2U8gvN75vmh/x+D5AmIkmNYvuNiHQTkXTgdz7pNbV+Ak7+VW7zoRva8sGt5CkJ9n2JiPQCftVCUk/h7H+WTbebiJxtp5vLYxuLwym0FtrtrsSpsT5sbTgnS4Hjxek3PQmnGVBbFdr4u8S4BFqw7jz/FZEynF+pv8Zpe3VlM+sOAj7G+QedB/zdGPOZXXYvTuaxX0R+eRif/xLOAzO7cZ44/hmAcdoP/wR4BueXaQVODxIN3rR/i0RkcRPpPmfT/gLn6egq4KeHEZevn9rP34xTs/OqTd8fHsJpS7YHpw3uK+1MbzdODxQ7bVrX+7QXvg3n1u439nbgxxxeW+/2HtO7gBfsNfKjZtZ5GOcBk704D9B8eBjp9wDewsnw1wCf47TpLMO5rt7AOTYX4zzECYAxZgHONf8QTgHic76tHXkEp31hsYg82sRnHum1EYbz5bAT5zb8CbTxC1SpdtD8vnVHnN/bvPY1YLM9Npk4D+blAsuBFcBiO6+59X+Jk0eV4VSGTG9j3C3lKX8AxuHkb+/hPNzZnEdw8seP7LXyDTDZLmsyj23iOKzGaQc9D+e7bRROrxxHqtlzYoyZjXOMlgOLcHqyaRPbPO8e4Gt7/I9qR4wBr+HJY6WUUkoppVQ7aI21UkoppZRSfqAFa6WUUkoppfxAC9ZKKaWUUkr5gRaslVJKKaWU8gMtWCullFJKKeUH7RkiOWikp6eb7Oxst8NQSikAFi1atNcY0631NbsmzbOVUoGmrfl2lyhYZ2dnk5ub63YYSikFgIhsa32trkvzbKVUoGlrvq1NQZRSSimllPIDLVgrpZRSSinlB1qwVkoppZRSyg+6RBtrpdqitraWvLw8qqqq3A5FhYjo6Gh69+5NRESE26EoFfA0D1aBoL35thaslbLy8vJISEggOzsbEXE7HBXkjDEUFRWRl5dHv3793A5HqYCnebBymz/ybW0KopRVVVVFWlqaZujKL0SEtLQ0rX1Tqo00D1Zu80e+rQVrpXxohq78Sa8npQ6P/s8ot7X3GtSCtVIBRES49NJLD773er1069aNM888s9Ni2Lp1KyNHjuy0z+sIDz74IMOHDycnJ4eTTjqJbdu+7X70tttuY+TIkYwcOZLp06e3mM7bb7+NiBzSp/Ly5cuZMmUKI0aMYNSoUVojrVQI0TzYP5566ilGjRrFmDFjOPbYY1m9ejXg7FtMTAxjxoxhzJgxXH/99Qe3ee211xg1ahQ5OTlMmzaNvXv3AvDmm28yYsQIwsLCmu3fft26dQfTHDNmDImJiTz88MMA3HXXXfTq1evgsvfff79D913bWCsVQOLi4li5ciUHDhwgJiaG2bNn06tXL7fDOiJer5fwcHeymLFjx5Kbm0tsbCxPPvkkt956K9OnT+e9995j8eLFLF26lOrqaqZOncppp51GYmLid9IoKyvjkUceYfLkyQfneb1eLr30Ul566SVGjx5NUVGRPpioVAjRPNg/Lr744oOF5hkzZvCLX/yCDz/8EIABAwawdOnSQ9b3er3cdNNNrF69mvT0dG699VYef/xx7rrrLkaOHMk777zDdddd1+znDRky5GCadXV19OrVi3POOefg8ptvvplf/vKX/t7NJmmNdRf16vztnsMEAAAgAElEQVTt7X6pjnH66afz3nvvAc4v+IsuuujgsoqKCq666iomTZrE2LFjeffddwGnFuC4445j3LhxjBs3jrlz5wIwZ84cpk6dynnnncfQoUO55JJLMMZ85zMXLVrE6NGjGT16NE888cTB+XV1dfzqV79i4sSJ5OTk8PTTTx9cdv/99zNq1ChGjx7N7bffDsDUqVP5+c9/zoQJE3jkkUcoLCzk3HPPZeLEiUycOJGvv/4agAULFjBlyhTGjh3L0Ucfzbp16wBYtWoVkyZNYsyYMeTk5LBhwwYAXn755YPzr7vuOurq6lo8hieeeCKxsbEAHHXUUeTl5QGwevVqjj/+eMLDw4mLiyMnJ+dgZt/Yb3/7W2677Taio6MPzvvoo4/Iyclh9OjRAKSlpeHxeFqMRanWaD4bWDQPbn8e7FtZUVFR0WrzCmMMxhgqKiowxlBaWkpmZiYAw4YNY8iQIS1u7+uTTz5hwIABZGVltXkbf9KCtVIB5sILL+T111+nqqqK5cuXH1Jjes899/C9732PBQsW8Nlnn/GrX/2KiooKunfvzuzZs1m8eDHTp0/nZz/72cFtlixZwsMPP8zq1avZvHnzwYzV15VXXsljjz3GsmXLDpn/7LPPkpSUxMKFC1m4cCH//Oc/2bJlCx988AHvvvsu8+fPZ9myZdx6660Ht6mpqSE3N5dbbrmFm266iZtvvpmFCxfy9ttvc8011wAwdOhQvvzyS5YsWcLdd9/NnXfeCTi3D2+66SaWLl1Kbm4uvXv3Zs2aNUyfPp2vv/6apUuX4vH8P3v3HR9llf7//3UlhKZSBSkB6QKBECEgYhcFBAVXUbEiiLou6rquuvpxLevqT92i37UhrmVtiAKiWQVdULGtdJQuIESKlNBCDWnX74+5kw0hZYBMJoH38/G4H5k5c59zXzOBm8OZc64Ty9tvvw3AiBEjSt36+pVXXuGCCy4AoEuXLnzyySfs2bOHzZs388UXX7BmzZoD6sydO5c1a9YwYMCA/cqXLVuGmdG3b1+6du3KX/7ylxKvLSKVj+7BZXMPfv7552ndujX33HMPzzzzTH75qlWrOPnkkznrrLP4+uuvAYiLi2PUqFF07tyZJk2asHjxYm644YaD+r3lGTt27H7/GQJ47rnnSExMZPjw4Wzbtu2Q2g2XpoKIVDCJiYmkpqbyzjvv0L9///1e+89//kNKSgp/+9vfgNAq+tWrV9OkSRNuvfXW/JvesmXL8uv06NGD+Ph4AJKSkkhNTeX000/Pf3379u1s376dM888E4Brr72WyZMn519v/vz5jB8/HoD09HSWL1/O1KlTGTZsWP6ocL169fLbu+KKK/IfT506NX9uHcCOHTvYtWsX6enpDB06lOXLl2NmZGVlAXDqqafy2GOPsXbtWi655BLatm3LZ599xpw5c+jevTsAe/fupWHDhgC8/PLLJX6Wb731FrNnz+bLL78EoE+fPsyaNYtevXrRoEEDTj311ANGnHNzc7nzzjv517/+dUB72dnZfPPNN8yaNYuaNWvSu3dvunXrRu/evUuMQ0QqD92Dy+YePHLkSEaOHMmYMWN49NFHef3112ncuDGrV6+mfv36zJkzh4svvphFixZRo0YNRo0axbx582jVqhW33XYbjz/+OH/84x9L/4UVkJmZSUpKCo8//nh+2S233MIDDzyAmfHAAw/w+9//nldfffWg2j0Y6liLVEADBw7krrvuYtq0aWzZsiW/3N2ZMGHCAV+LPfzww5xwwgn88MMP5Obm7jd9oVq1avmPY2Njyc7ODjsOd+fZZ5+lb9+++5V/+umnxdY55phj8h/n5uYyffr0/eIBuPXWWznnnHOYOHEiqampnH322UBoXt4pp5zCxx9/TP/+/Rk9ejTuztChQ/e7UYZj6tSpPPbYY3z55Zf7fQb3338/999/f/712rVrt1+9nTt3snDhwvyYNmzYwMCBA0lJSSE+Pp4zzzyT448/Hgh9ZTx37lx1rEWOMLoHH/49OM+QIUO45ZZbgNBnkfd5dOvWjdatW7Ns2bL86TGtW7cG4PLLL+eJJ5446GtNnjyZrl27csIJJ+SXFXx84403RnwhqqaCiFRAw4cP56GHHqJz5877lfft25dnn302/yY0b948IDSK0bhxY2JiYnjzzTdLnf9WUJ06dahTpw7ffPMNQP5XfHnXGzVqVP5oxrJly9i9ezfnn38+r732Gnv27AFg69atRbbdp08fnn322fzneYtL0tPT8xcEFRwZXrlyJa1ateL2229n0KBBzJ8/n969ezN+/Hg2bdqUf62CWT6KMm/ePG6++WZSUlLyR1YgNF8x7x/J+fPnM3/+fPr06bNf3dq1a7N582ZSU1NJTU2lZ8+epKSkkJycTN++fVmwYAF79uwhOzubL7/8ko4dO5YYi4hUProHH949OG9uNsDHH39M27ZtAUhLS8v/bFauXMny5ctp1aoVTZs2ZfHixaSlpQEwZcoUOnToUOI1ilJ4TjzA+vXr8x9PnDgx4hlX1LEWqYDi4+P3m6OX54EHHiArK4vExEQSEhJ44IEHAPjNb37D66+/TpcuXVi6dOl+IxbheO211xg5ciRJSUn7LawZMWIEHTt2pGvXrnTq1Imbb76Z7Oxs+vXrx8CBA0lOTiYpKSn/a9HCnnnmGWbPnk1iYiIdO3bkxRdfBOCee+7hvvvu4+STT95v9Oa9996jU6dOJCUlsXDhQq677jo6duzIo48+Sp8+fUhMTOT888/Pv1EWN7/v7rvvZteuXVx22WUkJSUxcOBAILRl8hlnnEHHjh256aabeOutt/JXzT/44IOkpKSU+DnVrVuXO++8k+7du5OUlETXrl0PmIctIpWf7sGHdw9+7rnnSEhIICkpiaeeeorXX38dgK+++orExESSkpIYPHgwL774IvXq1aNJkyY89NBDnHnmmSQmJvL999/nz/ueOHEi8fHxfPfddwwYMCB/9P6XX37Zb6rO7t27mTJlCpdccsl+sdxzzz35afy++OILnn766YP63RwsK2p1apk1btYP+AcQC7zs7k8Uer0a8AbQDdgCXOHuqWbWA3gp7zTgYXefGE6bRUlOTvbSFjgdbcpitflVpzQvg0gqjiVLluz3P+SyXpF/pH1eEp7Cf64AzGyOuydHKaQK72i7Z5d0rzma7hu6B0tFcTj37YiNWJtZLPA8cAHQEbjSzAp/Z3oDsM3d2wBPA08G5QuBZHdPAvoBo82sSphtioiIiIiUu0hOBekBrHD3le6eCYwFBhU6ZxDwevB4PNDbzMzd97h73ncT1YG8YfVw2hQRERERKXeR7Fg3BQomiF0blBV5TtCRTgfqA5jZKWa2CFgA/Dp4PZw2RURERETKXYVdvOjuM9w9AegO3Gdm1UurU5CZ3WRms81sdt4qU5GKzsy45ppr8p9nZ2fToEGDg04PdPbZZ+cvKOnfvz/bt28v0zgBWrRowebNm8u83fKSmZnJsGHD8ncumzZtWpHnjRs3joSEBGJiYg5YpPP444/Tpk0bTjrppBLTX4lI5aB7cPnJyspi6NChdO7cmQ4dOuyXzu+TTz7hpJNOok2bNvul3bv++utp2bIlSUlJJCUlHbA1ekE7duwgPj6eW2+9Nb8sMzOTm266iXbt2tG+fXsmTJhQ5u8rknms1wHNCjyPD8qKOmetmVUBahNaxJjP3ZeY2S6gU5ht5tV7iWABZHJycuRWaIqUoWOOOYaFCxeyd+9eatSowZQpU/JTIh2qSZMmlVF0ZS87Ozs/K0d5++c//wnAggUL2LRpExdccAGzZs0iJmb/8YZOnTrx/vvvc/PNN+9XvnjxYsaOHcuiRYv45ZdfOO+881i2bJm2OBepxHQPLj/jxo1j3759+SlMO3bsyJVXXkmzZs0YOXIkU6ZMIT4+nu7duzNw4MD81KZ//etfGTx4cKntP/DAA/mb7uR57LHHaNiwIcuWLSM3N7fYNIWHI5Ij1rOAtmbW0syqAkOAwrmsUoChwePBwOfu7kGdKgBmdiLQHkgNs02RSq1///58/PHHwIE5OXfv3s3w4cPp0aMHJ598Mh9++CEQ2glryJAhdOjQgV/96lfs3bs3v07BUY2LL76Ybt26kZCQwEsvvZR/zrHHHsv9999Ply5d6NmzJxs3bjwgri1bttCnTx8SEhIYMWLEfimh3nrrLXr06EFSUhI333xzfp7STz75hK5du9KlS5f8TVQefvhhrr32Wk477TSuvfZacnJyuPvuu+nevTuJiYmMHj0agF27dtG7d2+6du1K586d89/r7t27GTBgAF26dKFTp068++67AMyZM4ezzjqLbt260bdv3/1ylxZl8eLFnHvuuQA0bNiQOnXqFJk2qkOHDgdsBgHw4YcfMmTIEKpVq0bLli1p06YNM2fOLPGaIlLx6R5cPvdgM2P37t1kZ2ezd+9eqlatSq1atZg5cyZt2rShVatWVK1alSFDhuRfO1xz5sxh48aNB+xT8Oqrr3LfffcBEBMTk7/ZV5ly94gdQH9gGfATcH9Q9ggwMHhcHRgHrABmAq2C8muBRcD3wFzg4pLaLO3o1q2by/7env7zYR9HmsWLF0c7BD/mmGP8hx9+8EsvvdT37t3rXbp08S+++MIHDBjg7u733Xefv/nmm+7uvm3bNm/btq3v2rXL//73v/uwYcPc3f2HH37w2NhYnzVrlru7n3jiiZ6Wlubu7lu2bHF39z179nhCQoJv3rzZ3d0BT0lJcXf3u+++2//85z8fENttt93mf/rTn9zd/aOPPnLA09LSfPHixX7hhRd6Zmamu7vfcsst/vrrr/umTZs8Pj7eV65cud+1H3roIe/atavv2bPH3d1Hjx6df72MjAzv1q2br1y50rOysjw9Pd3d3dPS0rx169aem5vr48eP9xEjRuTHtX37ds/MzPRTTz3VN23a5O7uY8eOzf88Ro0a5aNGjTrg/YwePdoHDx7sWVlZvnLlSq9du7aPHz++2N/NWWedlf+ZuruPHDky/3fh7j58+HAfN27cAfWK+nMFzPYI3nsr+3G03bOPpvtsSXQPPrruwZmZmX7FFVf48ccf7zVr1vTRo0e7u/u4ceP8hhtuyD/vjTfe8JEjR7q7+9ChQ71du3beuXNnv+OOOzwjI+OAdnNycvyss87yNWvW+GuvvZZfd9u2bR4fH++/+93v/OSTT/bBgwf7hg0bDqjvfnj37YiO/7v7JGBSobIHCzzOAC4rot6bwJvhtilyJElMTCQ1NZV33nlnv+T3AP/5z39ISUnJ3wwgIyOD1atX89VXX+VvZpCYmEhiYmKRbT/zzDNMnDgRgDVr1rB8+XLq169P1apV8+cQduvWjSlTphxQ96uvvuL9998HYMCAAdStWxeAzz77jDlz5tC9e3cgNHLTsGFDpk+fzplnnknLli0BqFevXn5bAwcOpEaNGvnvaf78+YwfPx4I7Qi2fPly4uPj+b//+z+++uorYmJiWLduHRs3bqRz5878/ve/5w9/+AMXXnghZ5xxBgsXLmThwoWcf/75QGiHxcaNGwPw61//usjPYvjw4SxZsoTk5GROPPFEevXqpWkcIqJ7cDndg2fOnElsbCy//PIL27Zt44wzzuC8884r5rcS8vjjj9OoUaP8udJPPvkkDz744H7nvPDCC/Tv35/4+Pj9yrOzs1m7di29evXiqaee4qmnnuKuu+7izTeL7G4esuhMrBGREg0cOJC77rqLadOm5W/BDaFvmCZMmFDk1ITSTJs2jalTp/Ldd99Rs2ZNzj77bDIyMgCIi4vDzACIjY3dbyeu0rg7Q4cO3W/hCcC///3vYusU3JXM3Xn22Wfzd9PK869//Yu0tDTmzJlDXFwcLVq0ICMjg3bt2jF37lwmTZrEH//4R3r37s2vfvUrEhIS+O6778KOu0qVKvvtwNWrVy/atWsXdv2mTZuyZs3/khStXbv2sOdiikjFoHtw5O/BY8aMoV+/fsTFxdGwYUNOO+00Zs+eTbNmzYq9t+Z11qtVq8awYcOK3HHyu+++4+uvv+aFF15g165dZGZmcuyxx/L4449Ts2bN/J0ZL7vsMl555ZWw4w1Xhc0KInI0Gz58OA899BCdO3fer7xv3748++yz+XPr5s2bB8CZZ57JmDFjAFi4cCHz588/oM309HTq1q1LzZo1Wbp0KdOnTz+omApeY/LkyWzbtg2A3r17M378eDZt2gTA1q1b+fnnn+nZsydfffUVq1atyi8vSt++fRk1ahRZWVkALFu2jN27d5Oenk7Dhg2Ji4vjiy++4OeffwZC29jWrFmTa665hrvvvpu5c+dy0kknkZaWln9Tz8rKYtGiRSW+nz179rB7924ApkyZQpUqVfIXx4Rj4MCBjB07ln379rFq1SqWL19Ojx49wq4vIhWX7sGRvwc3b96czz//HAjN254+fTrt27ene/fuLF++nFWrVpGZmcnYsWMZOHAgQP68bXfngw8+oFOnTge0+/bbb7N69WpSU1P529/+xnXXXccTTzyBmXHRRRflZ4D67LPPDuqeHy6NWItUQPHx8flfKxb0wAMPcMcdd5CYmEhubi4tW7bko48+4pZbbmHYsGF06NCBDh060K1btwPq9uvXjxdffDF/MV7Pnj0PKqaHHnqIK6+8koSEBHr16kXz5qHtgTt27Mijjz5Knz59yM3NJS4ujueff56ePXvy0ksvcckll5Cbm0vDhg2L/HpzxIgRpKam0rVrV9ydBg0a8MEHH3D11Vdz0UUX0blzZ5KTk2nfvj0QyuJx9913ExMTQ1xcHKNGjaJq1aqMHz+e22+/nfT0dLKzs7njjjtISEjgxRdfBA78OnLTpk307duXmJgYmjZtut/XgSNGjODXv/41ycnJTJw4kdtuu420tDQGDBhAUlISn376KQkJCVx++eV07NiRKlWq8Pzzz2sqicgRQvfgyN+DR44cybBhw0hISMDdGTZsWP4Umueee46+ffuSk5PD8OHDSUhIAODqq68mLS0NdycpKSm/7dmzZ/Piiy/y8ssvl/gZPvnkk1x77bXccccdNGjQgNdee+2gfgfhsLz/dRV7gtlfgEeBvcAnQCLwO3d/q8yjiZDk5GQvarX/0WzMjNWH3cZVpzQvg0gqjiVLltChQ4dohyFHmKL+XJnZHHdPjlJIFd7Rds8u6X58pN1nS6J7sFQUh3PfDmcqSB933wFcSCjlXRvg7kOIU0RERETkiBVOxzpvusgAYJy7p0cwHhERERGRSimcjvVHZrYU6AZ8ZmYNgIzIhiUSHaVNjRI5GPrzJHJw9HdGou1w/wyW2rF293uBXkCyu2cBu4FBh3VVkQqoevXqbNmyRTd2KRPuzpYtW6hevXq0QxGpFHQPlmgri/t2uFlB2gMt8rYZD7xxyFcVqYDi4+NZu3YtaWlp0Q5FjhDVq1c/YJOC8mRm/YB/ALHAy+7+RKHXqxG6l3cDtgBXuHtq8Np9wA1ADnC7u39aUptm9jaQDGQR2kn3ZnfPslBy3n8Q2jV3D3C9u8+N5PuWykn3YKkIDve+XWrH2szeBFoT2l48Jyh21LGWI0xcXFz+DlUilZ2ZxQLPA+cDa4FZZpbi7osLnHYDsM3d25jZEOBJ4Aoz6wgMARKAJsBUM8vbPae4Nt8GrgnOGQOMAEYBFwBtg+OUoOyUCL1tqcR0D5YjQTgj1slAR9d3MyIilUkPYIW7rwQws7GEpvEV7FgPAh4OHo8HngtGmAcBY919H7DKzFYE7VFcm+4+Ka9RM5sJ5A35DALeCP4NmW5mdcyssbuvL/N3LCISZeEsXlwINIp0ICIiUqaaAmsKPF8blBV5jrtnA+lA/RLqltqmmcUB1xLa9yDcODCzm8xstpnN1lQAEamswhmxPh5YHIxA7MsrdPeBEYtKREQqqxeAr9z964Op5O4vAS9BaIOYSAQmIhJp4XSsH450ECIiUubWAc0KPI8Pyoo6Z22wOL02oUWMJdUttk0zewhoANx8kHGIiBwRwkm39yWwFDguOJYEZSIiUnHNAtqaWUszq0poMWJKoXNSgKHB48HA58Fc6BRgiJlVM7OWhBYeziypTTMbAfQFrnT33ELXuM5CegLpml8tIkeqcLKCXA78FZgGGPCsmd3t7uMjHJuIiBwid882s1uBTwmlxnvV3ReZ2SPAbHdPAV4B3gwWJ24l1FEmOO89Qgsds4GR7p4DUFSbwSVfBH4Gvgutf+R9d38EmEQo1d4KQun2hkX+3YuIREc4U0HuB7q7+yaAYOfFqYRWkIuISAUVZOqYVKjswQKPM4DLiqn7GPBYOG0G5UX+exKMgI88qMBFRCqpcLKCxOR1qgNbwqwnIiIiInLUCGfE+hMz+xR4J3h+BUWMVoiIiIiIHM1K7Vi7+91mdilwWlD0krtPjGxYIiIiIiKVSzgj1rj7BGBChGMREREREam0iu1Ym9k37n66me0ECibrN0LrUWpFPDoRERERkUqi2I61u58e/Dyu/MIREREREamcSs3uYWZvhlMmIiIiInI0CydtXkLBJ8G2t90iE46IiIiISOVUbMfazO4L5lcnmtmO4NgJbAQ+LLcIRUREREQqgWI71u7+eDC/+q/uXis4jnP3+u5+XznGKCIiIiJS4YUzFWSmmdXOe2Jmdczs4nAaN7N+Zvajma0ws3uLeL2amb0bvD7DzFoE5eeb2RwzWxD8PLdAnWlBm98HR8NwYhERERERiaRwOtYPuXt63hN33w48VFolM4sFngcuADoCV5pZx0Kn3QBsc/c2wNPAk0H5ZuAid+8MDAUKL5a82t2TgmMTIiIiIiJRFk7HuqhzwtlYpgewwt1XunsmMBYYVOicQcDrwePxQG8zM3ef5+6/BOWLgBpmVi2Ma4qIiIiIREU4HevZZvaUmbUOjqeAOWHUawqsKfB8bVBW5Dnung2kA/ULnXMpMNfd9xUoey2YBvKAmVlRFzezm8xstpnNTktLCyNcEREREZFDF07H+jYgE3g3OPYBIyMZVB4zSyA0PeTmAsVXB1NEzgiOa4uq6+4vuXuyuyc3aNAg8sGKiIiIyFGt1Ckd7r4bOGDhYRjWAc0KPI8Pyoo6Z22QH7s2sAXAzOKBicB17v5TgXjWBT93mtkYQlNO3jiE+EREREREykypHWszawDcQ2ijmOp55e5+brGVQmYBbc2sJaEO9BDgqkLnpBBanPgdMBj43N3dzOoAHwP3uvu3BWKpAtRx981mFgdcCEwt7T2IiIiIiERaOFNB3gaWAi2BPwGphDrNJQrmTN8KfAosAd5z90Vm9oiZDQxOewWob2YrgDv538j4rUAb4MFCafWqAZ+a2Xzge0Id9n+G9U5FRERERCIonOwe9d39FTP7rbt/CXxpZqV2rAHcfRIwqVDZgwUeZwCXFVHvUeDRYprVduoiIiIiUuGE07HOCn6uN7MBwC9AvciFJCIiIiJS+YTTsX402Hnx98CzQC3gdxGNSkRERESkkgknK8hHwcN04JzIhiMiIiIiUjmVunjRzP5iZrXMLM7MPjOzNDO7pjyCExERERGpLMLJCtLH3XcQSm2XSihbx92RDEpEREREpLIJp2OdN11kADDO3dMjGI+IiIiISKUUzuLFj8xsKbAXuCXYMCYjsmGJiIiIiFQupY5Yu/u9QC8g2d2zgN3AoEgHJiIiIiJSmYQzYg3QHmgRbCme540IxCMiIiIiUimV2rE2szeB1oS2EM8Jih11rEVERERE8oUzYp0MdHR3j3QwIiIiIiKVVThZQRYCjSIdiIiIiIhIZRbOiPXxwGIzmwnsyyt094ERi0pERA5gZjHAscHeAiIiUsGE07F+ONJBiIhI0cxsDPBrQmtcZgG1zOwf7v7X6EYmIiKFldqxdvcvyyMQEREpUkd332FmVwOTgXuBOYA61iIiFUypc6zNrKeZzTKzXWaWaWY5ZqavIUVEykecmcUBFwMpwX4CWkwuIlIBhbN48TngSmA5UAMYATwfyaBERCTfaCAVOAb4ysxOBDS4ISJSAYXTscbdVwCx7p7j7q8B/SIbloiIALj7M+7e1N37e8jPwDnRjktERA4UTsd6j5lVBb43s7+Y2e/CrCciIofJzE4ws1fMbHLwvCMwNMphiYhIEcLpIF8bnHcrsBtoBlwayaBERCTfv4BPgSbB82XAHVGLRkREilVix9rMYoH/z90z3H2Hu//J3e8MpoaIiEjkHe/u7wG5AO6eTSj1XqnMrJ+Z/WhmK8zs3iJer2Zm7wavzzCzFgVeuy8o/9HM+pbWppndGpS5mR1foPxsM0s3s++D48FD+RBERCqDEtPtuXuOmZ1oZlXdPbO8ghIRkXy7zaw+QSYQM+sJpJdWKRgYeR44H1gLzDKzFHdfXOC0G4Bt7t7GzIYATwJXBNNNhgAJhEbKp5pZu6BOcW1+C3wETCsinK/d/cKDfN8iIpVOOBvErAS+NbMUQlNBAHD3pyIWlYiI5LkTSAFam9m3QANgcBj1egAr3H0lgJmNBQYBBTvWg/jfJmDjgefMzILyse6+D1hlZiuC9iiuTXefF5Qd6vsUEan0wulY/xQcMcBxQZlyqIqIlAN3n2tmZwEnAQb8GOSyLk1TYE2B52uBU4o7x92zzSwdqB+UTy9Ut2nwuLQ2i3Kqmf0A/ALc5e6LwqgjIlLphNOxXuzu4woWmNllEYpHREQAM7ukmJfamRnu/n65BnTo5gInuvsuM+sPfAC0LXySmd0E3ATQvHnz8o1QRKSMhNOxvg8YF0aZiIiUnYtKeM2B0jrW6whlccoTH5QVdc5aM6sC1Aa2lFK3tDb3D9R9R4HHk8zsBTM73t03FzrvJeAlgOTkZH0rKiKVUrEdazO7AOgPNDWzZwq8VAvIDqdxM+sH/AOIBV529ycKvV4NeAPoRuhmfoW7p5rZ+cATQFUgE7jb3T8P6nQjlH6qBjAJ+GicLJsAACAASURBVK276yYsIkcUdx92mE3MAtqaWUtCnd8hwFWFzkkhlBP7O0Lztj93dw/W1Iwxs6cILV5sC8wkNBWltDb3Y2aNgI1Buz0ITSvccpjvTUSkQippxPoXYDYwEJhToHwn8LvSGj6cFenAZuAid//FzDoRyuGaN79vFHAjMINQx7ofMLm0eEREKiszG0AoQ0f1vDJ3f6SkOsGc6VsJ3T9jgVfdfZGZPQLMdvcU4BXgzWBx4lZCHWWC894jtNAxGxjp7jlBLAe0GZTfDtwDNALmm9kkdx9BqMN+i5llA3uBIRoMEZEjVbEda3f/AfjBzMaEuVCmsENekZ63ujywCKgRjG7XA2q5+/SgzTeAi1HHWkSOUGb2IlCT0DbmLxPqqM4Mp667TyI0AFGw7MECjzOAItfMuPtjwGPhtBmUPwM8U0T5c8Bz4cQrIlLZlbrz4iF2qqHoFelNizsn2PQgb0V6QZcCc4O0T02DdkpqEwgthDGz2WY2Oy0t7RDfgohI1PVy9+sIfbv3J+BUoF0pdUREJArC2dI8aswsgdD0kJsPtq67v+Tuye6e3KBBg7IPTkSkfOwNfu4xsyZAFtA4ivGIiEgxiu1Ym9mbwc/fHmLbB7MinUIr0jGzeGAicJ27/1Tg/PhS2hQROZJ8ZGZ1gL8SSl2XCrwT1YhERKRIJY1YdwtGR4abWV0zq1fwCKPt/BXpZlaV0KKYlELn5K1Ih/1XpNcBPgbudfdv80529/XADjPrGewOdh3wYVjvVESkEnL3P7v7dnefAJwItHf3B6Idl4iIHKikjvWLwGdAe0JZQQoes0trOJgznbd6fAnwXt6KdDMbGJz2ClA/WJF+J3BvUH4r0AZ40My+D46GwWu/IbSAZwWhHSG1cFFEjlhmdpmZ5e16ezfwmpmdHM2YRESkaCVlBXkGeMbMRrn7LYfS+KGuSHf3R4FHi2lzNtDpUOIREamEHnD3cWZ2OnAeoSkhLxLeVuIiIlKOwskKcouZdTGzW4MjsTwCExERAHKCnwOAl9z9Y0KbZ4mISAVTasc6SPr/NtAwON42s9siHZiIiACwzsxGE9o8a1KQ079CZ3QSETlalbTzYp4RwCnuvhvAzJ4ktP3ts5EMTEREALic0A6zf3P37WbWmNBcaxERqWDC6Vgb//sqkuCxRSYcEREpyN33AO8XeL4eWB+9iEREpDjhdKxfA2aY2cTg+cWEsnmIiIiIiEig1I61uz9lZtOA04OiYe4+L6JRiYiIiIhUMuGMWOPucwnt+CUiIiIiIkUIq2MtIiLly8x2Al7c6+5eqxzDERGRMKhjLSJSAbn7cQBm9mdCixXfJLRw/GqgcRRDExGRYpSYC9XMYs3si/IKRkREDjDQ3V9w953uvsPdRwGDoh2UiIgcqMSOtbvnALlmVruc4hERkf3tNrOrg4GOGDO7Gtgd7aBERORA4UwF2QUsMLMpFLiZu/vtEYtKRETyXAX8Izgc+DYoExGRCiacjvX7FNicQEREyo+7p6KpHyIilUI4eaxfN7MaQHN3/7EcYhIRkYCZtQNGASe4eyczSyQ07/rRKIcmIiKFlDjHGsDMLgK+Bz4JnieZWUqkAxMREQD+CdwHZAG4+3xgSFQjEhGRIpXasQYeBnoA2wHc/XugVQRjEhGR/6np7jMLlWVHJRIRESlROB3rLHdPL1SWG4lgRETkAJvNrDXBZjFmNphQXmsREalgwlm8uMjMrgJizawtcDvw38iGJSIigZHAS0B7M1sHrAKuiW5IUl7GzFhd4utXndK8nCIRkXCEM2J9G5AA7APeAXYAd0QyKBERCXH3le5+HtAAaO/upweZQkREpIIptWPt7nvc/X6gN3COu9/v7hmRD01ERMzst2ZWC9gDPG1mc82sT7TjEhGRA4WTFaS7mS0A5hPaKOYHM+sW+dBERAQY7u47gD5AfeBa4InohiQiIkUJZ471K8Bv3P1rADM7HXgNSIxkYCIiAoAFP/sDb7j7IjOzkiqIiEh0hDPHOievUw3g7t+gVE8iIuVljpn9h1DH+lMzOw5lZhIRqZCKHbE2s67Bwy/NbDShhYsOXAFMi3xoIiIC3AAkASvdfY+Z1QeGRTkmEREpQklTQf5e6PlDBR57BGIREZGAmbV396WEOtUArTQDRESkYiu2Y+3u55RnICIisp/fAzdy4CAHhAY3zi3fcEREpDSlLl40szrAdUCLgue7++1h1O0H/AOIBV529ycKvV4NeAPoBmwBrnD31OCrzvFAd+Bf7n5rgTrTgMbA3qCoj7tvKi0WEZHKxN1vDH5qkENEpJIIJyvIJGA6sICDWDBjZrHA88D5wFpglpmluPviAqfdAGxz9zZmNgR4ktAc7gzgAaBTcBR2tbvPDjcWEZHKxswuKel1d3+/vGIREZHwhNOxru7udx5C2z2AFe6+EsDMxgKDgIId60HAw8Hj8cBzZmbuvhv4xszaHMJ1RUSOBBeV8JoD6liLiFQw4XSs3zSzG4GPCG1rDoC7by2lXlNgTYHna4FTijvH3bPNLJ3QBgibS2n7NTPLASYAj7r7AYspzewm4CaA5s2bl9KciEjF4u7K/CEiUsmE07HOBP4K3M//soE40CpSQZXiandfF+RynUBoF7I3Cp/k7i8BLwEkJycri4mIVFpmNgBIAKrnlbn7I9GLSEREihLOBjG/B9q4ewt3bxkc4XSq1wHNCjyPD8qKPMfMqgC1CS1iLJa7rwt+7gTGEJpyIiJyRDKzFwmtPbmN0C6MlwEnRjUoEREpUjgj1iuAPYfQ9iygrZm1JNSBHgJcVeicFGAo8B0wGPi8qGkdeYLOdx1332xmccCFwNRDiE1EpLLo5e6JZjbf3f9kZn8HJkc7KKkYxsxYXexrV52iaZAi5S2cjvVu4Hsz+4L951iXmG4vmDN9K/ApoXR7r7r7IjN7BJjt7inAK4TmcK8AthLqfANgZqlALaCqmV0M9AF+JrSlb1zQ5lTgn+G+WRGRSigvtegeM2tC6Fu9xlGMR0REihFOx/qD4Dho7j6JULq+gmUPFnicQehrzaLqtiim2W6HEouISCX1UbCfwF+BuYTWuLwcTsVD3UsgeO0+QilRc4Db3f3TktoMBlLuAFoDDdx9c1Buwfn9CX37eb27zz2kT0JEpIIrtWPt7q+XRyAiInIgd/9z8HCCmX1EKAVqemn1DmcvATPrSOgbxASgCTDVzNoFdYpr81tC2aOmFQrlAqBtcJwCjOLADFEiIkeEcHZeXMX/soHkC3MBo4iIHIaggzyAArvfmhnu/lQpVQ95L4GgfKy77wNWBdP18haKF9mmu8/Li62QQcAbwfqZ6WZWx8wau/v68D8FEZHKIZypIMkFHlcnNHWjXmTCERGRQv5NaDfag9r9lsPbS6ApoR13C9ZtGjwurc1w4mgK7Nex1t4DInIkCGcqSOH0d//PzOYADxZ1voiIlKl4d0+MdhCRpr0HRORIEM5UkK4FnsYQGsEOZ6RbREQO32Qz6+Pu/znIegezl8DaQnsJlFS3tDYPJQ4RkSNCOB3kvxd4nA2kApdHJBoRESlsOjDRzGKALEKbxLi71yql3iHvJWBmKcAYM3uK0OLFtsDM4NqltVlYCnBrMB/7FCBd86tF5EgVzlSQc8ojEBERKdJTwKnAgpI20CrscPYSCM57j9BCx2xgpLvnQH5avf3aDMpvB+4BGgHzzWySu48glHK1P//bbGzY4X0cIiIVVzhTQaoBl1JgRTqAuz8SubBERCSwBlh4MJ3qPIe5l8BjwGPhtBmUPwM8U0S5AyMPNnYRkcoonKkgHwLpwBwK7LwoIiLlYiUwzcwms//ut6Wl2xMRkXIWTsc63t37RTwSEREpyqrgqBocIiJSQYXTsf6vmXV29wURj0ZERPIFm8Mc5+53RTsWEREpXTgd69OB64MdGPfxvxXpR3xe1aNRrjs/btjJ3NXbAKh/TDUaHleNzvG1iYuNiXJ0IkcXd88xs9OiHYeIiIQnnI71BRGPQiqE79ds4z+LNrJ9bxbHVatC9bhYlm7YSU6u89XyNAZ3iye+bs1ohylytPk+SH83DtidV+ju70cvJBERKUo46fZ+Lo9AJLq+XbGZjxesp1ndGvTv3JgOjWsRG2PkurNs404+mLeOF7/8iXPbN+SckxpiZtEOWeRoUZ3Qpi3nFihzQB3ro0SuO6s276ZKjNG8Xk3df0UqMO2gKHzx4yamLN5IQpNaXJHcjCoFpnzEmNG+US1+2/sYPvxhHVOXbCIuNoYz2jaIYsQiRw93V97no9Tufdl8+9Nm5q3eTvreLADqHVOVrs3rclrr+lSLi41yhCJSmDrWR7mZq7YyZfFGkprV4dKu8cTGFD0SUqNqLJcnNyPXYfLCDdSpqeQEIuXBzOKBZ4G8udZfA79197XRi0oibV9WDq9+u4oN6Rm0PeFY+nduTFZOLnN/3sbUJRtZsWkXw05robUvIhWM/kYexbbs2sfHC36hTcNjGdyt+E51nhgzLusWT/N6NRk3e03+AkcRiajXCG0L3iQ4/h2UyREqJ9cZM3M1G3dkcN2pLbi+V0s6N61N1+Z1GXFGK67o3oyft+zmnZmryck96H2DRCSCiu1Ym9lOM9tR3FGeQUrZy3Vn3Jy1xMYYl3aNJybMOXtxsTFc2/NEatWI47dj57E3MyfCkYoc9Rq4+2vunh0c/wI0F+sI5e58MG8dyzft4uKkppzU6LgDzukSX4eBSU1YumEnE+au5RA25RSRCCm2Y+3ux7l7LeAfwL1AUyAe+APw/8onPImUr5dvZvXWPQzs0pTaNeIOqu4x1apwSdemrNm6l6enLotQhCIS2GJm15hZbHBcQ2gxoxyBFqxLZ87qbZxzUkOSW9Qr9rxTWtbnvA4n8P2a7fywNr0cIxSRkoQzFWSgu7/g7jvdfYe7jwIGRTowiZzVW/YwdclGOjWpRZf42ofURqvjj+XKHs15+euVLNBNXSSShgOXAxuA9cBgQAsaj0DZObl8umgDjWpVp3eHhqWef/ZJDYivW4PJC9aTkaVvD0UqgnA61rvN7OpgpCTGzK6mQC5VqXyenrqMGIMLE5scVtqmey9oz/HHVuMPE+aTlZNbhhGKSB53/9ndB7p7A3dv6O4Xu/vqaMclZW/Gqq1s25NFv06NwpqeF2PGwC5N2LUvm8+WbCyHCEWkNOFkBbmK0HSQfxDKnfptUCaV0NINO/jg+3Wc0eZ4ah3kFJDCateI45FBCfz6rbmMmbGaob1alE2QIoKZPVjCy+7ufy63YCTi9mbm8PnSTbRpeCztTjhwXnVx4uvWpHuLeny3cgvdTqxHo9rVIxiliJSm1BFrd09190HufnwwYnKxu6eWQ2wSAX/7dBnHVqvCme3KZu1T34RG9GxVj2c/X87ufdll0qaIAKFvBgsfADcQWusiR5Avl20iIyuHfgmNDrpun44nUD0ulo8W/BKByETkYJTasTazdmb2mZktDJ4nmtkfIx+alLU5P29l6pKN/Pqs1tSsWjYpzM2MP/Rrz+Zdmbz6zaoyaVNEwN3/nncALwE1CM2tHgu0impwUqb2Zubw3cotdGlWhyZ1ahx0/ZrVqnD2SQ1Zmbabn7dopqZINIUzx/qfwH1AFoC7zweGRDIoiYynpizj+GOrMey0FmXa7snN69I34QRGf7WSrbszy7RtkaOZmdUzs0eB+YSm7nV19z+4+6YohyZlaM7qbWTlOKe3Of6Q2+jeoi41q8by5bK0MoxMRA5WOB3rmu4+s1CZvvOvZBb9ks63K7Yw4oyWZTZaXdBdfU5iT2Y2L3yxoszbFjkamdlfgVnATqCzuz/s7tqV6QiTm+vMWLmF5vVqHtJodZ5qVWLp1bo+SzfsZH363jKMUEQORjgd681m1prQwkXMbDChlE+lMrN+Zvajma0ws3uLeL2amb0bvD7DzFoE5fXN7Asz22VmzxWq083MFgR1nrHDSWtxFHnl61XUrBrLlT2aR6T9ticcx6Vd43lj+s9s3JERkWuIHGV+T2inxT8CvxTYoGunNuk6cny9YjNbdmfSs1X9w27r1FbHU7VKjEatRaIonI71SGA00N7M1gF3ALeUVsnMYoHngQuAjsCVZtax0Gk3ANvcvQ3wNPBkUJ4BPADcVUTTo4AbgbbB0S+M93BU25CeQcoPv3B5crOD3gzmYNx2bluyc3J5+euVEbuGyNHC3WPcvUbeZl0FjrzNu+QI8MZ/UzmmWhU6NTn8X2mNqrH0bFmPBWvT2bJrXxlEJyIHK5ysICvd/TxCW+i2d/fTw8wK0gNYEdTPJLTgpvDGMoOA14PH44HeZmbuvtvdvyHUwc5nZo2BWu4+3UN7uL4BXBxGLEe1N75LJded4ae1jOh1mtevycAuTXh7xmq2aa61iEiJ1mzdw+c/bqJ7i7pUiQ1nnKt0p7U5ntgY45sVm8ukPRE5OOFkBfmtmdUC9gBPm9lcM+sTRttNgTUFnq8Nyoo8x92zgXSgpO/DmgbtlNSmFLAnM5u3Z6ymb0IjmtevGfHr3XJ2G/Zk5vCv/6ZG/FoiIpXZmJmrMaBHCVuXH6zjqsfRuWlt5q3Zzs6MrDJrV0TCE85/kYe7+w6gD6FO77XAExGNqgyY2U1mNtvMZqelHb3zzSbMXUf63ixGnBHZ0eo8JzU6jvM7nsC//pvKLuW1FhEpUm6u88G8dZzVrgF1alYt07ZPbV2fzOxcJs5bV6btikjpwulY5y0O7A+84e6LCpSVZB3QrMDz+KCsyHPMrApQG9hSSpvxpbQJgLu/5O7J7p7coEHZbIZS2bg7b0//mU5Na9G1ed1yu+5vzm5N+t4sxsz4udyuKSJSmcxYtZX16RlcfHLZf+kaX7cm8XVr8Pp/UwnNmhSR8hJOx3qOmf2HUMf6UzM7DsgNo94soK2ZtTSzqoRyX6cUOicFGBo8Hgx87iXcBdx9PbDDzHoG2UCuAz4MI5aj0rw121m6YSdX9TiR8kyecnLzupzaqj6vfLOKzOxw/qiIiBxdPvx+HTWrxnJ+xxMi0n7PVvX5KW03//2ppLEqESlr4XSsbwDuBbq7+x6gKqHdv0oUzJm+FfgUWAK85+6LzOwRMxsYnPYKUN/MVgB3BtcBwMxSgaeA681sbYGMIr8BXgZWAD8Bk8N4D0elMTNWc0zVWAYmNSn3a990Vis27tjHv3/QFrsiIgVlZOXw8YL19E1oFJF9BQA6N61NvWOq8sZ3qRFpX0SKVuzfaDNr7+5LgaSgqNXBjnq6+yRgUqGyBws8zgAuK6Zui2LKZwOdDiqQo1D63iw+mv8Lvzo5nmOrRebGXZKz2zWgbcNj+efXK7mka9NyHTEXEanIpv24iZ0Z2RGZBpInLjaGK7o3Y/SXP7Fu+16aHsbmMyISvpJGrH8f/Px7EcffIhyXHKaJc9eSkZXL1adEZkOY0pgZN57ZiqUbdirtk4hIAR/M+4Xjj63Kaa0Pf1OYklx9SnMceHfm6oheR0T+p9iOtbvfGPw8p4jj3PILUQ6WuzNm5moS42vTqWntqMUxKKkJDY6rxj+/XhW1GEREKpL0vVl8vnQTFyY2KbPc1cWJr1uTs9o14N3Za8jO0XoXkfJQ7N9qM7ukpKM8g5SDM3f1dpZt3BWx7cvDVa1KLNf3asFXy9JYukE7MIuIfLpoA5k5uRGdBlLQVT2as3HHPj5fuqlcridytCvpv8sXlXBcGPnQ5FCNm72GGnGxXNSl/BctFnb1Kc2pERfLyxq1FhFh8oL1NK1Tgy7x5fNt4rntG9KoVnXGaDqISLkodlWbu5ea+UMqnj2Z2Xw0fz39OzeOyqLFwurUrMplyfG8M3M19/Q9iYa1qkc7JBGRqEjfm8U3KzZzfa8W5bagu0psDJd3b8azny9nzdY9NKsX+R14RY5mYU3wMrMBZnaPmT2Yd0Q6MDk0nyzcwK592VyeHF/6yeVk+Gktyc513vhOG8aIyNHrsyUbycpxLujcuFyve0X3Zhjw7qw15XpdkaNRqUOaZvYiUBM4h1D+6MHAzAjHJYfovdlrOLF+TXq0rBftUPK1OP4Yzu9wAm/N+JnfnNM6YnlbRUQqskkLNtC4dnWS4uuU63Wb1qnBOSc15N3Za/jteW2JK4NFk2NmlDy15KooZaQSibZw/nb1cvfrgG3u/ifgVKBdZMOSQ7F6yx6mr9zKZd3iK1ze6BvPbMX2PVlMmFvkDvQiIke0nRlZfLU8jQs6NSYmpvzvz1f3bE7azn1MWbyx3K8tcjQJp2O9N/i5x8yaAFlA+X6PJWEZP3ctZnBJ14ozDSRP8ol16dKsDq9+s4qc3GJ3rRcROSJ9vnQTmdm59O/cKCrXP6tdQ5rWqcHbMzQlTySSwulYf2RmdYC/AnOBVOCdSAYlBy8315kwZy2ntzmeJhVwhy0z48YzWrJq826mLtGIiYgcXSYv2EDD46rRtXndqFw/Nsa46pTmfLtiCyvTdkUlBpGjQakda3f/s7tvd/cJwIlAe3d/IPKhycGYvnIL67bv5bLkZtEOpVj9EhrRrF4NXvzyJ9w1ai0iR4c9mdlMW7aJCzo1iso0kDyXJzejSoyVOj9aRA5dqR1rM4s1s4FmdjswErjBzO6MfGhyMMbPWctx1avQp+MJ0Q6lWFViY7jxjFbMW72d2T9vi3Y4IiLlYtqPaWRk5dKvU3RnUTY4rhp9OzVi3Jy1ZGTlRDUWkSNVOFNB/g1cD9QHjitwSAWxMyOLSQvXc1GXJlSPi412OCW6rFsz6taMY/SXP0U7FBGRcjF54QbqH1O1QmRruuaUE0nfm8VH89dHOxSRI1I4Het4d7/E3R9y9z/lHRGPTMI2ecEGMrJyGdyt4i1aLKxG1ViG9mrB1CWbWL5xZ7TDETmimVk/M/vRzFaY2b1FvF7NzN4NXp9hZi0KvHZfUP6jmfUtrU0zaxm0sSJos2pQfr2ZpZnZ98ExIrLvumLJyMrh8yUbOb/jCcRGcRpInp6t6tGm4bG88V2qpuSJREA4HevJZtYn4pHIIRs3Zw2tGhzDyc3KNzfqobru1BZUj4th9Fcrox2KyBHLzGKB54ELgI7AlWbWsdBpNxBKpdoGeBp4MqjbERgCJAD9gBeCaYEltfkk8HTQ1rag7TzvuntScLwcgbdbYX27YjO7M3Po1yk62UAKMzOu79WC+WvTmaMpeSJlLpyO9XRgopntNbMdZrbTzHZEOjAJT+rm3cxK3cbgCpi7ujj1jqnKkO7N+WDeOtZu2xPtcESOVD2AFe6+0t0zgbHAoELnDAJeDx6PB3pb6EYyCBjr7vvcfRWwImivyDaDOucGbRC0eXEE31ul8cnCDRxXvQq9Wh8f7VDyXdK1KbVrxPHqt6uiHYrIESecjvVThDaFqenutdz9OHevFeG4JEwT8nJXn1zxp4EUdPNZrYgxY9Q0zbUWiZCmQME9rNcGZUWe4+7ZQDqh9TTF1S2uvD6wPWijqGtdambzzWy8mRWZusjMbjKz2WY2Oy0tLfx3WYFl5eQyZclGzutwAlWrHP5uh2WlZtUqDOnRjE8WbtDghkgZC+dv+hpgoWsyVoWTk+uMn7OWM9s2oFHt6tEO56A0rl2DwcnxjJu9lvXpe0uvICKV1b+BFu6eCEzhfyPk+3H3l9w92d2TGzRoUK4BRsrMVVvZvieLvgkVYxpIQded2gIz483vtGGMSFkKp2O9EpgWLGS5M++IdGBSuq+Xp7E+PYMrulfc3NUlueWs1uS6M/pLzbUWiYB1QMGbQ3xQVuQ5ZlYFqA1sKaFuceVbgDpBG/tdy923uPu+oPxloNthvatKZPLC9dSIi+WsdhXvPwpN69SgX0Ij3pm5mj2Z2aVXEJGwhNOxXgV8BlRF6fYqlHGz11K3Zhy9OzSMdiiHpFm9mlzStSljZq5m046MaIcjcqSZBbQNsnVUJbQYMaXQOSnA0ODxYODz4NvJFGBIkDWkJdAWmFlcm0GdL4I2CNr8EMDMCiZvHggsKeP3WSHl5DqfLNzIOe0bUKNqxUyDOvz0luzIyGbszDWlnywiYalS0ovBCvDj3P2ucopHwrR1dyb/WbyBa3u2oFqVinnTDsfIc9owYe46Xpj2Ew8PTIh2OCJHDHfPNrNbgU+BWOBVd19kZo8As909BXgFeNPMVgBbCXWUCc57D1gMZAMj3T0HoKg2g0v+ARhrZo8C84K2AW43s4FBO1sJ7YtwxJu5aiubd+2jf+fobgpTkm4n1uWUlvV46auVXN2zeaX+t0SkoiixY+3uOWZ2WnkFI+H7YN46snKcy7tXrkWLhZ1Y/xgu6xbP2zN+5obTW9KsXs1ohyRyxHD3ScCkQmUPFnicAVxWTN3HgMfCaTMoX0koa0jh8vuA+w429spu0oL1VI+L4dz2FfsbxdvObcs1r8xgwpx1XHVK82iHI1LphTMV5HszSzGza83skrwj4pFJsdyd92avITG+Nu0bVf4ELXec144YM56asizaoYiIHLacXGfywg2cc1JDalYtcfwq6k5rU58uzerwwrQVZOXkRjsckUovnI51dUILU84FLgqOCyMZlJRswbp0lm7YyeXJlXPRYmGNaldn+Okt+eD7dSz6JT3a4YiIHJZZqRV/GkgeM+O2c9qwdtteUr7/JdrhiFR6pXas3X1YEcfw8ghOijZmxmpqxMUyMKlJtEMpM78+qzW1qsfxl09+jHYoIiKHZdKC9VSrUvGngeTp3aEhHRrX4vlpK8jWqLXIYSm1Y21m8WY20cw2BccEM6vcE3srsR0ZWXz4/S8M7NKEWtXjoh1OmaldI45bz2nDl8vS+HLZkbE5hIgcfQpOAzmmWsWeBpLHzPht77asTNvNe7PXRjsckUotnKkgrxFKvdQkOP4dlJXKzPqZ2Y9mtsLM7i3i9Wpm9m7w+gwza1HgtfuC8h/NrG+B8lQzW2Bm35vZ7HDiOJL8/+2dd3gc1bn/P+92ksrN0QAAIABJREFUdUuymo2bXJHBDQOmmxLTW0ILnZAfhMuFe28ghRsuIT2QSkkCBBxCNYRA4hDAgI0xzTY2xrj3bqtZVpdWZc/vjzkya1lrFa+0K+n9PM88O3vmzJnvnJl9590z55z3H8t2UdfYzDXT+t4gk+tPHMaIgUn88J8rqW9sjrUcRVGUTrNkaxklVUHOnxD/3UDCOXt8DscOT+e376ynOqjzWitKV+mIY51ljPmLMabJLk8D7c52b6fq+wNwLlAAfF1EClpluxnYZ4wZBfwOeMDuW4Az7dN44Bzgj7a8Fk43xkwyxkztgP4+gzGG5xdu5+jBaUw4YkCs5UQdv8fNjy4az9a9tTyxQIPGKIrS+5i9fDcJXnev6QbSgojwv+cdSWl1kCfe3xRrOYrSa+mIY71XRK4VEbddrsUZzNgexwEbjTGbjTENwCzg4lZ5LubL8LavAGeKiNj0WcaYoDFmC7CRNqZx6m8s3baPdUVVXNOHp0Q6dUwW5x+dxx/e28j2vbWxlqMoitJhGppCvP7FHmaMz+k13UDCmTw0nQsnDuKJDzZTWKFBuxSlK3TEsf4GcAVQCOzBiax1Uwf2GwyEh3PaadPazGOMaQIqgMx29jXA2yKyVERu6YCOPsMLi7aT4vdw4cS+M2ixLf7vggI8LuG+2StxAropiqLEP++tK6airpFLJrd+1PUevnv2WEIheOCttbGWoii9ko7MCrLNGHORMSbLGJNtjLnEGLO9J8RF4GRjzBScLia3i8ipbWUSkVtEZImILCkp6f2D4Uqrg7y+Yg+XTB7cK1tCOkNuWoC7Zoxl/roSXtRQu4qi9BL+sWwXmUk+Thk1MNZSusyQjES+dVo+ry3bxXvrimMtR1F6HRE9NBG5L9I2wBhjftJO2buA8ImWj7BpbeXZKSIeIA2nm0nEfY0xLZ/FIvIaTheRBW0IfAJ4AmDq1Km9vtnzuYXbaGgKceNJw2MtZT8vLDr8/1eRIn3deOJw5q4t4ievr2Zafgb5WcmHfSxFUZTuoqKukblrirn6+KF43B15GRy/3H7GKN5cWcgPXl3BnP85lZQ+NAOVonQ3h/r117SxgDPg8HsdKPtTYLSIjBARH85gxNmt8swGbrDrlwHzjPPufzZwlZ01ZAQwGlgsIkkikgIgIknADGBlB7T0auobm3lu4TZOH5vFyH7iYLpcwq8vn4jP4+J/XvpcI4IpihLXvLliDw3NIS7txd1AWvB73Dxw2QT2VNZrbAFF6SQRHWtjzG9aFpyW3wScvtWzgPz2CrZ9pv8TmAOsAV42xqwSkR+LyEU221NApohsBL4NfN/uuwp4GVgNvAXcboxpBnKAD0VkObAY+Lcx5q0unHevYvby3ZRWN3Dzye1We58iLy2BX3z1aJbvrODXc9S4K4oSv7y2bBf5A5OYcERarKVEhSlD07npxBE8u3AbH28sjbUcRek1HLKzrohk4Di81+DM3jHFGLOvo4UbY94A3miVdl/Yej1weYR9fwb8rFXaZmBiR4/fFzDGMPPDLYzLTeGkUZmxltPjnHd0HlcfP5THF2xmTE4KXztGYxMpihJf7CirZdGWMr79lTE4E1v1De4+ewzvry/mzlnLeP2OU8hNC8RakqLEPRFbrEXkVzjdOaqAo40x93fGqVaiw8eb9rK2sIpvnDSiTxnszvCji8ZzQn4m97y6gk+3lsVajqIoygG8uHg7LoHL+tgf/0Sfh8euPYbahmZuf+Ez7ZKnKB3gUH2s78KJtHgvsFtEKu1SJSKVPSNPeXzBZgYm+7hoUt+eYu9QeN0u/nTtFAanJ3Drs0vZUlrT/k6Koig9QENTiJeX7OSMcdkMGpAQazlRZ3ROCr/82gSWbtvHz99YE2s5ihL3HKqPtcsYk2CMSTHGpIYtKcaY1J4U2V9Ztn0fC9aX8M1T8gl43e3v0IcZkOjjqRucQJtXPv4JG4urYqxIURQF3lldRGl1kGuOHxZrKd3GRRMHceOJw/nLR1v568dbYy1HUeKa3j0nUB/n4bkbSE/0ct20vmuwO0N+VjKzbplGyMBVTyxkXaE614qixJYXFm9j8IAETh2TFWsp3cq95x/JWUfmcP+/VvHPz1vPnKsoSgt9O9JIL+aLneW8t66E75w9ts8HhOkMY3JSeOnWaVz954Vc8fgnPPz1yZwWpQdad87LrShK32NzSTUfbdzL3TPG4Hb17TEwHreLR6+ezPUzF3PXy8u5dtowxuSkxFqWosQd2mIdpzw8dyNpCV6uP0Fbq1szMiuZv916InlpAW78y2IembuBUKjXxwBSFKWX8eLi7XhcwhVTh7SfuQ8Q8Lp58oapjM1N4dmF21i9uyLWkhQl7lDHOg5ZuauCd9cUcfPJIzTiVQSGZiby6n+cyMUTB/Gbd9Zz3cxFbC6pjrUsRVH6CVX1jcz6dAdnj88lO7X/TEOXGvDy/DePZ1BagOcXbWfpNp0sTFHCUcc6zjDG8NN/ryY90csNJw6PtZy4JtHn4XdXTuLnlx7NFzsqOOf3H/Cbt9dRE2yKtTRFUfo4zy3cTlV9E986bWSspfQ4AxJ9fOPkEYzMTubvn+1k/rpinKDJiqKoYx1nvL26iIWby/ifr4whLUFbq9tDRLj6+KHMvfs0zp+QxyPzNnLiL+fx6znrKK0Oxlqeoih9kPrGZp76cAunjB7I0X0k0mJn8XvcXD9tGBOOSOPt1UW8tGQHDU06z7Wi6Ki4OKKhKcQv3ljD6Oxkrj5OB8F1huyUAL+7chLXnzCMx97fxB/mb+SJBZs5bWwWF00cxJlHZpPo09tdUZTD529Ld1JaHeS26ZNiLSWmeNwurpw6hLzUAG+vLqK0KsjVxw8jI8kXa2mKEjPU04gjnvlkK1v31vL0TcficevLhK4weWg6j183lU0l1Ty/cDuvf7Gbd1YX4XULk4ekM21kJpOHDGD8oNR+1S9SUZTo0NQc4okFm5g8dAAn5GfGWk7MERFOG5tNTmqAl5fu4JF5G7h08mCdIUnpt6hjHScUV9bz0NwNnDYmi+ljs2Mtp9czMiuZ+y4s4AfnH8niLWXMX1/MJ5v28ui8DbRMIJKZ5CM/K4nhmUkMy0xk295aBiT6SEvwkhrw6J8bRVEOYvby3ewoq+O+C8Yj0ren2OsM4/JSueP00cz6dDuzPt2BMfB/FxaQrNPFKv0MvePjAGMM//vaChqaQvzwwoJYy+lTuF3CCSMzOWGk07JUVd/I6t2VrN5TyZo9lWwtrWX++hJKqg7uj53kc5OW6CUtwXG2MxK9pCf5yEjyMTDZj1cdb0XpV9Q1NPOrOes4anAqZ47TBpDWpCf5uOXUkby7poiXl+7go02l/PryiUzTln2lH6GOdRzw2rJdvLummHvPP5L8rORYy+mVdDa4i9/jZtKQdCYNSQec/u0VdY2U1zZQUddIZX0jFXXOUlYTZHNJNcGwgTkCpCV6yUkJkJcWIDctwJD0RIwxfaoVS4PmKMqXPPb+JvZU1PPQVZNx9fGAMF3F7RLOHp/LHWeM4q6/Lefrf17I9dOG8Z1zxmnrtdIv0Ls8xhRV1nP/7FVMHZbOTSeNiLWcfovP4yIrxU9Wir/N7cYY6hqb2VfTyN6aICXVQUqqghRV1rOhuGp/95K/fLyFSUPSmZafwXEjMhg/KK3PR2RTlP7A7vI6Hl+wifMn5HHciIxYy4l7pg7P4M3/OoUH31rHXz/Zyturi/jJxUdxVkFOrKUpSreijnUMaQ4Z7v7bchqaQ/zq8onqgMUxIkKiz0Oiz8Pg9IQDtjU1hyiqDLKzvBav28WSrWW8u6YIgLQELyeNyuSU0VmcMc4Z4KMoSu/jl2+uxRi459xxsZbSYaLxxulwSPR5uP+i8Vw0aRD3/H0F33xmCV8pyOG+CwoYkpEYcb9D6e7ON2Dt1Vd/e/um9dE11LGOIQ/OWcsHG0r5xVePZsTApFjLUbqIx+1icHoCg9MT9huaosp6Fm7ey4cbSvlgQylvrCgEsH0zc5gxPoeCvNQ+1W1EUfoqC9aXMHv5bu48YxRHpEd2CJW2mTI0nX/dcTJPfbiFR+Zt4Kzfvs+tp43kW6fl6zSoSp9D7+gYMXv5bh5/fzPXHD+Ur+uc1X2OnNQAF08azMWTBmOMYX1RNfPWFjN3TRGPzNvAQ3M3MHhAAmePz+Xco3OZMjRd31goShxSUhXk2y8vZ0xOMv9x+qhYy+m1+Dwubps+kksmD+Jn/17Dw3M3MGvxdu6aMYbLjhmi9k/pM6hjHQO+2FnOd19ZzrHD0/nhheNjLUfpZkSEsbkpjM1N4bbpIymtDjJvTTFzVhXy3KJtzPxoCwOT/cwYn8O5R+UyLT9TZxxRlDggZLvrVdU38vw3jyfgdcdaUq8nLy2BR6+ewk0nlfGzf6/he39fwZ8/2MKdZ47mgqPzdFCo0utRx7qHWbmrguueWkxmkp8/XnMMPo86UP2Ngcl+rjh2CFccO4TqYBPvrS3mrZWF/GPZLl5YtJ3UgIczj8xhRkEOp47JIklH0itKTJj50RbeX1/CTy4ez9jclFjL6VMcMyyDv992InNWFfLbd9Zz54vLeHTeBm49dSRNoRAelz4bld6JPrF7kJW7KrjmyUUk+z3MumVaxBkolP5Dst/DhRMHceHEQdQ3NrNgfQlzVhUxd20Rry3bhc/t4vj8DM4Yl80po7MYmZWk/bIVpQd4c8Uefv7GGmYU5HDttGGxltMnERHOOSqPGQW5/HvFHh6Zt4G7/rac1ICHE/IzmTIsnZSAN9YyFaVTqGPdQ3y4oZTbX/hsv1N9qBHR/YlYj1qPNtE4n2OGpTNpyAC27a1hbWEVa/dU8cGGUgBSAx5GZiXvjxY5MMWPK4KjrSO2FaVrvL++hDtnLWPy0HR+f9Uk/TPbzbhcwoUTB3HBhDzeX1/CT19fw5zVRbyzpogj81I5Zlg6o7KTtRVb6RWoY93NGGN4fMFmHnxrLaOyk3nqhmPVqVbaxe0S8rOSyc9K5ryj8yiraWBTcTUbSqpZV1TFsh3lAAS8LvLSEhiUFiAnNUBmsp+Byb6odx9pDhkamkI0hkI0NRuaQ4aQMRgDIuASweMSvB4XPrcLr1vUGVF6JR9vLOXWZ5cwOjuFmTceq7NW9CAiwvSx2ewur6e4sp4l2/bx2fZ9rNpdScDroiAvlYwkLyeOGkiqtmQrcYpajG5kd3kd9/1zFe+uKeL8CXk8+LUJ2l9W6RIZST4yRmRw7IgMjDGUVjewbW8NO8vr2FNex6ItZTS1RKnBccwfe38TWSl+0hK8pAa8JHjd+Dyu/QMjDYZQyBBsChFsClHX0ExNQxM1wSZqgs1UB5soq2mgoTlEc1jZHcHtEhJ9bpJ8Ht5aVUhuqp9BAxIYmpHI0IxEhg9MIjPJp863EjcYY3jqwy384s21jBiYxDM3H0dagjpvsSI7NcB5R+cxY3wOG4urWbGzglW7K/nWc5/hdgmThgxg6vB0pgx13vBlp/jVnihxgXp53UBjc4i/fLSF37+7gZAx3Hv+kdx88gj90StRQUT2R4mcatNCxlBe20hpdZDS6iCVdU1kJvsorQ5SVtPAltIa6hubnVbnZsdJFpxXsAGvC5/HRYLXTaLPQ5LfzcBkP8l+D7vK6/B7HIfcccoFr8uFyyW4xNFijCFkoDkUoqEpREOzoa6hmVrrpJfXNrBmTyWl1UFMmH+eluBlZFYSY3KcGVPG5qQwLi+VjCRfj9ep0r+pqG3k3n+u5F/LdzOjIIdfXzFRW0TjBI/LxbjcVMblptIcMozNTWHB+hI+2lTKzA+38HjzZgAGJHoZm5NCflYyQzMSGZKRQG5qgOyUAANTfCR43foMVnoEdayjSHWwiVmLtzPzwy3srqjnzHHZ3H/ReO36oXQ7LhGnVTvJx5gcZ/aCaPSxjkaf8RYd9Y3N7CqvY3tZLVtKathUUs3G4mrmrCpk1qc79ufPSfUzLjeVI/NSOTIvhYK8VEYMTMKjUxAqUaaxOcRzC7fx0NwNVNY18p2zx3LbaSN1yrc4xe0SjhuRwXEjMribsdQ3NrNyVwUrd1WwtrCKdUVVzFlVSFlNw0H7+twu0hK9pAQ8JNkGhESfhwSvm4DXTYLPxdZSJ3quz+PC5xb8XjcBjwu/102C182u8joyEn0k+HTaRSUy3epYi8g5wEOAG3jSGPPLVtv9wDPAMcBe4EpjzFa77R7gZqAZuNMYM6cjZfY0Tc0hPt60l9e/2M2bKwupqm/i+BEZ/PyrRzN9bHYspSlKXBHwuhmZlczIrGROH/tlujGGkuog6+xAzTV7Klm9p5KPN5Xub133eVyMzk5mbE4KY3JTGJ2dzKjsZI5IT9TAEoegJ22wiIwAZgGZwFLgOmNMw6GOEStKqoK8snQnLy7ezvayWk4alcm95xdwZF5qLGUpnSTgdTN1eAZTh2cckF4dbGLnvlqKKoMUV9azt6aB8tpGKuoaqKxv6e7WRHFVPXUNzdQ1NFPfFKKqvnG/zWmLR9/bCECiz01mso+sZD85qc74lty0AHlpAQYNSGDQgARyUvy9qjEg2NRMcWWQ4qp6SqqClFQ3MH9d8f76CTaFaGwO0dAcIhQyGODFxdtxuwSvW/B73CT5ne5/qQle0hN9ZCR5GZjsvF3NTgmQnervF3PBd5tjLSJu4A/AV4CdwKciMtsYszos283APmPMKBG5CngAuFJECoCrgPHAIOBdERlj92mvzG6lvLaBtYVVfLGznEWby/h0axmV9U0k+z3MKMjhuhOGMXloek/JUZRej4g4RjclwCmjs/anNzSF2FhczbqiSsfhLqzik817eXXZrv15fG4XQzMTGZ6ZyNCMJI5IT+CIdOfBlpsWICPR129bH2Nggx8AfmeMmSUij9my/xTpGN179gfS2BxiXWEVH28q5YMNpXyyaS9NIcNxwzP44YUFnDEuW7sJ9CGS/R7bfaRz+72waDvGGBqbDQ3NIYKNjkNZ1+g4l0cfkca+2gb2VjewtzpIcVWQDcXVfLihlKpg0wFluV1CToqfwekJ5KUlkDcgQF5qgNy0BHJS/WSnBshK9nd7LIvmkGFfbcN+p7m4MkhhZT17Kuopsp+FFXXsq21sc3+/7Sbo9zoD0z1uFz6vCxEYmOyjKWRoajbUNDRRUhWkOthEZV3jQfXRQnqil9y0BPLS7J8R+6ck1w7Az0kJkJrg6dW/x+5ssT4O2GiM2QwgIrOAi4Fwo34xcL9dfwV4VJzavBiYZYwJAltEZKMtjw6Uedgs2VrG5tIaymoaKKtpYE9FPbvtK+ySquD+fPlZSZw/IY/TxmQzfWxWv/gnpig9hc/jomBQKgWDUmHyl+kVdY37u5FsKqlmW2ktW/fW8NHGvdQ1Nh9QhtctDEz2k5nsIyPJT3qilwEJXtISfaT4PSQHPCT6nFfCiT43Aa8Lv8eNf3+fchce26/c7XZmPnGJ4HYJbhHE9jOPU3rMBovIGuAM4Gqb56+23D9FOoYxpnMjYg9BWU0D28tqqahrpKKukZKqIIUVdeyuqGeTvU9aWiJHZydz88kjuHzqEEZlJ0dLgtJHEBF8HsHncZHcarKBrx8XuXtdVX0jhRX17CqvY09FPbv21bG7oo7d5XV8vqOct1bW09AcOmi/lICHgcnOIPMBic5A8yS/h2S/e/+Ac5/HhdvlwmVnYGoOOTMzNYZC1DeGCDY1U2sHnFfVO7+BfbWNlNc6PkxbY88zk3zkpAYYlBZgytABTqt7aoCsVD/ZKX4GJvt5e1XRId8IHqq7YWNziH21DZRWNVBSHaSosp6iinoKK+sprHAc+mXb97Xp0Ps8LgYm+RiY4rct3779dZMS8Oyvo0S/m0TblSfgPXgskMcteFwuXC6nr76rh+x1dzrWg4EdYd93AsdHymOMaRKRCpzXiIOBha32HWzX2yvzsHns/U28u6YYcC5wXlqAQWkJTB+TxeicZMbmplKQl6oBXhQlBqQleJky1JkNIBxjDGU1Dewqr2N3udMaU1hZT2lVkL01TgvTtr01lNc2UlnfSLTcuvysJObdNT06hUWXnrTBmUC5MaapjfyRjlHa5TNrxStLd/DzN9YekOa3tjs/K5nTx2UzLjeFafmZ5KQGonVYRdlPSsBLSsDL6Jy2I3SGQoay2gYKK+oprqqnsCLI3mrHNpVWB6moa6SspoGtpTVUB5upCTYd1FAQCb/HRZLf6Tee7HcaD0ZnJzMg0UdWso9M2x0jJ/XLLhl+T/sNgYfTzc7rdu1/E3ko6hub97eiF9mlpDpIaZVTL/tqG9hcWk15TeRW8M7iEvjknjO7zRb02cGLInILcIv9Wi0i67pa1obDlzOQKD5EupHeoLM3aIQ40HlNx7J1u84O6miPmNdnJLYBcjfQOY0ayq8V0bTZLawH3ndW4/b+aYdeq/uabtIdJXsSiUPWdzcf+3CIyX0ShfqI2f2d27XReR2y293pWO8ChoR9P8KmtZVnp4h4gDScwS2H2re9MgEwxjwBPNFV8dFERJYYY6a2nzO29AadvUEjqM5o0xt0xqHGnrTBe4EBIuKxrdbh+SMd4wC602bH4bXpEKq7Z1HdPUtv1d0e3dlr/lNgtIiMEBEfzkCY2a3yzAZusOuXAfNsv7vZwFUi4rcjzUcDiztYpqIoitKDNtju854tA1vmP9s5hqIoSp+j21qsbV+6/wTm4EzLNNMYs0pEfgwsMcbMBp4CnrUDY8pwjDQ238s4g2yagNuNMc0AbZXZXeegKIrSW4mBDf4eMEtEfgoss2UT6RiKoih9EdGGg+5HRG6xrznjmt6gszdoBNUZbXqDzt6gsb/SW6+N6u5ZVHfP0lt1t4c61oqiKIqiKIoSBXpPWCBFURRFURRFiWPUse4mROR+EdklIp/b5bywbfeIyEYRWSciZ8dSp9VzjtWyUUS+H2s94YjIVhFZYetwiU3LEJF3RGSD/ezxUJciMlNEikVkZVham7rE4WFbv1+IyJQYaoy7+1JEhojIeyKyWkRWich/2fR4q89IOuOuTvsDInK5vQ4hEZnaalub9R7J1tnBmIts+kt2YCbiDN58yaYvEpHhPXh+MbfL0bJzInKDzb9BRG4ISz/G2veNdt/Djt4RTXvSw7oDIrJYRJZb3T+y6Z2+Nzt7/0cDEXGLyDIReb036e4WjDG6dMOCE2ns7jbSC4DlgB8YAWwC3DHU6bYa8gGf1VYQ6/oL07cVGNgq7UHg+3b9+8ADMdB1KjAFWNmeLuA84E1AgGnAohhqjLv7EsgDptj1FJzphwvisD4j6Yy7Ou0PC3AkMBaYD0xtr94PZeuAl4Gr7PpjwG12/T+Ax+z6VcBLPXRucWGXo2HngAxgs/1Mt+vpdttim1fsvudGQXNU7EkMdAuQbNe9wCJ7jE7dm125/6N0r3wbeAF4vSu/qVjp7o5FW6x7nv2hgo0xW4DwUMGxYH/YY2NMA9AS9jieuRgnZDL285KeFmCMWYAzw0E4kXRdDDxjHBbizPebFyONkYjZfWmM2WOM+cyuVwFrcKL1xVt9RtIZiXj7rfcpjDFrjDFtBZGJVO9t2jrb2ngGTrh1OPhea7kHXwHOjEbrZAeIC7scJTt3NvCOMabMGLMPeAc4x25LNcYsNI5n9QxRsOVRtCc9rdsYY6rtV69dDJ2/Nzt1/x+ubgAROQI4H3jSfu/Kb6rHdXcX6lh3L/9pXy3NlC+7K7QVZvhQD+fuJt70tMYAb4vIUnEiswHkGGP22PVCICc20g4ikq54q+O4vS/ta8HJOK01cVufrXRCHNdpPyRSvUdK73A4dqAlHHt3E8/3Tmd/l4dK39lGetQ4THvS47ptd4rPgWIcR34Tnb83O3s+0eD3wHeBkP3eld9ULHR3C+pYHwYi8q6IrGxjuRj4EzASmATsAX4TU7G9l5ONMVOAc4HbReTU8I22xSDupraJV13E8X0pIsnA34H/NsZUhm+Lp/psQ2fc1mlvpx0bq8SYePpdtqa32JNwjDHNxphJOJFLjwPGxVhSu4jIBUCxMWZprLXEC90Z0rzPY4w5qyP5ROTPwOv2a0fCDPck8abnAIwxu+xnsYi8hmNsikQkzxizx76WK46pyC+JpCtu6tgYU9SyHk/3pYh4cR6CzxtjXrXJcVefbemM1zrtC3TUxraix8OxdwPxfO909ne5C5jeKn2+TT+ijfyHTZTsSY/rbsEYUy4i7wEn0Pl7s7P3/+FyEnCROIO2A0Aq8FAv0N1taIt1N9Gqz+elQMuo6kihgmNF3IaJF5EkEUlpWQdm4NRjeIjk8NDJsSaSrtnA9eIwDagIeyXZo8TjfWn71z0FrDHG/DZsU1zVZySd8Vin/Zy+EI49bu0ynf9dzgFmiEi67SY1A5hjt1WKyDT727qeKNjyKNqTntadJSID7HoC8BWc/uGdvTc7df8frm5jzD3GmCOMMcNtmfOMMdfEu+5uxcTBCMq+uADPAiuAL3BugrywbT/A6Tu1jiiMJo6C1vNwRk5vAn4Qaz1huvJxRgAvB1a1aMPpjzUX2AC8C2TEQNuLOK/9G3H6fN0cSRfOaO8/2PpdQdgMBjHQGHf3JXAyzmvZL4DP7XJeHNZnJJ1xV6f9YcH5E7MTCAJFOE7PIes9kq2ztmYxzoCpvwF+mx6w3zfa7fk9eH4xt8vRsnPAN2wdbgRuCkufivNHdBPwKDZo3WFqjpo96WHdE4BlVvdK4L6u3pudvf+jeL9M58tZQXqN7mgvGnlRURRFURRFUaKAdgVRFEVRFEVRlCigjrWiKIqiKIqiRAF1rBVFURRFURQlCqhjrSiKoiiKoihRQB1rRVEURVEURYkC6lj3IUSkWUQ+F5FVIrJcRO4SkV53jUXkSREpiAMdw0VkZfs5D/s4fhth7nMRubLVthtFZFB3a+gMIjLJBgNo+X6RiHw/lpoUpT/QX228iEwXkRM7kO+SjpQrIveLyN03CJAwAAAIB0lEQVQdPX6EMnrk+dBTtLbrStfRyIt9izrjhENFRLKBF3CiIP3wcAoNi57UIxhjvtlTx+pOOlFvkwFarl0rbsSZ03R3G+W7jTHNhyWya0zCmcf1DQBjzGzifcJ+Rekb9FcbPx2oBj5uJ98lOJFPV3dBVn/nALuuHAaxnkhbl+gtQHWr7/k4oUIFcAO/woli9AVwa1i+7+FMjL8c+KVNmw/8HlgC3AVk4YSI/dQuJ9l8xwGf4Exs/zEw1qaPx5n8/XN7vNE2/dqw9McBdxvnMR87ST+OMf2Z1bYQyGkj//3ATLvfZuBOmz4cWBmW727g/rBj/M6e3xrgWOBVnOABPw3bfy3wvM3zCpBotx0DvA8sxYnQlddWvbXSmQH8w9bHQpyAANk4E+VX2DoZGZb/Mnv+6+y2BGAr8ADwGU4Eqv9nr8dye31a9D0NPGyvyWbgMpueByyw5a0ETrHpf7KaVwE/CtNwrC1jub1uacB2oMSWcSWO8/9oWJ3Ns+c4FxjaFT266KLLwQv90MZbm1KIE8b6c+CUtuwMcCJQBmyx+UYS2T7eD9zdhq7LrR1aDiwIO/4HODb3M+DEsPSVdr3Nuu+IfQPus/utBJ6A/fFF5tPOM8rm+7bddyXw36212e+tn30P2Gu03tanj1Z2Pdb3em9eYi5AlyhezFZG16aVAznALcC9Ns1vf6wjgHNxjGWLwWmJRjUf+GNYOS8AJ9v1oTjhYsFpLfHY9bOAv9v1R4Br7LoPxyk8EvgX4LXpfwSub0PzfL40uga40K4/2HIOrfLfb8/BDwzEedB4O2Jc7Pp/4bQI59kyduJE6Rpuj9/ygJlpy/Da42XZ9CuBmW3VWyudjwA/tOtnAJ/b9enYaFWHqgv7fSvw3bDvmWHrPwXusOtP40S3cgEFwEabfhdfRrB0AymtrrvbHnOCvW6bgWPDrzVhjrRN3//dXt8b7Po3gH90RY8uuuhy8EL/tvF3h30/lJ25LCxfJPt4QHlheVYAg+36APuZCATs+mhgiV0fzpeOdaS6b9e+ERY5GCeKa0tdzKf9Z9QxVnMSkIzTMDKZ9p99v7Hr5wHv2vUbCbPrunR90a4g/YcZwAQRucx+T8MxEmcBfzHG1AIYY8rC9nkpbP0soEBEWr6nikiyLeevIjIax0B67fZPgB+IyBHAq8aYDSJyJo4h+NSWkwAUt6O7AefVHjitw1+JkO/fxpggEBSRYpwHTXu0dF9YAawyxuwBEJHNwBCcB9YOY8xHNt9zwJ3AW8BRwDv2PNw4YX9bCK+3cE4GvgZgjJknIpkiktoBna0JL/8oEfkpMADHsM4J2/YPY0wIWC0iLfXxKTBTRLx2++c2/QoRuQXHcc7DcX4NsMcY86nVXAkQdg+0xQnAV+36szgPyq7oURSlc/R1Gx/OoexMOIeyj23xEfC0iLyM0zoMzvk+KiKTgGZgTBv7Rar7jti300XkuzgOfAaOc/wvu629Z9TJwGvGmBqb/ipOC3R7XfNazm0pjhOuRBF1rPswIpKPYwiKcV4V3mGMmdMqz9mHKKImbN0FTDPG1Lfa/1HgPWPMpSIyHOffMMaYF0RkEXA+8IaI3Go1/NUYc08nTqPR2L/T9lwi3bPBsPWWfE0cOEA3EGGfUKv9Q2HHMRyIwTmPVcaYEyJoqYmQHi3Cy38auMQYs1xEbsRp/W4h/JwEwBizQEROxbkuT4vIb3Fec96N0zK9T0Se5uC6igYd0mOMeaYbjq0ofY5+ZuO7wtNEto8HYYz5logcj3NOS0XkGOAOoAiYiFNH9W3s2mbdAxzKvolIAKdVf6oxZoeI3M+Btrcjz6i26OizL9r1raCzgvRZRCQLeAzn1Y7B+ad+m/3njIiMEZEk4B3gJhFJtOkZEYp8G8fAtJTfMtAuDafvGzivklq25wObjTEPA//E6VowF7jMDrpBRDJEZFgUTjcSRUC2bRn2Axd0oYyhItLiQF8NfIjT5zmrJV1EvCIyvgNlfQBcY/eZDpS2tAIfgiog5RDbU4A99rpe054AW99Fxpg/A08CU3Be9dYAFbYl+VybfR2QJyLH2n1TRMTTjqaPcfp+Y/V80AU9iqK0Qz+z8a1tTiQ70zpfZ+3jSGPMImPMfTj9jYfgnP8e+7btOpw3lK1ps+47YN9aHN5S+3bgMjrHB8AlIpJor/WlNq0rz772njVKB1HHum+RIHYqJuBdHEP5I7vtSZyR0p/ZKYIex+k39xbOa6MlIvI5TstlW9wJTBWRL0RkNfAtm/4g8AsRWcaB/3yvAFbaMo8CnjHGrAbuBd4WkS9wDH5eVM68DYwxjcCPcQZpvIMzELGzrANuF5E1QDrwJ2NMA44BfEBEluMM9mh3Kiicfn3H2HP/JXBDB/Z5GnjMXteENrb/H7AI5xVmR85vOrDcXq8rgYeMMctxBiatxeln+RGAPc8rgUfseb6D8yB4D+eV8UHTA+I8mG+y53gdTt/ATunpwDkoSn+lv9r4fwGX2nM/hch2ZhbwHRFZJiIj6bx9/JWIrLD11zJo+4/ADdYGjqPtN5Jt1j3t2DdjTDnwZ5yBh3Nwuo50GGPMZzjPiMX2PJ80xizr4rPvUHZd6QTy5RsYRVEURVEURVG6irZYK4qiKIqiKEoUUMdaURRFURRFUaKAOtaKoiiKoiiKEgXUsVYURVEURVGUKKCOtaIoiqIoiqJEAXWsFUVRFEVRFCUKqGOtKIqiKIqiKFFAHWtFURRFURRFiQL/Hxigac1mpLyvAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtYAAAJqCAYAAAAPGAfIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4FFW6+PHvmwVC2JeAQFjCIpCwRAiLgAgioIjguCK4XNAZGERnRkfHcdyvXsf7u+OMK4gLKrijjDigCDosoiKrGJZhDZCwJpAAIYGEvL8/qtJ2QkI6oTud5f08Tz/prjp16q3urtMnVWcRVcUYY4wxxhhzfkKCHYAxxhhjjDFVgVWsjTHGGGOM8QOrWBtjjDHGGOMHVrE2xhhjjDHGD6xibYwxxhhjjB9YxdoYY4wxxhg/sIq1KZGITBeRR/yUV2sROSEioe7rJSJypz/ydvP7QkRu91d+pdjvUyKSKiIHynvfxpjKzcpYn/YbtDJWRJJE5HL3+UMi8np5x1BeqtOxBkpYsAMwwSUiSUAzIBc4A2wC3gFmqGoegKpOLkVed6rq4uLSqOoeoM75Re3Z3+NAB1W9xSv/K/2RdynjaA3cB7RR1UPltM8lwGxVtULPmArMyli/xFHuZWxxVPV/grn/8lSdjtWf7Iq1AbhaVesCbYC/An8C3vD3TkSkqv4j1xpIC3aBHyz5V8aMMcWyMvb8VOsy1lQuVrE2HqqaoarzgJuA20WkK4CIvCUiT7nPm4jIv0QkXUSOiMhyEQkRkVk4hd/n7m3IB0SkrYioiNwhInuAb7yWef8AtBeRH0XkmIh8JiKN3H0NFpFk7xjzb1OJyBXAQ8BN7v5+ctd7bnu6cT0sIrtF5JCIvCMi9d11+XHcLiJ73FuMfynuvRGR+u72h938HnbzvxxYBLRw43irmO3HiMh69xh3uPEXuO3mvn5cRGa7zyNEZLaIpLnv9yoRaSYiTwOXAC+5+3zJTd/fTZPh/u3vle8S91bqd+42n4tIYxF5141plYi09UrfWUQWuZ/xf0TkRq91b4nINBFZICKZwBARGSkim0TkuIikiMgfi3svjamurIwNTBmbfxzue3JIRPaLyDVuubTVfR8f8kofIiIPumVxmoh8lP+euOtvdWNIKxyzdxntvv5YRA645e4yEYnzWveWiLwsIvPdsnGliLQv5viLLO+93vNnivoM3fX93LI9XUR+EpHBXuuWiMh/i8gKN4avRKRJaY+1pM9TRGqJyNsiclRENrufRYHvVnVhFWtzFlX9EUjGqbwVdp+7Lgrn9uZDziZ6K7AH58pMHVX9X69tLgW6ACOK2eVtwESgOc7t0hd8iPFL4H+AD9399Sgi2X+5jyFAO5zboy8VSjMQ6AQMBR4VkS7F7PJFoL6bz6VuzBPcW7JXAvvcOP6r8IYi0gfn1u/9QANgEJBU0jECt7v7bAU0BiYDWar6F2A5MNXd51S3kJ2P8941Bp4D5otIY6/8xgK3Ai2B9sD3wEygEbAZeMyNtzbOD9l7QFN3u1dEJNYrr3HA00Bd4Fucq2+T3KtyXYFvfDg+Y6olK2OLVOYy1nUBEIFTvj0KvAbcAvTCeZ8fEZEYN+3dwDXufloAR4GXAdxybhpOWdkCpzyNLmafAF8AHXHKyrXAu4XWjwWeABoC23HKzaIUWd57rS/yMxSRljhl/1M4ZfkfgU9EJMpr23HABDfGGm6ashwrFP95Pga0xfn8huG899WSVaxNcfbhnKSF5eCc2G1UNUdVl6uqlpDX46qaqapZxayfpaqJqpoJPALcKP5pXjAeeE5Vd6rqCeDPwNhCV3KeUNUsVf0J+Ak468fDjWUs8GdVPa6qScDfcAojX9wBvKmqi1Q1T1VTVHWLD9vl4BR0HVT1jKquUdVjxaS9CtimqrNUNVdV3we2AFd7pZmpqjtUNQPnx2CHqi5W1VzgY+AiN90oIElVZ7p5rQM+AW7wyuszVV3hHk+2G2usiNRT1aOquta3t8aYasvKWJcfylhw3renVTUH+ABoAjzv5rcRp217/r4nA39R1WRVPQU8Dlzvxn098C9VXeauewTIK26nqvqmu4/8fHrkX7V3zVXVH91y9l0g/hzxn6u8L+4zvAVYoKoL3PJ4EbAaGOm17UxV3ep+Pz7yiqFUx+oq7vO8Efgft/xPxod/3qoqq1ib4rQEjhSx/P/h/Nf9lYjsFJEHfchrbynW7wbCcQrF89XCzc877zCcq0D5vHuYn6ToTj9N3JgK59XSxzhaATt8TOttFrAQ+EBE9onI/4pIeDFpCx9rUTEe9HqeVcTr/GNvA/R1byumi0g6zg/oBV7pC3+m1+EU5LtFZKmIXFzCsRlT3VkZ+4vzLWPBaYN9xn2e/w/Gucq4uV7l22acjqXNcI7J8365Fdm0onYoIqEi8le3SckxfrkT6f3e+nL8UHJ5X9xn2Aa4oVB5PRDnn7OSYvD5WEubFyV/J6ssq1ibs4hIb5wC7dvC69z/zO9T1XbAaOBeERmav7qYLEu62tLK63lrnP/cU4FMINIrrlCc26O+5rsPp9DxzjuXgoWtL1LdmArnleLj9ntxml4UpcAx4lV5da9WPaGqsUB/nCvJt+WvLpRP4WMtbYyF412qqg28HnVU9bdeaQrsX1VXqeoYnFuN/8S5KmKMKYKVsWc53zK2tPYCVxYq4yJUNQXYj9f7JSKROFeSizIOGANcjtOMo23+ZqUNqITyHor/DPfiXM32PpbaqvpXH3ZbmmP1JS/vZiStiktY1VnF2niISD0RGYVzG222qv5cRJpRItJBRATIwPkvP//W0UGc9lWldYuIxLon9ZPAHPfKw1YgQkSucv9zfxio6bXdQaCtiBT3PX4f+IOIxIhIHX5pL5hbmuDcWD4CnhaRuiLSBrgXmH3uLT3eACaIyFBxOs20FJHO7rr1OLdOw0UkAefWHAAiMkREurk/dsdwCtLi3usFwIUiMk5EwkTkJiAW+FdpjtX1LzevW924wkWkd3FtI0WkhoiMF5H67m3YY5R8O9GYasfK2KL5oYwtrenuvtoAiEiUiIxx180BRonIQBGpgfN+FXf8dYFTOFd5I3GOv0xKKO+h+M9wNnC1iIxwr6BHiNOZs6S20lC6Yy3JR8CfRaSh2+57ahnzqfSsYm3A6WV+HOc/37/gdHybUEzajsBi4ARO57dXVPXf7rpngIfd21GlGRViFvAWzi2mCOAecHrQA1OA13GuXGTidOrJ97H7N01EimrT+6ab9zJgF5CN02mlLO52978T5yrTe27+JVKno9IE4O84P5RL+eXKzCM4V7OP4nRwec9r0wtwCr5jOLcql7rHA/A8TpvAoyLygqqm4VzhuA+nkH8AGKWqqaU9UFU9DgzHafO4D+dzeZaCP7iF3QokubdDJ+M0HTHGOKyMLVmZy9gyeB6Yh9Pc5jjwA9AXwG2PfZe7//04ZXNxo1u8g9MsIwWnDfcP5xHTucp7KP4z3Itz1fwh4DDOd+x+fKjflfJYS/Kku+0unO/vHJx/OqodKblPhDHGGGOMCQaphBOCichvgbGqemmwYylvdsXaGGOMMcaUmYg0F5EBbnPHTjh3T+cGO65gqKqzNBljjDHGmPJRA3gViAHScfoRvBLUiILEmoIYY4wxxhjjB9YUxBhjjDHGGD+wirUxxhhjjDF+UC3aWDdp0kTbtm0b7DCMMQaANWvWpKpqVMkpqycrs40xFY2v5Xa1qFi3bduW1atXBzsMY4wBQEQKTz9vvFiZbYypaHwtt60piDHGGGOMMX5gFWtjjDHGGGP8wCrWxhhjABCRK0TkPyKyXUQeLGJ9TRH50F2/UkTausv7iMh69/GTiPzKa5skEfnZXWftO4wxVVq1aGNtjC9ycnJITk4mOzs72KGYKiIiIoLo6GjCw8ODHUqJRCQUeBkYBiQDq0Rknqpu8kp2B3BUVTuIyFjgWeAmIBFIUNVcEWkO/CQin6tqrrvdEFVNPZ/47Pw0/laZzk9TeVjF2hhXcnIydevWpW3btohIsMMxlZyqkpaWRnJyMjExMcEOxxd9gO2quhNARD4AxgDeFesxwOPu8znASyIiqnrSK00E4PeZx+z8NP5UCc9PU0lYUxBjXNnZ2TRu3Nh+tI1fiAiNGzeuTFdYWwJ7vV4nu8uKTONejc4AGgOISF8R2Qj8DEz2ulqtwFciskZEflPW4Oz8NP5UCc9PU0nYFWtjvNiPtvGn6vR9UtWVQJyIdAHeFpEvVDUbGKiqKSLSFFgkIltUdVnh7d1K928AWrduXeQ+qtP7aQLPvk8mEOyKtTEViIhwyy23eF7n5uYSFRXFqFGjyi2GpKQkunbtWm77C4TnnnuO2NhYunfvztChQ9m9+5fhR0NDQ4mPjyc+Pp7Ro0cXuf2yZcvo2bMnYWFhzJkzp8C6Bx54gLi4OLp06cI999yDqt9bPQRLCtDK63W0u6zINCISBtQH0rwTqOpm4ATQ1X2d4v49BMzFaXJyFlWdoaoJqpoQFVUx586x89M/pk+fTrdu3YiPj2fgwIFs2rTprDR79+5lyJAhxMbGEhcXx/PPP+9Zd9NNN3nO4bZt2xIfH1+e4RtzTnbF2pgKpHbt2iQmJpKVlUWtWrVYtGgRLVsWvhtfOeTm5hIWFpwi5qKLLmL16tVERkYybdo0HnjgAT788EMAatWqxfr168+5fevWrXnrrbf4v//7vwLLv/vuO1asWMGGDRsAGDhwIEuXLmXw4MEBOY5ytgroKCIxOBXoscC4QmnmAbcD3wPXA9+oqrrb7HU7L7YBOgNJIlIbCFHV4+7z4cCT5XQ8fmfnp3+MGzeOyZMnAzBv3jzuvfdevvzyywJpwsLC+Nvf/kbPnj05fvw4vXr1YtiwYcTGxnrOZYD77ruP+vXrl2v8xpyLVayrsfdW7vFbXuP6Fn3r1pTeyJEjmT9/Ptdffz3vv/8+N998M8uXLwcgMzOTu+++m8TERHJycnj88ccZM2YMSUlJ3HrrrWRmZgLw0ksv0b9/f5YsWcLjjz9OkyZNSExMpFevXsyePfusW6Br1qxh4sSJAAwfPtyz/MyZMzz44IMsWbKEU6dOcddddzFp0iQAnn32WWbPnk1ISAhXXnklf/3rXxk8eDDx8fF8++233Hzzzdx2221MnjyZPXuc79o//vEPBgwYwI8//sjvfvc7srOzqVWrFjNnzqRTp05s3LiRCRMmcPr0afLy8vjkk0/o2LEjs2fP5oUXXuD06dP07duXV155hdDQ0GLfwyFDhnie9+vXj9mzZ5fqM8ifTjskpOBNPREhOzub06dPo6rk5OTQrFmzUuVdUbmV4qnAQiAUeFNVN4rIk8BqVZ0HvAHMEpHtwBGcyjfAQOBBEckB8oApqpoqIu2Aue73LQx4T1UL1qAqGTs/z//8rFevnud5ZmZmkU0ymjdvTvPmzQGoW7cuXbp0ISUlhdjYWE8aVeWjjz7im2++8f0DDDB//a7ab2rlZRVrYyqYsWPH8uSTTzJq1Cg2bNjAxIkTPT/cTz/9NJdddhlvvvkm6enp9OnTh8svv5ymTZuyaNEiIiIi2LZtGzfffLNnSuh169axceNGWrRowYABA1ixYgUDBw4ssM8JEybw0ksvMWjQIO6//37P8jfeeIP69euzatUqTp06xYABAxg+fDhbtmzhs88+Y+XKlURGRnLkyBHPNqdPn/bse9y4cfzhD39g4MCB7NmzhxEjRrB582Y6d+7M8uXLCQsLY/HixTz00EN88sknTJ8+nd/97neMHz+e06dPc+bMGTZv3syHH37IihUrCA8PZ8qUKbz77rvcdttt3HnnnUyePJmEhIRi38833niDK6+80vM6OzubhIQEwsLCePDBB7nmmmt8/mwuvvhihgwZQvPmzVFVpk6dSpcuXXzevqJT1QXAgkLLHvV6ng3cUMR2s4BZRSzfCfTwf6TBY+enf87Pl19+meeee47Tp0+XWDFOSkpi3bp19O3bt8Dy5cuX06xZMzp27FiKT9CYwLKKtTEVTPfu3UlKSuL9999n5MiRBdZ99dVXzJs3z9NEITs7mz179tCiRQumTp3K+vXrCQ0NZevWrZ5t+vTpQ3R0NADx8fEkJSUV+OFOT08nPT2dQYMGAXDrrbfyxRdfePa3YcMGTzvjjIwMtm3bxuLFi5kwYQKRkZEANGrUyJPfTTfd5Hm+ePHiAu0njx07xokTJ8jIyOD2229n27ZtiAg5OTmAU3F9+umnSU5O5tprr6Vjx458/fXXrFmzht69ewOQlZVF06ZNAXj99dfP+V7Onj2b1atXs3TpUs+y3bt307JlS3bu3Mlll11Gt27daN++/Tnzybd9+3Y2b95McnIyAMOGDWP58uVccsklPm1vKj87P/1zft51113cddddvPfeezz11FO8/fbbRaY7ceIE1113Hf/4xz8KXOkGPHcMjKlIrGJtTAU0evRo/vjHP7JkyRLS0n7pG6aqfPLJJ3Tq1KlA+scff5xmzZrx008/kZeXR0REhGddzZo1Pc9DQ0PJzc3FV6rKiy++yIgRIwosX7hwYbHb1K5d2/M8Ly+PH374oUA8AFOnTmXIkCHMnTuXpKQkTxvlcePG0bdvX+bPn8/IkSN59dVXUVVuv/12nnnmGZ/jBqfS8PTTT7N06dIC70F+m9h27doxePBg1q1b53PFeu7cufTr1486deoAcOWVV/L9999bxbqasfPz/M/PfGPHjuW3v/1tketycnK47rrrGD9+PNdee22Bdbm5uXz66aesWbOmTPs1JlBsVBBjKqCJEyfy2GOP0a1btwLLR4wYwYsvvugZiWLdunWAc6WqefPmhISEMGvWLM6cOePzvho0aECDBg349ttvAXj33XcL7G/atGmeK1Zbt24lMzOTYcOGMXPmTE6edOYF8b7V7G348OG8+OKLntf5nQYzMjI8Fdy33nrLs37nzp20a9eOe+65hzFjxrBhwwaGDh3KnDlzOHTokGdf3qN8FGXdunVMmjSJefPmea6eARw9epRTp04BkJqayooVKwq02SxJ69atWbp0Kbm5ueTk5LB06dIq1RTE+MbOz/M7P7dt2+Z5Pn/+/CKbcqgqd9xxB126dOHee+89a/3ixYvp3Lmz52q/MRWFVayNqYCio6O55557zlr+yCOPkJOTQ/fu3YmLi+ORRx4BYMqUKbz99tv06NGDLVu2FLgq5YuZM2dy1113ER8fX2D4uDvvvJPY2Fh69uxJ165dmTRpErm5uVxxxRWMHj2ahIQE4uPjzxo9I98LL7zA6tWr6d69O7GxsUyfPh1whqz785//zEUXXVTgCt1HH31E165diY+PJzExkdtuu43Y2Fieeuophg8fTvfu3Rk2bBj79+/3xJffXtTb/fffz4kTJ7jhhhsKDKu3efNmEhIS6NGjB0OGDOHBBx/0VKwfffRR5s2bB8CqVauIjo7m448/ZtKkScTFxQFw/fXX0759e7p160aPHj3o0aMHV199danea1P52fl5fufnSy+9RFxcHPHx8Tz33HOeZiD79u3zNK9ZsWIFs2bN4ptvvvEMrbdgwS/N/z/44ANrBmIqJKlCY7AWKyEhQYs6uas7GxWkoM2bNxe4+ujP9weqxntkSq/w9wpARNaoavE9Lqu5ospsOz9NIBR1fp4PGxWk6vK13LYr1sYYY4wxxviBVayNMcYYY4zxA6tYG2OMMcYY4wdWsTamAhERbrnlFs/r3NxcoqKiGDVqVKnyGTx4sKfT0MiRI0lPT/drnODMTpiamur3fMvL6dOnmTBhgqcj4pIlS4pM9/HHHxMXF0dISMhZHbGeeeYZOnToQKdOnc45xJmpGuz8LH979uyhTp06xXbAHD9+PJ06daJr165MnDjRM0KKqnLPPffQoUMHunfvztq1a8szbFONWcXamAqkdu3aJCYmkpWVBcCiRYs8w16V1YIFC2jQoIE/wvO70ozZ62+vvfYaAD///DOLFi3ivvvuIy8v76x0Xbt25dNPP/VM0JFv06ZNfPDBB2zcuJEvv/ySKVOmlGoYNVP52PlZ/u69994CM6cWNn78eLZs2cLPP/9MVlaWZ1KaL774gm3btrFt2zZmzJhR7FjZxvibVayNqWBGjhzJ/PnzgbNnFsvMzGTixIn06dOHiy66iM8++wxwZjsbO3YsXbp04Ve/+pXnhx8KXrm65ppr6NWrF3FxccyYMcOTpk6dOvzlL3+hR48e9OvXj4MHD54VV1paGsOHDycuLo4777yzwLBfs2fPpk+fPsTHxzNp0iRPBfPLL7+kZ8+e9OjRg6FDhwLOZBm33norAwYM4NZbb+XMmTPcf//99O7dm+7du/Pqq68CzoxrQ4cOpWfPnnTr1s1zrJmZmVx11VX06NGDrl278uGHHwKwZs0aLr30Unr16sWIESM8Q34VZ9OmTVx22WUANG3alAYNGhQ5NFiXLl3OmvAD4LPPPmPs2LHUrFmTmJgYOnTowI8//njOfZrKz87P8jk/Af75z38SExPjGe6yuM9DRBAR+vTp45kV9bPPPuO2225DROjXrx/p6ek+7dOY82UzLxpTjGANdzR27FiefPJJRo0axYYNG5g4cSLLly8H4Omnn+ayyy7jzTffJD09nT59+nD55Zfz6quvEhkZyebNm9mwYQM9e/YsMu8333yTRo0akZWVRe/evbnuuuto3LgxmZmZ9OvXj6effpoHHniA1157jYcffrjAtk888QQDBw7k0UcfZf78+bzxxhuAM1zVhx9+yIoVKwgPD2fKlCm8++67XHnllfz6179m2bJlxMTEFJikYtOmTXz77bfUqlWLGTNmUL9+fVatWsWpU6cYMGAAw4cPp1WrVsydO5d69eqRmppKv379GD16NF9++SUtWrTwVG4yMjLIycnh7rvv5rPPPiMqKooPP/yQv/zlL7z55puesXknT55c4Hh69OjBvHnzuPnmm9m7dy9r1qxh79699OnTx6fPKSUlhX79+nleR0dHk5KS4tO25vzZ+Vm1z88TJ07w7LPPsmjRomKbgXjLyclh1qxZPP/884BzfrZq1cqzPv/8bN68eYl5GXM+rGJtTAXTvXt3kpKSeP/99z2TJeT76quvmDdvnueHJjs7mz179rBs2TLPhBXdu3ene/fuReb9wgsvMHfuXAD27t3Ltm3baNy4MTVq1PC0E+3VqxeLFi06a9tly5bx6aefAnDVVVfRsGFDAL7++mvWrFlD7969AefqXNOmTfnhhx8YNGgQMTExADRq1MiT1+jRo6lVq5bnmDZs2MCcOXMA54d427ZtREdH89BDD7Fs2TJCQkJISUnh4MGDdOvWjfvuu48//elPjBo1iksuuYTExEQSExMZNmwYAGfOnPH8gBb+wc43ceJEz4Qxbdq0oX///oSGhhbzqRjjsPOzfM7Pxx9/nD/84Q/UqVOnmE+ioClTpjBo0CAuueQSn9IbEyhWsTamAho9ejR//OMfWbJkCWlpaZ7lqsonn3xSZNOEkixZsoTFixfz/fffExkZyeDBg8nOzgYgPDwcEQEgNDS0VG0rVZXbb7+dZ555psDyzz//vNhtvGeeU1VefPFFRowYUSDNW2+9xeHDh1mzZg3h4eG0bduW7OxsLrzwQtauXcuCBQt4+OGHGTp0KL/61a+Ii4vj+++/9znusLAw/v73v3te9+/fnwsvvNDn7Vu2bMnevXs9r5OTk8+7va2pHOz8DPz5uXLlSubMmcMDDzxAeno6ISEhREREMHXq1LPSPvHEExw+fNjTTAXs/DTBY22sjamAJk6cyGOPPUa3bt0KLB8xYgQvvviip/3kunXrABg0aBDvvfceAImJiWzYsOGsPDMyMmjYsCGRkZFs2bKFH374oVQxee/jiy++4OjRowAMHTqUOXPmcOjQIQCOHDnC7t276devH8uWLWPXrl2e5UUZMWIE06ZN8/Tm37p1K5mZmWRkZNC0aVPCw8P597//ze7duwFn2uPIyEhuueUW7r//ftauXUunTp04fPiw54c7JyeHjRs3nvN4Tp48SWZmJuB0QgsLC/NMb+6L0aNH88EHH3Dq1Cl27drFtm3bfG5GYio3Oz8Df34uX76cpKQkkpKS+P3vf89DDz1UZKX69ddfZ+HChbz//vuEhPxSpRk9ejTvvPMOqsoPP/xA/fr1rRmIKRcBvWItIlcAzwOhwOuq+tdC62sC7wC9gDTgJlVNEpE+QH7PDQEeV9W5vuRpTFUQHR3tuXXs7ZFHHuH3v/893bt3Jy8vj5iYGP71r3/x29/+lgkTJtClSxe6dOlCr169ztr2iiuuYPr06Z7OeN7tg33x2GOPcfPNNxMXF0f//v1p3dpp4xobG8tTTz3F8OHDycvLIzw8nJdffpl+/foxY8YMrr32WvLy8mjatGmRt7DvvPNOkpKS6NmzJ6pKVFQU//znPxk/fjxXX3013bp1IyEhgc6dOwPOKB73338/ISEhhIeHM23aNGrUqMGcOXO45557yMjIIDc3l9///vfExcUV24bz0KFDjBgxgpCQEFq2bMmsWbMKxDR58mQSEhKYO3cud999N4cPH+aqq64iPj6ehQsXEhcXx4033khsbCxhYWG8/PLL1pSkmrDzM/Dn57mMHDmS119/nRYtWjB58mTatGnDxRdfDMC1117Lo48+ysiRI1mwYAEdOnQgMjKSmTNnlur9NKasxLvnsF8zFgkFtgLDgGRgFXCzqm7ySjMF6K6qk0VkLPArVb1JRCKB06qaKyLNgZ+AFoCWlGdREhIStKje/tXdeyv3+C2vYHUk8qfNmzfTpUuXYIdhqpiivlciskZVE4IUUoVXVJlt56cJBH9/r/z1u1oVflOrGl/L7UA2BekDbFfVnap6GvgAGFMozRjgbff5HGCoiIiqnlTV/EZkETgVal/zNMYYY4wxptwFsmLdEtjr9TrZXVZkGrcinQE0BhCRviKyEfgZmOyu9yVP3O1/IyKrRWT14cOH/XA4xhhjjDHGFK/Cdl5U1ZWqGgf0Bv4sIhGl3H6GqiaoakJUVFRggjTGGGOMMcYVyIp1CtDK63W0u6zINCISBtTH6cTooaqbgRNAVx/zNKbMAtXnwFRP9n3yL3svYtQrAAAgAElEQVQ/jT/Z98kEQiAr1quAjiISIyI1gLHAvEJp5gG3u8+vB75RVXW3CQMQkTZAZyDJxzyNKZOIiAjS0tKssDV+oaqkpaUREVGqm22mGHZ+Gn+y89MESsCG23NH9JgKLMQZGu9NVd0oIk8Cq1V1HvAGMEtEtgNHcCrKAAOBB0UkB8gDpqhqKkBReQbqGEz1Eh0dTXJyMtYm3/hLREQE0dHRwQ6jSrDz0/ibnZ8mEAI6jrWqLgAWFFr2qNfzbOCGIrabBcwqvLy4PI3xh/DwcM/0vsZURxV57gE7P40xlUGF7bxojDGm/LhzD7wMXAnEAjeLSOGpKO8AjqpqB+DvwLPu8kQgQVXjgSuAV0UkzMc8jTGmyrCKtTHGGLC5B4wx5rxZxdoYYwwEee4BY4ypCqxibYwx5ryd79wDNqmXMaYqsIq1McYYCPLcAzaplzGmKrCKtTHGGLC5B4wx5rwFdLg9Y4wxlYPNPWCMMefPKtbGGGMAm3vAGGPOlzUFMcYYY4wxxg+sYm2MMcYYY4wfWMXaGGOMMcYYP7CKtTHGGGOMMX5gFWtjjDHGGGP8wCrWxhhjjDHG+IFVrI0xxhhjjPEDq1gbY4wxxhjjB1axNsYYY4wxxg+sYm2MMcYYY4wfWMXaGGOMMcYYP7CKtTHGGGOMMX5gFWtjjDHGGGP8wCrWxhhjjDHG+IFVrI0xxhhjjPEDq1gbY4wxxhjjBwGtWIvIFSLyHxHZLiIPFrG+poh86K5fKSJt3eXDRGSNiPzs/r3Ma5slbp7r3UfTQB6DMcYYY4wxvggLVMYiEgq8DAwDkoFVIjJPVTd5JbsDOKqqHURkLPAscBOQClytqvtEpCuwEGjptd14VV0dqNiNMcYYY4wprUBese4DbFfVnap6GvgAGFMozRjgbff5HGCoiIiqrlPVfe7yjUAtEakZwFiNMcYYY4w5L4GsWLcE9nq9TqbgVecCaVQ1F8gAGhdKcx2wVlVPeS2b6TYDeURExL9hG2NM5SUijYp4hAc7LmOMqQ4qdOdFEYnDaR4yyWvxeFXtBlziPm4tZtvfiMhqEVl9+PDhwAdrjDEVw1rgMLAV2OY+TxKRtSLSK6iRGWNMFRewNtZACtDK63W0u6yoNMkiEgbUB9IARCQamAvcpqo78jdQ1RT373EReQ+nyck7hXeuqjOAGQAJCQnqp2MyxpiKbhEwR1UXAojIcJw7fzOBV4C+QYzNmArnvZV7gh2CqUICecV6FdBRRGJEpAYwFphXKM084Hb3+fXAN6qqItIAmA88qKor8hOLSJiINHGfhwOjgMQAHoMxxlQ2/fIr1QCq+hVwsar+AFhfFWOMCaCAVazdNtNTcUb02Ax8pKobReRJERntJnsDaCwi24F7gfwh+aYCHYBHCw2rVxNYKCIbgPU4V7xfC9QxGGNMJbRfRP4kIm3cxwPAQXekprxzbWhDpBpjzPkJZFMQVHUBsKDQske9nmcDNxSx3VPAU8Vka20EjTGmeOOAx4B/uq9XuMtCgRuL28iGSDWm9FSVvUdOsnH/MTbvP87J07nENKlNh6Z16NaiPpE1A1rNMhWQfeLGGFOFqGoqcHcxq7efY1PPEKkAIpI/RKp3xXoM8Lj7fA7wUv4QqV5pPEOkFhrNyZgqJU+Vz3/ax8pdRwgRaBdVh9aNItlx+AQb9x1jyX8OM75va6IbRgY7VFOOrGJtjDFViIhcCPwRaItXGa+qlxW3jauoIVILd3QsMESqiOQPkZrqlaa4IVLPAJ8AT6mqdSg3lVrOmTw+Wr2XjfuOMbBDEy7r3JSI8FDAuYqdfDSL91ftYcaynYzu0YKEto2CHLEpL1axNsaYquVjYDrwOnCmPHfsNUTqcK/F41U1RUTq4lSsb6WIkZxE5DfAbwBat25dDtEaUza5eXm89V0SSamZjOrenP7tmxRYLyK0ahTJXYM78MGqPXy6LoUzqvSNKTxNh6mKSuy8KCJf+7LMGGNMhZCrqtNU9UdVXZP/8GG70gyRSlmGSAXyh0g9i6rOUNUEVU2Iiory5TiNCYol/znMrtRMrusVfVal2lvtmmH8V/8YOjWry79+2s/utMxyjNIES7EVaxGJEJFGQBMRaeg1g1dbzp5B0RhjTMXwuYhMEZHm3rMv+rCdDZFqTAmSj55kyX8OcVGrBvRs3bDE9KEhwo0JrWgQGc67K/eQkZVTDlGaYDrXFetJwBqgs/s3//EZ8FLgQzPGGFMGtwP3A9/xS7ld4ogcNkSqMeeWcyaPj1cnUzcinFHdW/i8Xa0aoYzv14bTuXm8/+MezuRZF4OqrNg21qr6PPC8iNytqi+WY0zGGGPKSFVjzmNbGyLVmGJ8vfkgh0+cYsKAttSqEVqqbS+oF8E1F7Xgo9XJrNyVds4mJKZyK7Hzoqq+KCL9ObuH+VmdT4wxxgSHiFymqt+IyLVFrVfVT8s7JmOqioysHL7bkUbP1g3o2LRumfLoEd2AdXvSWbTpIHEt6lO/VrifozQVQYkVaxGZBbTHuY2X38NcKaJXtzHGmKC5FPgGuLqIdQpYxdqYMlq69TB5qlzWuVmZ8xARRvdowfNfb2P+z/sZ18dGv6mKfBluLwGItXFHjTGm4lLVx9y/E4IdizFVSUZWDquSjtCrTUMa1a5xXnk1rlOTwZ2asnjzQf5z4DidLijb1W9TcflSsU4ELgD2BzgWY4wxZSQi955rvao+V16xGFOVLPnPIVAY3KmpX/Ib1LEJ6/ceZf7P++nQtA6hIeKXfE3F4EvFugmwSUR+BDwzaanq6OI3McYYU87yL311Anrzy1B5VwM/BiUiYyq59JOnWZ10lF5tGtIw8vyuVucLCw1hRNwFvLtyD+v2HLVZGasYXyrWjwc6CGOMMedHVZ8AEJFlQE93QhZE5HGcMaaNMaX0/Y40FGVwJ/9OWhTbvB7RDWvx9ZZD9GjVgPDQEufrM5WEL6OCLC2PQIwxxvhFM+C01+vT7jJjTCnknMlj9e6jxLaoTwM/Xa3OJyKMiLuAN77dxcqdaQzsaLONVhW+jApyHKdHOUANIBzIVNV6gQzMGGNMmbwD/Cgic93X1wBvBzEeYyqln5MzyMo5Q9+YwDTVaB9Vhw5N67Bk62ES2jYiIrx0Y2ObiqnEew+qWldV67kV6VrAdcArAY/MGGNMqanq08BE4Kj7mKCq/xPcqIypfFbuSiOqTk3aNakdsH0Mj23GydNn+G5HasD2YcpXqRr1qOOfwIgAxWOMMeb8rQc+BuYCaSJiA+YaUwopR7PYezSLvu0aIRK4UTuiG0bS+YK6rNiexqmcMyVvYCo8X5qCeM/iFYIzrnV2wCIyxhhTZiJyN/AYcBBnUi/Bac7XPZhxGVOZrNyVRnio0LN1w4Dva0inpkxbuoOVu44w6EJra13Z+TIqiPcsXrlAEjAmINEYY4w5X78DOqlqWrADMaYyys45w0/J6cS3alAu7Z5bNYqkQ9M6LN+eSr92jakRZiOEVGa+jApis3gZY0zlsRfICHYQxlRWiSkZ5JxREtqU3/jSQzo15bXlO1m9+wj92zcpt/0a//OlKUg08CIwwF20HPidqiYHMjBjjDFlshNYIiLzKTipl828aIwP1u1Np0mdGkQ3rFVu+4xpUpuYJrVZtvUwfWzCmErNl/sNM3Fm8GrhPj53lxljjKl49gCLcIZHrev1MMaUIP3kaXalZhLfqkFAOy0WZXCnKI5l57J+b3q57tf4ly9trKNU1bsi/ZaI/D5QARljjCk7rxkYI1X1ZLDjMaYy+cmt1Ma3CnynxcI6RNWhRYMIlm07zJk8JTSkfCv2xj98uWKdJiK3iEio+7gFsE4xxhhTAYnIxSKyCdjivu4hIjb3gDElUFXW7U2nTaNIGtX270yLvhARLr2wKaknTrNo04Fy37/xD18q1hOBG4EDwH7gesA6NBpjTMX0D5y5BtIAVPUnYFBQIzKmEtifkc2h46eIb90gaDHEtahH49o1mLZkB6pa8gamwvFl5sXdqjpaVaNUtamqXqOqe3zJXESuEJH/iMh2EXmwiPU1ReRDd/1KEWnrLh8mImtE5Gf372Ve2/Ryl28XkRekvBtBGWNMBaeqewstspknjCnB+r3phIrQrUX9oMUQIsIlHaP4KTmD73dY44DKqMSKtYi8LSINvF43FJE3fdguFHgZuBKIBW4WkdhCye4AjqpqB+DvwLPu8lTgalXtBtwOzPLaZhrwa6Cj+7iipFiMMaYa2Ssi/QEVkXAR+SOwOdhBGVOR5amyITmdCy+oS2RNX7qfBc5FrRvQpE5Npi3dEdQ4TNn40hSku6p6uqiq6lHgIh+26wNsV9Wdqnoa+ICzJ5YZA7ztPp8DDBURUdV1qrrPXb4RqOVe3W4O1FPVH9S5R/IOcI0PsRhjTHUxGbgLaAnsA+Ld18aYYuw9cpJj2bl0axm8q9X5wkNDmDiwLcu3pZKYYkPSVza+VKxDRMTTPVZEGuHbaCItcSYqyJfsLisyjarm4kxq0LhQmuuAtap6yk3vPX52UXnmx/kbEVktIqsPHz7sQ7jGGFP5qWqqqo5X1WZuE75bbBZGY87t55QMwkKEzhdUjJEpx/dtQ52aYcxYtjPYoZhS8qVi/TfgexH5bxH5b+A74H8DG5ZDROJwmodMKu22qjpDVRNUNSEqKsr/wRljTAUkIu1E5HMROSwih0TkMxFpF+y4jKmo8lRJTMmgY9M65TKFuS/q1wpnXN/WzP95P3uP2KiZlYkvnRffAa4FDrqPa1V11rm3AiAFaOX1OtpdVmQaEQkD6uP2ZHdnfJwL3KaqO7zSR5eQpzHGVGfvAR8BzXEm9foYeN+XDa3DuamOkt1mIF0rQDMQbxMGtCVE4I1vdwU7FFMKvlyxRlU3qepL7mOTj3mvAjqKSIyI1ADG4szg6G0eTudEcIbx+0ZV1e0sOR94UFVXeMWxHzgmIv3cwvk24DMf4zHGmOogUlVnqWqu+5gNRJS0kXU4N9XVzykZhIYIXZrXC3YoBTSvX4sx8S35YNUejmSeDnY4xkc+VazLwm0zPRVYiNMj/SNV3SgiT4rIaDfZG0BjEdkO3AvkXyGZCnQAHhWR9e6jqbtuCvA6sB3YAXwRqGMwxphK6AsReVBE2opIGxF5AFggIo3cPjLFsQ7nptrJy1MS9x2rUM1AvE0a1I7snDze/i4p2KEYHwV0TBlVXQAsKLTsUa/n2cANRWz3FPBUMXmuBrr6N1JjjKkybnT/Fu6bMhZQoLj21kV1OO9bXBpVzRWR/A7nqV5pPB3ORcTnDufGBMP65HQysnIYFtss2KEUqWOzulzepSlvf5/EpEvbEVkjuEMBmpIF7Iq1McaY8qeqMed4BLQT4/l0OLeRnEwwfJl4gFARulxQsZqBePvt4Pakn8zhw1WF530yFVGxFWsROS4ix4p7lGeQxhhjfCMiN4hIXff5wyLyqYj4MvdAUDuc20hOprypKgs3HqBdVG1q1ah4zUDy9WrTiN5tG/L68l3knMkLdjimBMVWrFW1rqrWA57HafvcEqdQ/BPwj/IJzxhjTCk9oqrHRWQgcDlOX5bpPmxnHc5NtbL14Al2p50ktkXFvVqdb/Kl7UlJz+Lzn/aVnNgElS9NQUar6iuqelxVj6nqNM7u0GKMMaZiOOP+vQqYoarzgRolbWQdzk11s3DjAUSocKOBFGVIp6Z0alaX6Ut3kJenwQ7HnIMvreAzRWQ8Tg9xBW4GMgMalTHGmLJKEZFXgWHAsyJSE9+HVrUO56baWLjxABe1akC9iPBgh1KikBBh0qXtuPejn/hmyyEur6CdLY1vhe04nF7m+RPE3OAuM8YYU/HciHPVeYSqpgONgPuDG5IxFUvy0ZNs3HeMEXEXBDsUn13dowUtG9TilSXbcUavNBWRLzMvJqnqGFVtoqpRqnqNqiaVQ2zGGGNKSVVPquqnqrrNfb1fVb8KdlzGVCRfbTwIwPBKVLEODw1h0qXtWLsnnR93HQl2OKYYJVasReRCEflaRBLd191F5OHAh2aMMcYY438LNx7gwmZ1iGlSO9ihlMqNCa1oUqcGryzZUXJiExS+NAV5DfgzkAOgqhtweosbY4wxxlQqRzJPsyrpSKVqBpIvIjyUCQNiWLr1MIkpGcEOxxTBl4p1pKr+WGhZbiCCMcYYY4wJpK83HyRPqbCzLZbk1ovbULdmGNOW2lXrisiXinWqiLTHGREEEbke2B/QqIwxxpSKTepljG8WbTpI8/oRdGtZP9ihlEm9iHBuubgNC37ez87DJ4IdjinEl4r1XcCrQGcRSQF+D/w2oFEZY4wpFZvUy5iSZeecYfm2VC7v0gxnzqLKaeKAGGqEhjDdrlpXOL6MCrJTVS8HooDOqjrQRgUxxpgKyyb1MqYYK7ankpVzptI2A8kXVbcmN/dpzadrU0hJzwp2OMaLL6OC/E5E6gEngb+LyFoRGR740IwxxpRBpoiMF5FQEQlxJ/iySb2MwWkGUrdmGP3aNQ52KOft14PaAfDasp1BjsR486UpyERVPQYMBxoDtwJ/DWhUxhhjysom9TKmCHl5yuLNh7i0UxQ1wnyajLRCa9mgFr+6qCUfrNpD6olTwQ7HuHz5ZuU3QhoJvKOqG72WGWOMqUBsUi9jirZubzqpJ05V+mYg3iYPbs+p3Dze+HZXsEMxLl8q1mtE5CucivVCEakL5AU2LGOMMWVhk3oZU7RFmw4SFiIM7tQ02KH4TfuoOozs1pzZ3+8mIysn2OEYfKtY34HTw7y3qp4EagATAhqVMcaYsrJJvYwpwqJNB+jXrjH1a4UHOxS/mjK4PcdP5TL7h93BDsVwjoq1iHR2n8a7f9uJSE+gDRAW6MCMMcaUiU3qZUwhOw+fYMfhzCrVDCRfXIv6DOkUxRvf7iLr9Jlgh1PtnauCfB/wa+BvRaxT4LKARGSMMeZ82KRexhSyaNNBAC6vghVrgLuGdOD66d/zwao9TBgQE+xwqrViK9aq+mv375DyC8cYY8x5uguYwS+Teu0CbgluSMYE11ebDhLXoh4tG9QKdigBkdC2EX1iGjFj2U7G921TJUY9qayKrViLyLXn2lBVP/V/OMYYY86Hqu4ELheR2kCIqh4PdkzGBNPh46dYu+covxvaMdihBNRdQzpw+5s/8s91KdzYu1Www6m2ztUU5OpzrFPAKtbGGFPBiMjvgJnAceA1t2/Mg6r6VXAjMyY4vtlyEFWqZPtqb4M6NiGuRT2mL9vB9b2iCQmxkZGD4VxNQWzkD2OMqXwmqurzIjKCXyb1mgVYxdpUS4s2HaRlg1rENq8X7FACSkT47eD2TH1vHV9tOsAVXZsHO6RqyadGOCJylYg8ICKP5j983O4KEfmPiGwXkQeLWF9TRD50168Ukbbu8sYi8m8ROSEiLxXaZomb53r3UXUGpDTGmPNnk3oZ4zp5Opfl21IZFtsMkap/GlzZtTltGkcybckOVDXY4VRLJVasRWQ6cBNwN07hfAPOkHslbRcKvAxcCcQCN4tIbKFkdwBHVbUD8HfgWXd5NvAI8Mdish+vqvHu41BJsRj/OJ6dw8Fj2XayGlOx2aRexriWbU3lVG5elW8Gki80RJg0qD0/JWfw/Y60YIdTLfkyHnV/Ve0uIhtU9QkR+RvwhQ/b9QG2ux1pEJEPgDHAJq80Y4DH3edzgJdERFQ1E/hWRDr4eiAmME7lnGH59lS2HDjGvvRsAOpFhNHpgnr0a9eI5vWrZg9rYyqxO3DmH9ipqidFpDE2qZepphZtOki9iDD6xDQKdijl5tqeLfn74q28smQH/Ts0CXY41Y4vTUGy3L8nRaQFzmxevjTcaQns9Xqd7C4rMo2q5gIZOG0CSzLTbQbyiFSHeztBciwrhxnLd/LvLYcIDw1heGwzrr2oJa0bRbIhOZ3pS3ewcV9GsMM0xmCTehlTWO6ZPL7ecpChXZoRHlp9hp+LCA/ljoExfLs9lcQU+40ub7580/4lIg2A/wesBZKA9wMZVAnGq2o34BL3cWtRiUTkNyKyWkRWHz58uFwDrAoOHMtm2tIdpGWe5vb+bZk0qD2DOzUloW0jxvVtw73DLuSCehG8t3IPy7YetuYhxgTffe7fvxXx+D9fMrB+MaYq+THpCOkncxheTZqBeBvXtzV1aobx2vKdwQ6l2imxYq2q/62q6ar6Cc6Vj86q+ogPeacA3gMpRrvLikwjImFAfeCcjYJUNcX9exx4D6fJSVHpZqhqgqomREVF+RCuyZeRlcNry3aSp8pvLmnHhc3qnpWmbkQ4d17SjriW9fly4wHe+HZXECI1xuTzntSriEeJM+VavxhT1Xy18SA1w0K4tFP1qwPUiwhnbO9W/GvDflLSs0rewPiNL50XQ0VktIjcgzOj1x0icq8Pea8COopIjIjUAMYC8wqlmQfc7j6/HvhGz3HpU0TCRKSJ+zwcGAUk+hCL8VGeKp+sTSY3L487B7ajxTlmqQoPDWFs71Z0aV6PZ7/cwvq96eUYqTHGm4hce66HD1l4+sWo6mkgv1+MtzHA2+7zOcDQ/H4xqvotTgXbmKBTVb7aeIBLOkYRWaN6toSaODAGAd60C1/lypemIJ8D/4XT9rmu1+Oc3DbTU4GFwGbgI1XdKCJPishoN9kbQGMR2Q7cC3huPYpIEvAc8F8ikuxeOamJ08t9A7Ae54r3az4cg/HRDzvT2H7oBCO7NSeqbs0S04eIcF3PljStG8HU99aSkZVTDlEaY4pw9Tkeo3zY3vrFmCojMeUY+zKyGR5X/ZqB5GvRoBajujfngx/32G9zOfLl37hoVe1elsxVdQGwoNCyR72eZ+MM31fUtm2LybZXWWIxJTt4LJsvEw/QqVld+rT1vQd1ZI0wXhx3ETdO/54HP9nAK+N7VovxQo2pSCrwpF7jVTXFHfbvE5x+Me8UTiQivwF+A9C6devyjdBUOV9tOkCIwOVdqm/FGuDXg9rxz/X7eHflbqYMtoHWyoMvV6y/EJHhAY/EBJWq8tn6fdQIC+Hani1LXTHu2boh9w6/kC8SD/DNFmtCaUwwlXFSL+sXY6qMhRsP0CemEY1q1wh2KEEV16I+Azo05u3vksg5Y8PZlwdfKtY/AHNFJEtEjonIcRE5FujATPnafugESWmZDO3SjLoR4WXK49eXtKNdVG2enr/ZTmBjgqSsk3ph/WJMFbErNZOtB08wPPaCYIdSIdwxMIaDx06x4Of9wQ6lWvClYv0ccDEQqar1VLWuqtYLcFymHKkqizYfpEGtcHq3aVjmfMJDQ/jLyC7sTM1k1ve7/RihMaYU+qvqbTijdzyBU35fWNJG1i/GVBVfJh4AqNbtq70NvrApMU1qM3NFUrBDqRZ8aWO9F0g811UJU7lt3n+c5KNZXHtRS8LOcxD9yzo3ZWCHJjz/9TZ+dVFLGlbz23DGBEHhSb3S8G1SL+sXYyqV91buKXL5uyt307JBLZZtTS3niPynuGMrq64t6/P5T/v46xdbaN0oskx5jOtrfR984UstaiewRET+LCL35j8CHZgpH3mqLN58kMa1a3BR67Jfrc4nIjw8qgvHs3N4/uttfojQGFNKFW1SL2PKzdGTp0k+mkXXlvWDHUqF0rN1AyLCQ1ixvfL+s1FZ+FKx3gV8DdSgFMPtmcph075jHDiWzdAuzQgN8c9IHp0vqMf1vaJ578c9HDpmw9oaU57OY1IvYyq9jfucLmBdW1iLVW81w0Lp3bYRG/dlkH7ydLDDqdLO2RTEnYmrrqoWN5uWqeS+25FKw8hwukf797/7KYM7MGdNMq9/u4uHRnbxa97GmOK55fZVQFvcMl5EUNXnghmXMeVhY0oGF9SLoHGdkudhqG4ubteYb7elsnLXEUbEWcfOQDnnFWtVPQMMKKdYTDnbn5FFUtpJ+rVrTIifx51u26Q2o7q3YPYPu+2/Y2PKV5km9TKmsjuWlcOeIyeJa2lXq4vSILIGXZrXY1XSERu5K4B86by4XkTmAR8DmfkLVfXTgEVlysX3O9IIDxV6ncdIIOdy15AOzPtpHzNXJPGHYSUOSmCM8Y8yT+plTGW2cf8xFOjawtpXF6dfu8Zs2n+MxJQMv/SrMmfzpY11BE6v8sso3fS4pgI7mnma9XvTiW/VgMgavvx/VXqdLqjLsNhmvPVdEidO5QZkH8aYs9ikXqZa2piSQVSdmjSrFxHsUCqs9lG1aVKnJj/sPOe8TuY8lFixVtUJRTwmlkdwJnA+XL2X3Dzl4nZNArqfqUM6kJGVw3srbVxrY8qJTeplqp0Tp3LZlZppzUBKICL0a9eIvUezSD56MtjhVEklVqxFJFpE5orIIffxiYhEl0dwJjDO5Cmzvt9NTJPaXFA/sP/Z92jVgL4xjXj7u93kWpsuY8qDTeplqp3ElAwU6GbD7JWoZ+uG1AgL4YedR4IdSpXkS1OQmTjT2LZwH5+7y0wltWJ7KinpWfSNaVQu+5swIIaU9CwWbz5YLvszppqzSb1MtfOz2wzkAmsGUqKI8FAuatWADcnpnLRmmn7nS8U6SlVnqmqu+3gLiApwXCaA5qxJpn6tcLo0L5+LWMNimxHdsBZvfptULvszppqzSb1MtXIsK4ek1Ey6RddH/DzCVVXVN6YxuXnK2j1Hgx1KleNLxTpNRG4RkVD3cQtOZ0ZTCR3LzmHhxgOM7tGC8POcvtxXoSHC7Re35cekIySmZJTLPo2pxmxSL1OtJO6zZiCldUH9CFo3iuTHpCPYzS3/8qVmNRG4ETgA7AeuByYEMigTOPM37OdUbh7X9yrfZvI39m5FZI1QZq5IKtf9GlOdeE3q9UThR7BjMyZQfk7OoFk9Gw2ktPrENCL1xGl2pmaWnNj4zJdRQXar6mhVjVLVpqp6jaruKY/gjP/NWZNMh6Z1/D7TYknq1wrn+l7RfP7TPlJPnCrXfRtTXdikXqa6ST95mt1H/j979x1fVYUxMwIAACAASURBVHk/cPzzzR4kIQMCJCRhyd5DUVFcLe7aYsU9f47WqtW6+uugWn+1tnW02mqr1q24WnGhqIgDGQHCniKBMLIgZJFxc5/fH+cJXmJCArnJuffm+3697isnZzzne8Z97nOe85zzVDMyo7vboQSdkRlJxEaGs/gbfYjRn1p8gbGI/OYQyxljzL0dEI/qQFuKK1mav5e7Th/iSju0yybn8NxX+cxasp2fnjSw09evVBehnXqpLmP1TudNkp1dWRQKIsPDGJfVnYVb9lBZ66FbdMf0adHVHKrGuqqZD8DVwJ0dHJfqAG8u20GYwHljM1xZ/8Ce3ZjcP5WXFm2jwattupTqINqpl+oyVhaU0ScphrRu0W6HEpQm5qTQYAxL8/UhRn9p8fLEGPOXxmERSQBuxmlb/Qrwl5aWU4HJGMN/lu9gyqAerrZDu3RyNj95cRmfbijilKHprsWhVKgyxugzMKpLKKmspWDvfk4f0cvtUIJWz8QYclLjWbJ1D1MGpRGmb1Vpt0O2sRaRFBH5PbASpxA+zhhzpzGmqFOiU36zbNtedpTt59wxfVyN47Rh6fRMiOb5hdoTo1IdQTv1Ul1F3vYyBBiVqe2r22NiTjJ7qur4Rh9i9IsWC9Yi8idgCVABjDTGzDTG6L2CIDU7byfREWF8b7i7V/aR4WFcOCmL+RuL2Vaq3akq1QG0Uy8V8owxrNheRr+0eJJiI90OJ6iNyEgiJjKM3K36EKM/HKrG+jacTPlXwE4RKbefChEp75zwlD94Gry8u2oXpwztGRAPJ1w4KYswEV5crLXWSnUA7dRLhbyVBfsorapjTF+trW6vyPAwxvRNZs3OcqrrtCfG9mqxYG2MCTPGxBpjEowxiT6fBGNM53TZp/ziqy2llFTWcc5od5uBNOqVFMNpQ9N5dcl2aj0NboejVKjRTr1UyPtv3g7Cw4ThffRtIP4wMScZj9eQt73M7VCCXod2vSci00Rkg4hsFpG7mpkeLSKz7PRFIpJjx6eKyDwRqRSRR5ssM15EVtll/iraf2mrZuftJCE6gqmDe7odygEXH5PF3up63l+12+1QlAo12qmXCmmeBi9vr9jF4PQEYqPC3Q4nJPROiiWjeyxLtCfGduuwgrXtAewx4HRgGHChiAxrMtvVwF5jzEDgIeCPdnwN8GvgF80k/Q/gf4BB9jPN/9GHjlpPA3PW7OZ7w3sRExk4GdBxA9LISY3jxUXaHEQpf9JOvVSoW/B1KSWVtdoMxM8m5CRTWO68aUUduY5scDsJ2GyM2QIgIq8A5wJrfeY5F5hph18HHhURMcZUAV+IyEG9iIhIbyDRGLPQ/v8c8APg/Q7cjqA2f0MxFTUeznH5bSBNhYUJFx2dxf+9t571u8sZ0ktbFynVHtqpl+oq3lhWQGJMBIN7JbgdSkgZndmd91btIjd/D31T4twOJ2h1ZFOQDGC7z/8Fdlyz8xhjPMA+ILWVNAtaSVP5eGflLpLjIjluwKF2qzumj+9LVEQYLy3SyjSl/KDdnXpp8z0V6Mpr6vlgzW7OGdOHyPAObc3a5cREhjMyI4mVBfuo83jdDidohexZKSLXikiuiOQWFxe7HY4rauob+GhdIdNG9CYiADOglPgozhzZmzeX7aCqVp9EVqo9jDF/afwA/wRi+bZTr/6tLa/N91QweG/lLmrqvUwf39ftUELS+OwUaj1eVu/Y53YoQasjS1s7AN8zP9OOa3YeEYkAkjj00+s7bDqHShMAY8w/jTETjDETevTomm+a+nRDEdV1DZw1qrfbobTokmOyqKz18FbeTrdDUSrotbNTrwPN94wxdTgF8nObzHMu8Kwdfh04pbH5njHmC5wCtm88B5rvGeeJqMbme0odkdeXFjCwZzdGZ+rbQDpCTmocqfFR5ObrO62PVEcWrJcAg0Skn4hEATNwOi3wNRu43A5PBz4xh3gc1RizCygXkWPs7cTLgLf8H3poeGflLlLjozi6X4rbobRoXFYyQ3ol8PzCfH0SWal28EOnXtp8TwW0b0qqyM3fy4/GZaItijqGiDAhO5mtpdWUVNS6HU5Q6rCCtc10bwQ+ANYBrxpj1ojIPSJyjp3tKSBVRDYDtwIH2vSJyFbgQeAKESnwuSX5E+BJYDPwNfrgYrP21zXw8boipo3oFZDNQBqJCJdNzmHdrnKW5mvHnkq1Q1B36qXN91Rr3lxWQJjAeWP12qwjjc1OJkxg6Tb9TT4SHdoNnzHmPeC9JuN+4zNcA5zfwrI5LYzPBUb4L8rQNG9DEfvrGzgzgJuBNPrB2D784f11PPdVPhNyArd2XalAZoxp7xX04TTfK+iI5ns4bcOZMGGC3r5SB/F6DW8sLWDKoB70SopxO5yQlhgTyVHpCSzbtpdTh6YTHqZ3Bw5H4FZlqnZ5d+Uu0rpFcXS/wHsbSFNxURFMH5/J+6t3Uay3npRyizbfUwHr880l7NxXw/kTMlufWbXbhOxkKmo8bCqscDuUoKMF6xBUXefh4/WFnD6id9BcaV56TDb1DYZXFuur95RygzbfU4HslcXbSImP4rRh6W6H0iUM7pVIt+gIcrWJ5mHr0KYgyh0fryuipt7LGSMDvxlIo/49ujFlUBovLd7GDVMHBHS7cKVClTbfU4GouKKWuWsLufK4HKIjAqcH4VAWHiaMzerOl5tLqKipJyEm0u2QgoaWXkLQuyt30SMhmkkB/DaQ5lx6TDa79tXwwZpCt0NRSikVIF5fWoDHa5gxKcvtULqU8dnJeA0s31bmdihBRQvWIaay1sO8DUWcOTJ4moE0OmVoOlkpcTz95Tduh6KUUioAeL2GWUu2MalfCgN6dHM7nC6lZ0IMWSlx5Obv1dfhHgYtWIeYj9cVUuvxBsXbQJoKDxOuODaHpfl7yduuV8hKKdXVLdxSytbSai7S2mpXTMhOpqSylm17qt0OJWhowTrEvLNyF+mJ0YzPSnY7lCNy/oRMukVH8PQXWmutlFJd3UuLt5EUG8m0Eb3cDqVLGpmZRFREmD7EeBi0YB1CKmrqmb+hmDNG9iYsyJqBNEqIieSCiX15b9Uudu3b73Y4SimlXFJUXsOc1bv50bhMYiL1oUU3REeEMyojiVUF+6is9bgdTlDQgnUI+WhdIXUNXs4a1cftUNrlimNz8BrDc1/lux2KUkopl7y8eDser+Gyydluh9KlTchJoa7By9srdrodSlDQgnUIeXflLvokxTC2b3e3Q2mXvilxfG9YL15atE2vkJVSqguqb/Dy4qJ8pg7uQU5avNvhdGl9k2NJT4zWfibaSAvWIaKsuo75G4O7GYiv607sz7799by8SL/ISinV1XywZjdFFbVcPjnH7VC6PBFhQnYKKwr2sXZnudvhBDwtWIeIOat3U99gOHdMhtuh+MXYrGSOHZDKvz7fQq2nwe1wlFJKdaJnF2wlKyWOE4/q4XYoChib1Z2oiDBmLdHKrtZowTpEvJW3k35p8YzISHQ7FL/5ydSBFFXU8sbSHW6HopRSqpOs2bmPJVv3ctnk7JC4AxsK4qIimDa8F/9ZvoOaeq3sOhQtWIeAwvIaFn5Tytmj+yASOpnQcQNTGZ2ZxBOffY2nwet2OEoppTrBv7/cSmxkOOeP7+t2KMrHjEl9Ka/x8P7qXW6HEtC0YB0C3lm5C2PgnNHB/TaQpkSEn5w0kPzSat5dpV9kpZQKdYXlNbyVt4MfT8gkKS7S7XCUj8n9U+mXFs9L+uzTIWnBOgTMztvB8D6JDOwZet29njY0naPSu/HXjzdprbVSSoW4ZxZspcFruOr4fm6HopoQES6alMWSrXtZv1sfYmxJhNsBqPbZWlLFioJ93H36EFfj8OcV7EVHf9t1bViYcOtpg7n+haX8Z/kOzp+gtwaVUioUVdV6eHFhPtNG9CI7VV+xF4imj8/kTx9u4KVF27jn3BFuhxOQtMY6yM22L2w/O8Sagfj6/vB0RmUm8fBHm/QNIUopFaJezd1OeY2Ha6b0dzsU1YLk+CjOGtmbN5ftoEr7mWiWFqyDmDGGN5cVcHS/FPp0j3U7nA4jItz+/cHsKNuv77VWSqkQ5Gnw8tQX3zAhO5lxWcluh6MO4eJjsqms9fBWnvbE2BwtWAexpfl72VpazfTxmW6H0uGOH5jGMf1TeHTeZr1KVkqpEPP2yp0U7N3P/5ygtdWBblxWd4b0SuDFRfkYY9wOJ+BowTqIvbGsgLiocM4Y2dvtUDqcU2s9hJLKOh6f/7Xb4SillPKTBq/h0U82Mzg9gdOGprsdjmqFiHDJMdms2VnOsm1lbocTcLRgHaRq6ht4Z8Uupo3oRXx013gGdXx2MueO6cMTn20hv7TK7XCUUkr5wfurd/F1cRU3njxQO4QJEueNzSAhOoJnF2x1O5SAowXrIPXh2kIqaj1MHxf6zUB8/fKMoUSGCfe+s9btUJRSSrWT19ZW9+8R3yXuvoaK+OgIfjyxL++t2sXufTVuhxNQtGAdpN5YWkBG91iO6Z/qdiidKj0xhp+dMoiP1hUxb32R2+EopZRqh7nrClm/u4IbTxpIuNZWB5XLJ+fQYAwvLMx3O5SAogXrIFRYXsPnm4r54biMLnnb7Krj+tE/LZ6Zb69hf52+fk8ppYKR12v42yebyE6NC7meg7uCrNQ4Th2azkuLt1FTr7/FjTq0ca6ITAMeAcKBJ40x9zeZHg08B4wHSoELjDFb7bS7gauBBuAmY8wHdvxWoMKO9xhjJnTkNgSiWUu24zV0ibeBNCcqIox7fzCCi59cxAMfrOe3Zw93OySllPIbf3W45dvZVqDw3baVBWWs3lHO9PGZvJpb4GJU6khdeVwOc9cWMjtvJz+eqB24QQfWWItIOPAYcDowDLhQRIY1me1qYK8xZiDwEPBHu+wwYAYwHJgG/N2m1+gkY8yYrlio9jR4eXnxNqYMSuvSPVMdNzCNyyZn8+8vt7Lg6xK3w1EqJIjINBHZICKbReSuZqZHi8gsO32RiOT4TLvbjt8gIt/3Gb9VRFaJSJ6I5HbOlqhA1+A1zF1bSHpiNGP6dnc7HHWEJvdPZXB6Ak9/+Y2+es/qyKYgk4DNxpgtxpg64BXg3CbznAs8a4dfB04REbHjXzHG1BpjvgE22/S6vHkbitm1r4aLj852OxTX3XX6EHJS47j9tZVU1NS7HY5SQU0rQ1Rnys3fQ2lVHd8f1osw6XpNGkOFiHD1lH6s313BZ5u0kgs6tmCdAWz3+b/Ajmt2HmOMB9gHpLayrAE+FJGlInJtB8Qd0F5clE96YjSnDu3pdiiui4uK4C8/HsOuffv57ew1erWsVPtoZYjqFHUeL5+sKyI7NY7BvRLcDke10w/GZNArMYZ/fLrZ7VACQjA+vHi8MWYcTq3KT0XkhOZmEpFrRSRXRHKLi4s7N8IOsn1PNfM3FjNjYhYR4cF46PxvfHYyPzt5EG8u28Hz+mSyUu2hlSGqU3yxuYSKWg/ThvdCtLY66EVFhHHNlH4s3LKHZdv2uh2O6zqydLYD8G3JnmnHNTuPiEQASTgPMba4rDGm8W8R8B9aqBUxxvzTGDPBGDOhR48e7d6YQPDS4m2EiTBjkj4g4OvmUwZx6tCe3PP2WhZtKXU7HKXUwbpsZYj6rrLqOuZvLGJ4n8Qu/ZxQqLlwUhZJsZE8/qn2jNyRBeslwCAR6SciUTjt72Y3mWc2cLkdng58Ypz7+bOBGfZBmX7AIGCxiMSLSAKAiMQD3wNWd+A2BIya+gZeXbKdk4f0pHdSrNvhBJSwMOHBC8aQlRrHT15cRsHeardDUioYaWWI6nDvr96NMWhnMCEmPjqCy4/N4cO1hWwuqnA7HFd1WMHa3ia8EfgAWAe8aoxZIyL3iMg5drangFQR2QzcCtxll10DvAqsBeYAPzXGNADpwBcisgJYDLxrjJnTUdsQSN5YVkBpVR1XHdfP7VACUmJMJP+8dAJ1DV4ueXIRReXaE5RSh0krQ1SHWrC5hFU79nHi4B4kx0W5HY7ysyuOzSE2Mpy/z+vatdYd+h5rY8x7wHtNxv3GZ7gGOL+FZe8D7msybgsw2v+RBrYGr+Ffn21hdGYSx/RPcTucgDWwZzeeuXIilz61mIufXMQr1x5Dardot8NSKigYYzwi0lgZEg483VgZAuQaY2bjVIY8bytD9uAUvrHzNVaGeLCVISKSDvzHtqONAF7qKpUh6mD1DV5mvr2G5LhIThikdyRCUUp8FJdOzubJz7fwk5MGMLBn13wwtUML1so/5q7dzdbSah67aFyXeNCjvZ0jXDQpi2cWbOWsv33BWzceR8+EGD9F5r+OGyAwO29QXZtWhqiO8s/PtrCxsJJLjs4mUh++D1nXnziAFxfm89DcTTx28Ti3w3GFnt0BzhjD4/O3kJUSx7QRvdwOJyj079GNS47JpqSylvMeW8D63eVuh6SUUl3Wht0VPPLRJs4c1ZthfRLdDkd1oJT4KK4+vh/vrtrF6h373A7HFVqwDnBLtu4lb3sZ/zOlH+FhoV9b7S9HpSdw7QkD8Hi9TP/HV3y8rtDtkJRSqsvxNHi5/fUVJMREcM85w90OR3WCq6f0Jyk2kgfnbnQ7FFdowTrA/e2TTaTERzF9vL5i73BldI/lrZ8eT3ZqHFc/m8vdb66istbjdlhKKdVlPPHZFlYW7OPeH4zQZ166iKTYSK49oT+frC8id+set8PpdFqwDmALvi7h800l3HDiAGKjwltfQH1Hr6QY3rjhWK47oT+vLNnGtIc/Y+7aQu2lUSmlOtiybXt5+KONnDmqt75er4u58rgc0hOj+d3ba/F6u9bvrRasA5QxhgfmbKBXYgyXTs52O5ygFhMZzt1nDOX16ycTFRHG/zyXyw//sYAvN5doAVsppTrAnqo6bnxxGb2SYvi/H4x0OxzVyeKiIvjlGUNZtWMfry3d3voCIUQL1gFq7tpC8raXccupg4iJ1NpqfxifncIHt5zA/T8cye59NVz85CJOe+gznvx8CyWVtW6Hp5RSIaHBa7j5leWUVNXxj4vHkxQX6XZIygXnjO7DhOxkHpizgX37690Op9NowToANXgNf/pgA/3T4pk+PtPtcEJKZHgYMyZlMe8XU7n/hyNJiIng9++uY+J9H3H2377gTx+sZ976Inbvq9HabKWUOgIPzd3I55tKmHn2cEZkJLkdjnKJiDDznOHsqa7jrx9vcjucTqPvsQ5As5ZsZ1NRJY9dNI4Ifd9nh4iJDGfGpCxmTMpiY2EFc1bv5rONxTw+fwsNXqfXqO5xkWQmx9IrMZaeidEkxkSypbiSqIgwwsOEiDAhTOwnTAgXp3v1iLAwIsOFyPAwYiLDiY0MJzoyjLAu8A5ypVTX9vzCfB6dt5kLJvTlwkn60H1XNyIjiRkT+/LMgq2cNzajS1xoacE6wBRX1HL/++s4ul8KZ4zU91Z3hqPSEzgqPYGbThlERU0963ZVsG5XORsKK9hVtp+CvdUs37aXihoPdQ3eI1pHmEC36AiSYiPpHhdFWrcoYiLDDqw7KkIvoJRSwe29Vbv4zVurOWVIT+47b0SX6NBMte6uaUP5eF0Rt726gtk/O47oiNBu3qoF6wDz+3fXUlPv5b7zRmqm5IKEmEgm9UthUr/mu45/dsFW6hu8eLyGhgaD1xgajMFrwOs1NHgNHq/B0+ClvsFLTb2X6voGqms9lNd4KN9fz46y/azZuY95G4oBiAwXjkpPYFxWMuOzk5mQk0xmclxnbvZBtHdJpdThmrehiFteyWNcVjKP6t1W5SMpLpL7fzSSq57J5ZGPNnHHtCFuh9ShtGAdQD7bWMxbeTu5+ZRBDOzZze1wVDMiw8P80h2vx+vl2AGprNtVwZqd5azaUcabywp4fmE+AFkpcRw3MJXjB/bg+IFp+vCPUipgvb60gDvfWMmQXgk8dfkEfT2s+o6Th6Rz/vhMHp//Nd8b3osxfbu7HVKH0YJ1gKis9fCr/66mf1o8N0wd4HY4qoNFhIUxsGcCA3smcPboPoDz0OqG3RUs+qaULzeX8s6KXby8eDthAmOzkpl6VA9OGtKT4X0S9W6GUiGustbDzrL9FFfUUlHjobLWg8frJdw+09HYtCwlPoreSTEkxHT+xbcxhn/M/5oH5mzguIGpPHHpBLpFa7FCNe/XZw/ji80l3PzKcmb/9PiQrTDSb0AAMMZw95urKNhbzSvXTtbX63VR4WHCsD6JDOuTyJXH9cPT4GVFQRnzNxTz6cZi/jJ3I3+Zu5GeCdFMHdyDk4f05LiBaa78oCql/Ku6zsMXm0qYt6GI91fvpqz629eThYsQHx1OZHgYBqeb8MpaD779biTFRtI3OZYBPbsxsEc3UuKjOjTe4opa7nh9BfM2FHP26D78+fxRId92VrVPYkwkf7twLDP+uZBbZi3nqcsnEhYWepVEWrAOAC8u2sbbK3Zy+/cHt9i2V3U9EeFhjM9OYXx2Crd+bzDFFbXM31jMvPVFvL9qN6/mFhARJozLSubEwT04bmAaIzOSCA/BjEqpUOT1GhZuKeX1pQW8v3o3++sb6BYdQXZqHJP7p9KneyzpiTHER4V/5y6V1xgqazyUVNWys6yGHXur2Vpazeqd5QCkxkexpaSKU4emMzEn2W9tnr1ew7urdjFz9hoqaz387pzhXDY5W++iqTaZkJPCb88exq/fWsPDH2/i1tOOcjskv9OCtctW79jHPW+vZergHtxwojYBUS3rkRDN9PGZTB+fSX2Dl6X5e5m/sZjPNhbzpw828KcPNpAQE8HR/VKZmJPMhJwURmQkai2SUgGmstbD67nbeWbBVraWVpMQHcEPxmZw1qjeTMxJ4fWlBa2mESZCYmwkibGR9E9znskxxlBaWcemogo2FFbw/Ff5PPXFNyTFRnLS4B6cPDSd4wemHVFtttdr+GhdIQ99tIl1u8oZ3ieRhy8Yw6D0hMNOS3VtlxyTzcqCffz1400MTk/gzFGh1d29FqxdVLC3mv95LpfUblE8+OMxIXlLRHWMyPAwjumfyjH9U7lz2hCKK2pZuKWUBV+X8NXXpXy0rhCAqPAwBvdKYGRmEkN7JRx4vV9yB98mVkp9V1FFDU9/sZUXF+ZTUethbFZ3bjn1KKaN6OWXJoAiQlpCNGkJ0UwekMa5Y/rw+aYSPl5XyCfri/hv3k5EYGRGEpNyUhjdtzujM7vTp3tMszXae6rqWLernLlrC3l/9S4Ky2vplxbPwxeM4ezRffTumDoiIsK9PxjBlpIqbpm1nLiocE4a0tPtsPxGC9YuKa6o5ZInF1FV62HWdZM7vD2cCm09EqI5e3SfAw9CFlfUsjR/D8u3l7F6xz7eWbGTlxZ5DsyfFBtJdmocfVPi6JMUQ++kWHolxZDWLZqSylrioyKIiQzT27tK+UHB3moen/81r+YW4GnwcsbI3lwzpX+HvxkhPjqCaSN6MW1ELxq8hpUFZXy+qYTPNxXz3MJ86r74BnCe70hPiCalWxRer9PMpKiilj1VdQBER4Rx4lE9OGt0H84Y0UtfpafaLSYynH9fOZGL/rWQ619Yyr+vnMixA9LcDssvtGDtgrLqOi59ahGF5bW8cM3RDO2d6HZIKsT0SIhm2ojeTBvh3GIzxrC7vIaNhZVsKqwgv7SaraVVrN1ZzkdrC6n1fLfjm3AR4qLDiYsKJy4qgviocOKjI4iPjqBbdAQJMREkxESSFBtJQkyE9iypVBNbS6r4+6ebeXPZDkRg+vhMrjthADlp8Z0eS3iYMDYrmbFZydx0yiDqPF42Flawesc+dpTtZ0fZfsqq6wkTp0ZxTN/uDOzZjQE9uzEpJ4V4fduH8rPEmEieu+poZvzzK655NpdHLxrLyUPS3Q6r3fSb0sm2llRx1bNLKNizn6eumMD47GS3Qwpp/uzsxN/cii0uKoKhvRMPXNAZY6iua6CixkNFbT2VNR6q6hqoqvVQVeuhuq6BqjoPheW1VNVVsb+uAdMkzTCBRPvqr5S4KNK6RdMzIZr80ir6JsdpMyfVpWwqrOCxeZuZvWInEeFhXHx0FtedOIA+3WPdDu2AqIgwRmQkdYkuplXgSomP4oVrjuaqZ5ZwzbO5/OasYVxxXD+3w2oXLVh3okVbSrnuhaUI8MI1R+sbQFRAEJEDNdG9iGl1/gavobrOQ0WNh/Kaevbtr2dfdT1l++sPtMmsqmsA4LmF+cRFhTO4VwJDeycyKiOJkZlJHJWe4JeOdpQKJLlb9/DEZ1uYu7aQuKhwrpnSn2uO70fPxNa/V0p1VT0TYnj1usnc9HIeM99ey8aiSn595rCg7WhIC9adoM7j5dF5m/n7vM1kp8bx9BUTyU7t/FuBSvlDeJiQEBNJQkwkfWi+Bm5/XQPFFTXkpMWzfncF63aV83bezgO19NERYYzMSGJsVnfGZyczLitZCx8qKNV5vMxZs5tnvvyGZdvK6B4XyU2nDOLKY3P0IWGl2iguKoInLh3PA3PW88RnW/jq61L+fP7ooLyrrwXrDrY0fy93v7mSjYWVnDc2g5nnDCcpVjv0UKEtNiqcrNR4ZkzKOjDO6zXk76lmZUEZK7bvI2/7Xp79Kp9/fe48QNU3JZbxWcmMz0lhQnYyR6Un6FsHVMDKL63i9aUFvLJkO8UVtWSnxvG7c4Zz/oRM4qL0p1WpwxUeJtx9xlBOPKoHt7++kvMfX8BFR2dx08mDgqriRb/9HWTZtr088tEm5m8spldiDE9fMSEkGuUrdaTCwoR+afH0S4vn3DEZANR6Gli7s5yl+XtZmr+XL78u5b95OwHoFh3BmL7dGZfVnTFZ3RnTN1nfnqNcVVRewwdrdjN7xU6WbN1LmMCJR/XgsmNzOHFQD32WQCk/OHZgGnNumcKfP9jAi4u28frSAq44th+XH5tN76TAeU6hJR1asBaRacAjQDjwpDHm/ibTo4HngPFAKXCBMWarnXY3cDXQANxkjPmgLWm6Zf8pkQAAIABJREFUaW9VHe+s3Mmby3ewfFsZKfFR3DltCJdOzqabPlGt1HdER4QfeFPBNVOcBym379nP0m17WJZfRm7+Xh6dt/lA182ZybGMykxieJ8khtkHMNMTo/W1gH7S1fLs1ngavKwo2McXm0qYv7GI5dvLMAYG9IjnjmmD+eHYTHolBU9NmlLBIiEmkt+dO4Krju/Hg3M38sRnX/PPz77m5CHp/HhCJlMG9QjYNtgdVtoTkXDgMeA0oABYIiKzjTFrfWa7GthrjBkoIjOAPwIXiMgwYAYwHOgDfCQijf1etpZmp9m3v561O8sPdMyxfFsZHq9hcHoCvzpzKBdOytJXFCl1GESErNQ4slLjOG9sJgBVtR5W7dhH3vYyVu3Yx6qCfby3aveBZZJiIxnUsxsDe3YjJy2enNQ4slLiyUiO1WZXh6Er5NmH4mnwsrW0ig27K1mzcx/Lt5WxoqCM6roGRGBEnyR+bjtzGdSzm17MKdUJslPjeWTGWG47bTAvL9nGa7nb+WhdIdERYRw3MI1jB6QyNqs7w/sk+aWTJX/oyFLfJGCzMWYLgIi8ApwL+Gao5wIz7fDrwKPi5FbnAq8YY2qBb0Rks02PNqTZbl6voaLWQ0VNPRU1HvZU1VFSWUtReS3b91azbU81m4sqKdi7HycOGJWRxLUn9OfMUb0Z1jtRM12l/CQ+OuJAL5ONymvqWb/LeShyU1EFmwormbu2kFLboUWjhOgIeiXF0DMxmp4JMaTGR5EcH0VKfBSJ9h3c3WIi6BbtvKM7LjKC6MgwoiO6ZOc4QZtnt6TBa6iqc14bWVnjoWx/PXur6iitqqOovJaiihoK9u5n+55qCvbup67BeZ97RJgwrE8i54/PZGK/FI4bkKYPIirloqzUOO6cNoSfn3oUi74p5eN1RXyy3vmA853NSo2jf1o3+qXF0Sspll6JMaR1i6J7XBTd4yLpFh1BbGR4hzfZ6siCdQaw3ef/AuDoluYxxnhEZB+QascvbLJshh1uLc12u/KZJczfWNzstISYCLJS4hjdtzsXTspieJ9ExvTtTvc4zXSV6iyJMZFM6pfynVdWltfUk1/iXPzuKKtmx979FJbXUlhRw+Jv9rCnqo799Q2tpi/idBsfHR5GVEQYEeFCRJjzNzxMCBfnb5gImcmx/POyCR21qZ0paPPsWUu28di8r6lv8FLf4KW23kuNp4H6hqZvXD9YclwkGcmxDOmdwGnD0zmqZwKDeyUwsGe3gKn9Ukp9KyoijCmDejBlUA9mnjOcovIalm8vY2VBGV8XVbGlpJLPNxU32+lZo7iocD65bWqHNeMK2XYKInItcK39t1JENvgr7dXfHZUGlPgr/QCh2xQcAnqbLj6yxQJ6m5rzr8tbnaXpNmV3WDBBqiPz7JbkA3mHv1jQnJ8XB0+swRInBE+sfo/zCPPztuj0fdr73iNarE35dkcWrHcAfX3+z7TjmpunQEQigCScB2IOtWxraQJgjPkn8M8jDf5wiEiuMSYkqqwa6TYFB92m4BAk29Rl8uz2CJJjCQRPrMESJwRPrMESJwRXrG3RkV2fLQEGiUg/EYnCebBldpN5ZgONdT3TgU+MMcaOnyEi0SLSDxgELG5jmkoppQ6f5tlKKdVOHVZjbdvf3Qh8gPOapaeNMWtE5B4g1xgzG3gKeN4+6LIHJ9PFzvcqzgMuHuCnxpgGgObS7KhtUEqprkLzbKWUaj9xKhtUe4jItfY2ZsjQbQoOuk3BIRS3qasKpmMZLLEGS5wQPLEGS5wQXLG2hRaslVJKKaWU8oOObGOtlFJKKaVUl6EF63YQkZkiskNE8uznDJ9pd4vIZhHZICLfdzPOwyUi02zcm0XkLrfjOVIislVEVtljk2vHpYjIXBHZZP8mux3noYjI0yJSJCKrfcY1uw3i+Ks9bitFZJx7kbeshW0K2u+SiPQVkXkislZE1ojIzXZ8UB8n9V0i8jMRWW+P8wM+4wPuHBWR20TEiEia/T/gzjsR+ZPdnytF5D8i0t1nWkDt00D+XTzcPMhtIhIuIstF5B37fz8RWWT37SxxHnQOXsYY/RzhB6cHsl80M34YsAKIBvoBXwPhbsfbxm0Kt/H2B6LsdgxzO64j3JatQFqTcQ8Ad9nhu4A/uh1nK9twAjAOWN3aNgBnAO8DAhwDLHI7/sPYpqD9LgG9gXF2OAHYaOMO6uOkn+8c55OAj4Bo+39P+zfgzlGcVxx+gPOq7jQ7LuDOO+B7QIQd/qPPdySg9mmg/y4ebh7k9ge4FXgJeMf+/yowww4/Dtzgdozt+WiNdcc40L2vMeYbwLd730B3oFtjY0wd0NgFcag4F3jWDj8L/MDFWFpljPkM5+0LvlrahnOB54xjIdBdRHp3TqRt18I2tSTgv0vGmF3GmGV2uAJYh9PrYFAfJ/UdNwD3G6fbdowxRXZ8IJ6jDwF3AL4PUQXceWeM+dAY47H/LsR5zzkE3j4N6N/FI8iDXCMimcCZwJP2fwFOBl63swREnO2hBev2u9Hexnra5zZLc10DZ3x30YAUzLE3ZYAPRWSpOL26AaQbY3bZ4d1AujuhtUtL2xDsxy7ov0sikgOMBRYRusepqzoKmGJvWc8XkYl2fEAdTxE5F9hhjFnRZFJAxdmMq3Bq1CHwYg20eFrUxjzITQ/jXPQ19jmeCpT5XGAF7L5tq5Dt0txfROQjoFczk/4X+AdwL04B7l7gLziZgwoMxxtjdohIT2CuiKz3nWiMMSIS1K/FCYVtsIL+uyQi3YA3gFuMMeVORYwjhI5TSGslv48AUnCaUUwEXhWR/p0Y3gGtxPlLnCYWAeFQsRpj3rLz/C/O+89f7MzYQk2g50EichZQZIxZKiJT3YylI2nBuhXGmFPbMp+I/At4x/7blq6BA1Uwx34QY8wO+7dIRP6DczuvUER6G2N22dugRYdMJDC1tA1Be+yMMYWNw8H4XRKRSJwftBeNMW/a0SF3nELdofJ7EbkBeNM4DUEXi4gXSMOF49lSnCIyEqdN8gpbqMoElonIJDfihNZ/Q0XkCuAs4BS7byHwviOBFs93HGYe5JbjgHPEeTg9BkgEHsFplhRha60Dbt8eLm0K0g5N2qedBzS+5aCl7n2DQUh0QSwi8SKS0DiMU4OzmoO7ZL4ceMudCNulpW2YDVxmn/4/BtjncxswoAXzd8m2EXwKWGeMedBnUsgdpy7uvzgPMCIiR+E8xFZCAJ2jxphVxpiexpgcY0wOzm31ccaY3QTgeSci03CaBZxjjKn2mRQw+9QK6N/FI8iDXGGMudsYk2nPzRnAJ8aYi4F5wHQ7m+txtpfWWLfPAyIyBuf29VbgOjh0976BzrTQrbHLYR2JdOA/ttYmAnjJGDNHRJbg3MK9GueJ+R+7GGOrRORlYCqQJiIFwG+B+2l+G97DefJ/M1ANXNnpAbdBC9s0NYi/S8cBlwKrRCTPjvslQX6c1Hc8DTwtzmsi64DLbQ1rMJyjEJjn3aM4b/6Ya/PqhcaY6wPtex8Ev4uHmwcFmjuBV0Tk98BynIuEoKU9LyqllFJKKeUH2hREKaWUUkopP9CCtVJKKaWUUn6gBWullFJKKaX8QAvWSimllFJK+YEWrJVSSimllPIDLVgrvxGRBhHJE5E1IrJCRG4TkaA7x0TkSREZ1snrHGNfmq+UUq3S/NYv686xr09ERCaIyF/diKM9RGSqiLxjh88Rkbvcjqmr0/dYK3/ab4wZA2C7EX8Jp2el37YnUZ8emTqFMeaazlqXjzHABJx3zXaKzt6vSim/0vzWj4wxuUCu23G0hzFmNgHUcU1XFXRXtyo4GGOKgGuBG21PX+Ei8icRWSIiK0XkusZ5ReROEVlla13ut+M+FZGHRSQXuFlEeojIG3b5JSJynJ1vkoh8JSLLRWSBiAy244eLyGJbo7NSRAbZ8Zf4jH9CRMKbxm7XPcEOV4rIfTa2hSKS3sz83UTk33YbVorIjxqX9Zlnuog8Y4fPF5HVNs3PbE9e9wAX2LguEJEUEfmvTW+hiIyyy84UkWdF5HMRyReRH4rIA3bdc8Tp1hYRGS8i80VkqYh8ILZnw2b260GxtPOwK6Vc0MXy2/bmgeNt+iuAn/qk61vz29J2XiEib9r1bBKRB5o7HiJyv4istfviz3bcMyLyuIjkishGETnLjm/2WNl4PhWR10VkvYi8KOL0oiMi0+y4ZcAPfdZ7hYg86rO+v9r4t4jIdDs+TET+bpefKyLvNU5TfmKM0Y9+/PIBKpsZV4bTC+K1wK/suGicmoF+wOnAAiDOTkuxfz8F/u6TzkvA8XY4C6frVnBqaCLs8KnAG3b4b8DFdjgKiAWGAm8DkXb834HLmon5U2CCHTbA2Xb4gcZtaDL/H4GHff5Pbro/cLprfcYOrwIy7HB3+/cK4FGf+f8G/NYOnwzk2eGZwBdAJDAapwe10+20/wA/sNMWAD3s+Atwegprbr9+Jxb96Ec/gf/pwvlte/PAlcAJdvhPwGo7PBV4p5XtvALYAiQBMTi9GfZtEl8qsIFvO+BrzOOfAebgVGgOwuluPuYQx2oqsA/ItMt8BRxvl9lu0xDgVZ+4r8D+jtj1vWaXHQZstuOn49wZDQN6AXuB6W6fz6H00aYgqrN8Dxjlc2WchJMxnAr82xhTDWCM2eOzzCyf4VOBYfaCHSBRRLrZdJ61NSQGJ0MFJxP6XxHJBN40xmwSkVOA8cASm04sUNRK3HXAO3Z4KXBaM/OcCsxo/McYs7eVNL8EnhGny943W5jneOBHNr1PRCRVRBLttPeNMfUisgqne905dvwqIAcYDIzg226Cw4FdPmn77te2xKKUCi6hnN/CEeaBItIdp6DbeHfueZyLjaZa2k6Aj40x+wBEZC2QjVPQbbQPqAGesjXg7/hMe9UY4wU2icgWYAgtH6s6YLExpsCuK89uWyXwjTFmkx3/Ak7hvDn/tetb61P7fzzwmh2/W0TmtbCsOkJasFYdRkT6Aw04makAPzPGfNBknu8fIokqn+Ew4BhjTE2T5R8F5hljzhORHJzaD4wxL4nIIuBM4D17e02AZ40xdx/GZtQbe5lvt+VwvjPGZzjmwEhjrheRo21sS0Vk/GGkCVBr0/GKiG98XhufAGuMMZNbWP7Afm0uFmNM6WHGo5RyWRfLb48oD7QF67a4l2a203fdLcVojPGIyCTgFJza4Rtx7jrCwb8Jjf+3dKymtrauNvBdXlqcS/mVtrFWHUJEegCP49yWMsAHwA0+7d+OEpF4YC5wpYjE2fEpLST5IfAzn/TH2MEkYIcdvsJnen9gizHmr8BbwCjgY2C6OA/6IE475mw/bO5cDm6rl2wHC0VkqDhP6p/nM32AMWaRMeY3QDHQF6gAEnzS/By42M4/FSgxxpS3MZ4NQA8RmWyXjxSR4c3N2EIsSqkg0sXy27ZoNg80xpQBZSJyvJ3v4haWb3Y726KxZt8Y8x7wc5zmKo3Ot22cBwD9bZwtHauWrAdybBoAFx5OfDh3KX9k40jHaXKi/EgL1sqfYsW+/gn4CCdz/p2d9iSwFlgmzuuNnsBpwzYH5ynmXHur6xctpH0TMEGchzvWAtfb8Q8AfxCR5Rx8Nf9jYLVNcwTwnDFmLfAr4EMRWYnzI9PbD9v9eyBZ7EOAwEl2/F04twEXcHBTjD+J86DNajttBTAP59ZrnohcgNOOcLyN837g8rYGY4ypw6kp+aONJw84toXZm4tFKRX4ump+26pW8sArgcdsrC3V4ra0nW2RALxjt/kL4FafaduAxcD7wPX2jkCzx+oQ21aD0/TjXXEeXmyteU1Tb+C0714LvAAsw2m+ovxEvr2DopRSSiml/E2ct0K9Y4x5PQBi6WaMqRSRVJyC/nHGmN1uxxUqtI21UkoppVTX8Y5tbx4F3KuFav/SGmullFJKKaX8QNtYK6WUUkop5QdasFZKKaWUUsoPtGCtlFJKKaWUH2jBWimllFJKKT/QgrVSSimllFJ+oAVrpZRSSiml/EAL1koppZRSSvmBFqyVUkoppZTyAy1YK6WUUkop5QdasA4QIvK4iPzaT2lliUiliITb/z8VkWv8kbZN730Rudxf6R3Gen8vIiUi4mr3qyIyVUQKXFz/eSKy3R7jsW7F0dHs9vV3Ow6l/E3z+zat19X8XkSMiAz0c5pbReRUf6apAo8WrDuB/TLtF5EKESkTkQUicr2IHNj/xpjrjTH3tjGtQ34xjTHbjDHdjDENfoh9poi80CT9040xz7Y37cOMIwu4DRhmjOnVmesOQH8GbrTHeHnTiR3xg9DRmisM2O3b4lZMSh0Jze/br7X8/nArN9yuDOnqRCTH/i5FuB1LZ9CCdec52xiTAGQD9wN3Ak/5eyUhfOJmAaXGmCK3A/GnIzxe2cCaTl6nUqrtNL9vn5DM71UXYYzRTwd/gK3AqU3GTQK8wAj7/zPA7+1wGvAOUAbsAT7HuQh63i6zH6gE7gByAANcDWwDPvMZF2HT+xT4A7AYKAfeAlLstKlAQXPxAtOAOqDerm+FT3rX2OEw4FdAPlAEPAck2WmNcVxuYysB/vcQ+ynJLl9s0/uVTf9Uu81eG8czzSw7FSjAqeUoAnYBV/pMPxCz/f8K4Auf/w3wE2ATUAHcCwwAFth99ioQ1WRdv7TbtBW42CetaJxa5W1AIfA4ENtk2TuB3cDzzWxLs/vUpltpY60Cvm5m2c98plcCFzS3TiAZ5xwrBvba4cwm++te4Eu7Pz4E0uy0GOAFoBTnHF0CpNtpVwLr7DJbgOuaxHcukGf36dc459h9QANQY2N+1OeYDDzUueF7LO0+3wt8A5ze5FhvsTF943us9KMff3/Q/L5D83sgvsn0SqAPTv74MLDTfh6241qafxLwld3vu4BHsXm8Xc+B/KeZ2JvNU3B+Mz7ByRtLgBeB7s2dG3Zb78LJB0txfmMaj1OLeWwzsTSmUQGsBc5rEueXwEM2nS3AsXb8dnsML2/tmNhpM4EXfOZtPN6+511Lvxnb7LyN+3+y29/TDs0D3A6gK3xoJqO147cBN9jhZ/g2o/0DTmEs0n6mANJcWj4n93M2A4lt4YTfAYyw87zR+AXhEBmtHT7oy+STXmNGexWwGegPdAPexBYWfeL4l41rNFALDG1hPz2H8yOQYJfdCFzdUpxNlp0KeIB77D47A6gGkpvGbP+/gu8WrN8CEoHhNs6P7XYl4WRYlzdZ14M4GfeJOAXZwXb6Q8BsIMVuy9vAH5os+0e7bGwz29LiPvWJtdkMv7npza0TSAV+BMTZGF8D/tvkGH8NHGXn/xS43067zm5THBAOjAcS7bQzcX5cxO6XamCcnTYJ2AechvOjkgEMae74NN2OVs6NK3AKA/9j47kB54dVcM73cp9j0xsY7naeoJ/Q/aD5fWfl90234x5gIdAT6IFTKXLvIeYfDxwDRNj1rwNu8ZnebD57qDwFGIiTv0XbGD4DHm5hX99s48208z8BvGyntZjHNhPP+TgXCmE4FSlVQG877QqcvP9Km87vcc7Dx+w6v4dTCO7WhmNy0LlB8+ddS78ZB80b6h9tCuKunTiFr6bqcb6s2caYemPM58aenYcw0xhTZYzZ38L0540xq40xVcCvgR83PuzSThcDDxpjthhjKoG7gRlNblH+zhiz3xizAliBk+EexMYyA7jbGFNhjNkK/AW49DBiqQfusfvsPZwr48GHsfwDxphyY8waYDXwod2ufcD7QNMHBX9tjKk1xswH3sXZpwJcC/zcGLPHGFMB/J/dtkZe4Ld22eaOV1v26eE6aJ3GmFJjzBvGmGob4304BWFf/zbGbLQxvgqMsePrcQrmA40xDcaYpcaYcgBjzLvGmK+NYz5OrcUUu9zVwNPGmLnGGK8xZocxZn1rgbfx3Mg3xvzLOO1Mn8X5/qT7bPsIEYk1xuyyx1epzqb5veWn/L652O4xxhQZY4qB3x0qPZtvLTTGeOz6n+C7eWBLms1TjDGbbf5Wa2N48BBpXo9To19gjKnFKbhOt/uyxTy2me14zRiz0+aps3Duuk7ymeUbY8y/bd44C+iLs59qjTEf4tylGOinY9LSb0aXogVrd2Xg3Ppr6k84tQIfisgWEbmrDWltP4zp+Tg1I2ltivLQ+tj0fNOO4NtCDTjNDxpV49R0NJVmY2qaVsZhxFJqjPG0YV0tKfQZ3t/M/75p7bU/Wo3ycfZFD5xahqX2waUyYI4d36jYGFNziDjask8P10HrFJE4EXlCRPJFpBynZqV7kx/flo7b88AHwCsislNEHhCRSJvu6SKyUET22G0/g2/Ps744NRqHqy3nxoFYjTHVdrCbPUYX4PyI7RKRd0VkyBHEoFR7aX7/LX/k922JrU9LM4vIUSLyjojstnng/9GGfXSoPEVE0kXkFRHZYdN84RBpZgP/8fmdWIfTJC6dQ+SxzWzHZSKS55POiCbrbPo7hjGmud82fxyTthz7kKcFa5eIyEScE/aLptPs1eJtxpj+wDnArSJySuPkFpJsrYajr89wFs4VcQnObaM4n7jCObgQ2Fq6O3EyCN+0PRz8ZW6LEhtT07R2HGY6LTloO4H2vlkkWUTiff7PwtkXJTgZ1XBjTHf7STLG+GYwnbVPfTVd5204tflHG2MSgRPseGk1IadW7XfGmGE47fXOAi4TkWic285/xmkP2B14zyfN7TjNRNoSn692nRvGmA+MMafh1Aqux7lVrVSn0fz+O9qb3zcXZ3Ox7TzE/P/AyQ8G2Tzwl7Qh/4ND5in/Z9c10qZ5ySHS3I7zLEh3n0+MvZPXbB7bNAERybbrvhFItXnu6rZuRxOtHZP2/Ia2dl6FFC1YdzIRSRSRs4BXcNorrWpmnrNEZKBtVrAP5yrWaycX4rRvO1yXiMgwEYnDaYv2ur01tBGIEZEz7RXxr3DaXjUqBHJ8XxXVxMvAz0Wkn4h0w8lYZjWpOW6VjeVV4D4RSbAZxq04V/z+kAf80NbUDsRpltBevxORKBGZgpPxvWaM8eJkdA+JSE8AEckQke8fRrrt3adtOUcScC4AykQkBfhtW4MTkZNEZKT9US7HyYy9QBTOuVMMeETkdJw2fI2eAq4UkVNEJMzul8ba4xZjbs+5YWuQzrUXQbU4zYO8rSymlF9oft88P+T3hUCqiCQ1ie1XItJDRNKA3/ik19z8CTj5V6XNh25oy4pbyVMS7P/7RCQDuP0QST2Os/3ZNt0eInKuHW4pj20qHqfQWmyXuxKnxvqwteGY5AEniPPe9CScZkBtVWzj7xL9EmjBuvO8LSIVOFep/4vT9urKFuYdBHyE8wX9Cvi7MWaenfYHnMyjTER+cRjrfx7ngZndOE8c3wRgnPbDPwGexLkyrcJ5g0Sj1+zfUhFZ1ky6T9u0P8N5OroG+NlhxOXrZ3b9W3Bqdl6y6fvDQzhtyQpx2uC+2M70duO8gWKnTet6n/bCd+Lc2l1obwd+xOG19W7vPp0JPGvPkR+3MM/DOA+YlOA8QDPnMNLvBbyOk+GvA+bjtOmswDmvXsXZNxfhPMQJgDFmMc45/xBOAWI+39aOPILTvnCviPy1mXUe6bkRhvPjsBPnNvyJtPEHVKl20Py+dUec39u89mVgi903fXAezMsFVgKrgGV2XEvz/wInj6rAqQyZ1ca4D5Wn/A4Yh5O/vYvzcGdLHsHJHz+058pC4Gg7rdk8tpn9sBanHfRXOL9tI3HeynGkWjwmxpi5OPtoJbAU5002bWKb590HfGn3/zHtiDHgNT55rJRSSimllGoHrbFWSimllFLKD7RgrZRSSimllB9owVoppZRSSik/0IK1UkoppZRSfqAFa6WUUkoppfygPV0kB420tDSTk5PjdhhKKQXA0qVLS4wxPVqfs2vSPFspFWjamm93iYJ1Tk4Oubm5boehlFIAiEh+63N1XZpnK6UCTVvzbW0KopRSSimllB9owVoppZRSSik/0IK1UkoppZRSftAl2lgr1Rb19fUUFBRQU1PjdigqRMTExJCZmUlkZKTboSgV8DQPVoGgvfm2FqyVsgoKCkhISCAnJwcRcTscFeSMMZSWllJQUEC/fv3cDkepgKd5sHKbP/JtbQqilFVTU0Nqaqpm6MovRITU1FStfVOqjTQPVm7zR76tBWulfGiGrvxJzyelDo9+Z5Tb2nsOasFaqQAiIlxyySUH/vd4PPTo0YOzzjqr02LYunUrI0aM6LT1dYQHH3yQYcOGMWrUKE455RTy8799/eidd97JiBEjGDFiBLNmzTpkOm+88QYictA7lVeuXMnkyZMZPnw4I0eO1BpppUKI5sH+8fjjjzNy5EjGjBnD8ccfz9q1awFn22JjYxkzZgxjxozh+uuvP7DMyy+/zMiRIxk1ahTTpk2jpKQEgNdee43hw4cTFhbW4vvtN2zYcCDNMWPGkJiYyMMPPwzAzJkzycjIODDtvffe69Bt1zbWSgWQ+Ph4Vq9ezf79+4mNjWXu3LlkZGS4HdYR8Xg8RES4k8WMHTuW3Nxc4uLi+Mc//sEdd9zBrFmzePfdd1m2bBl5eXnU1tYydepUTj/9dBITE7+TRkVFBY888ghHH330gXEej4dLLrmE559/ntGjR1NaWqoPJioVQjQP9o+LLrroQKF59uzZ3HrrrcyZMweAAQMGkJeXd9D8Ho+Hm2++mbVr15KWlsYdd9zBo48+ysyZMxkxYgRvvvkm1113XYvrGzx48IE0GxoayMjI4Lzzzjsw/ec//zm/+MUv/L2ZzdIa6y7qpUXb2v1RHeOMM87g3XffBZwr+AsvvPDAtKqqKq666iomTZrE2LFjeeuttwCnFmDKlCmMGzeOcePGsWDBAgA+/fRTpk6dyvTp0xkyZAgXX3wxxpjvrHPp0qWMHj2a0aNH89hjjx0Y39DQwO23387EiRMZNWoUTzzxxIFpf/zjHxk5ciSjR4/mrrvuAmDq1KnSf++uAAAgAElEQVTccsstTJgwgUceeYTi4mJ+9KMfMXHiRCZOnMiXX34JwOLFi5k8eTJjx47l2GOPZcOGDQCsWbOGSZMmMWbMGEaNGsWmTZsAeOGFFw6Mv+6662hoaDjkPjzppJOIi4sD4JhjjqGgoACAtWvXcsIJJxAREUF8fDyjRo06kNk39etf/5o777yTmJiYA+M+/PBDRo0axejRowFITU0lPDz8kLEo1RrNZwOL5sHtz4N9KyuqqqpabV5hjMEYQ1VVFcYYysvL6dOnDwBDhw5l8ODBh1ze18cff8yAAQPIzs5u8zL+pAVrpQLMjBkzeOWVV6ipqWHlypUH1Zjed999nHzyySxevJh58+Zx++23U1VVRc+ePZk7dy7Lli1j1qxZ3HTTTQeWWb58OQ8//DBr165ly5YtBzJWX1deeSV/+9vfWLFixUHjn3rqKZKSkliyZAlLlizhX//6F9988w3vv/8+b731FosWLWLFihXccccdB5apq6sjNzeX2267jZtvvpmf//znLFmyhDfeeINrrrkGgCFDhvD555+zfPly7rnnHn75y18Czu3Dm2++mby8PHJzc8nMzGTdunXMmjWLL7/8kry8PMLDw3nxxRcBuOaaa1rt+vqpp57i9NNPB2D06NHMmTOH6upqSkpKmDdvHtu3b//OMsuWLWP79u3/z96dh1dVnX0f/94JhEFlDmOYByGBGCEM4iwKCApWUXEuSLUW9bFO1deittXHWlv71KGoddYqCopGhSIOOFVkEhkVEMKMhClAGJPc7x9nJ4aQ4QA5OUn4fa5rX9ln7b3Xvk/A7WLtte7F4MGDDyhfsmQJZsaAAQPo3r07f/nLX0q8t4hUPnoGl80z+Mknn6R9+/bceeedPPbYY/nlK1as4MQTT+T000/niy++AKB69eqMHTuWbt260bx5cxYtWsS11157SH9uecaNG3fAP4YAnnjiCZKTkxk5ciRbt249rHrDpaEgIhVMcnIy6enpvP766wwaNOiAYx9++CFpaWn89a9/BUKz6FetWkXz5s258cYb8x96S5Ysyb+mV69eJCQkAJCSkkJ6ejqnnHJK/vFt27axbds2TjvtNACuuuoqJk+enH+/efPmMWHCBAAyMzNZunQpH330ESNGjMjvFW7QoEF+fZdeemn+/kcffZQ/tg5g+/bt7Ny5k8zMTK655hqWLl2KmbF//34ATjrpJB588EHWrFnDhRdeSMeOHfn444+ZPXs2PXv2BGD37t00btwYgGeffbbE3+Wrr77KrFmz+OyzzwDo378/M2fOpG/fvsTHx3PSSScd1OOcm5vLrbfeyosvvnhQfdnZ2Xz55ZfMnDmT2rVr069fP3r06EG/fv1KjENEKg89g8vmGTx69GhGjx7Na6+9xgMPPMBLL71Es2bNWLVqFQ0bNmT27NlccMEFLFy4kFq1ajF27Fi+/fZb2rVrx0033cRDDz3E73//+9L/wArYt28faWlpPPTQQ/llN9xwA2PGjMHMGDNmDLfddhvPP//8IdV7KNSwFqmAhgwZwu233860adPYvHlzfrm789Zbbx30Wuz++++nSZMmfPfdd+Tm5h4wfKFGjRr5+7GxsWRnZ4cdh7vz+OOPM2DAgAPKp0yZUuw1xxxzTP5+bm4u06dPPyAegBtvvJEzzzyTiRMnkp6ezhlnnAGExuX17t2bDz74gEGDBvH000/j7lxzzTUHPCjD8dFHH/Hggw/y2WefHfA7uOeee7jnnnvy79epU6cDrtuxYwcLFizIj2nDhg0MGTKEtLQ0EhISOO2002jUqBEQemU8Z84cNaxFqhg9g4/8GZxn+PDh3HDDDUDod5H3++jRowft27dnyZIl+cNj2rdvD8All1zCn//850O+1+TJk+nevTtNmjTJLyu4/6tf/SriE1E1FESkAho5ciT33Xcf3bp1O6B8wIABPP744/kPoW+//RYI9WI0a9aMmJgYXnnllVLHvxVUr1496tWrx5dffgmQ/4ov735jx47N781YsmQJWVlZnHPOObzwwgvs2rULgC1bthRZd//+/Xn88cfzP+dNLsnMzMyfEFSwZ3j58uW0a9eOm2++maFDhzJv3jz69evHhAkT2LhxY/69Cmb5KMq3337L9ddfT1paWn7PCoTGK+b9T3LevHnMmzeP/v37H3Bt3bp12bRpE+np6aSnp9OnTx/S0tJITU1lwIABzJ8/n127dpGdnc1nn31GYmJiibGISOWjZ/CRPYPzxmYDfPDBB3Ts2BGAjIyM/N/N8uXLWbp0Ke3ataNFixYsWrSIjIwMAKZOnUqXLl1KvEdRCo+JB1i/fn3+/sSJEyOecUUNa5EKKCEh4YAxennGjBnD/v37SU5OJikpiTFjxgDwm9/8hpdeeokTTjiB77///oAei3C88MILjB49mpSUlAMm1owaNYrExES6d+9O165duf7668nOzmbgwIEMGTKE1NRUUlJS8l+LFvbYY48xa9YskpOTSUxM5KmnngLgzjvv5O677+bEE088oPfmzTffpGvXrqSkpLBgwQKuvvpqEhMTeeCBB+jfvz/Jycmcc845+Q/K4sb33XHHHezcuZOLL76YlJQUhgwZAoSWTD711FNJTEzkuuuu49VXX82fNX/vvfeSlpZW4u+pfv363HrrrfTs2ZOUlBS6d+9+0DhsEan89Aw+smfwE088QVJSEikpKTz66KO89NJLAHz++eckJyeTkpLCsGHDeOqpp2jQoAHNmzfnvvvu47TTTiM5OZm5c+fmj/ueOHEiCQkJfP311wwePDi/937dunUHDNXJyspi6tSpXHjhhQfEcuedd+an8fv000/5+9//fkh/NofKipqdWmaVmw0E/gHEAs+6+58LHa8BvAz0ADYDl7p7upn1Ap7JOw24390nhlNnUVJTU720CU5Hm7KYbX5571ZlEEnFsXjx4gP+hVzWM/Kr2u9LwlP47xWAmc1299QohVThHW3P7JKeNUfTc0PPYKkojuS5HbEeazOLBZ4EzgUSgcvMrPA702uBre7eAfg78HBQvgBIdfcUYCDwtJlVC7NOEREREZFyF8mhIL2AZe6+3N33AeOAoYXOGQq8FOxPAPqZmbn7LnfPezdRE8jrVg+nThERERGRchfJhnULoGCC2DVBWZHnBA3pTKAhgJn1NrOFwHzg18HxcOoUERERESl3FXbyort/4+5JQE/gbjOrWdo1BZnZdWY2y8xm5c0yFanozIwrr7wy/3N2djbx8fGHnB7ojDPOyJ9QMmjQILZt21amcQK0adOGTZs2lXm95WXfvn2MGDEif+WyadOmFXne+PHjSUpKIiYm5qBJOg899BAdOnTg+OOPLzH9lYhUDnoGl5/9+/dzzTXX0K1bN7p06XJAOr///Oc/HH/88XTo0OGAtHu//OUvadu2LSkpKaSkpBy0NHpB27dvJyEhgRtvvDG/bN++fVx33XV06tSJzp0789Zbb5X594pkHuu1QMsCnxOCsqLOWWNm1YC6hCYx5nP3xWa2E+gaZp151z1DMAEyNTU1cjM0RcrQMcccw4IFC9i9eze1atVi6tSp+SmRDtekSZPKKLqyl52dnZ+Vo7z961//AmD+/Pls3LiRc889l5kzZxITc2B/Q9euXXn77be5/vrrDyhftGgR48aNY+HChaxbt46zzz6bJUuWaIlzkUpMz+DyM378ePbu3ZufwjQxMZHLLruMli1bMnr0aKZOnUpCQgI9e/ZkyJAh+alNH3nkEYYNG1Zq/WPGjMlfdCfPgw8+SOPGjVmyZAm5ubnFpik8EpHssZ4JdDSztmYWBwwHCueySgOuCfaHAZ+4uwfXVAMws9ZAZyA9zDpFKrVBgwbxwQcfAAfn5MzKymLkyJH06tWLE088kXfffRcIrYQ1fPhwunTpwi9+8Qt2796df03BXo0LLriAHj16kJSUxDPPPJN/zrHHHss999zDCSecQJ8+ffjpp58Oimvz5s3079+fpKQkRo0adUBKqFdffZVevXqRkpLC9ddfn5+n9D//+Q/du3fnhBNOyF9E5f777+eqq67i5JNP5qqrriInJ4c77riDnj17kpyczNNPPw3Azp076devH927d6dbt2753zUrK4vBgwdzwgkn0LVrV9544w0AZs+ezemnn06PHj0YMGDAAblLi7Jo0SLOOussABo3bky9evWKTBvVpUuXgxaDAHj33XcZPnw4NWrUoG3btnTo0IEZM2aUeE8Rqfj0DC6fZ7CZkZWVRXZ2Nrt37yYuLo46deowY8YMOnToQLt27YiLi2P48OH59w7X7Nmz+emnnw5ap+D555/n7rvvBiAmJiZ/sa8y5e4R24BBwBLgR+CeoOyPwJBgvyYwHlgGzADaBeVXAQuBucAc4IKS6ixt69Gjh8uB/j195RFvVc2iRYuiHYIfc8wx/t133/lFF13ku3fv9hNOOME//fRTHzx4sLu733333f7KK6+4u/vWrVu9Y8eOvnPnTv/b3/7mI0aMcHf37777zmNjY33mzJnu7t66dWvPyMhwd/fNmze7u/uuXbs8KSnJN23a5O7ugKelpbm7+x133OF/+tOfDortpptu8j/84Q/u7v7+++874BkZGb5o0SI/77zzfN++fe7ufsMNN/hLL73kGzdu9ISEBF++fPkB977vvvu8e/fuvmvXLnd3f/rpp/Pvt2fPHu/Ro4cvX77c9+/f75mZme7unpGR4e3bt/fc3FyfMGGCjxo1Kj+ubdu2+b59+/ykk07yjRs3urv7uHHj8n8fY8eO9bFjxx70fZ5++mkfNmyY79+/35cvX+5169b1CRMmFPtnc/rpp+f/Tt3dR48enf9n4e4+cuRIHz9+/EHXFfX3CpjlEXz2VvbtaHtmH03P2ZLoGXx0PYP37dvnl156qTdq1Mhr167tTz/9tLu7jx8/3q+99tr8815++WUfPXq0u7tfc8013qlTJ+/WrZvfcsstvmfPnoPqzcnJ8dNPP91Xr17tL7zwQv61W7du9YSEBP/tb3/rJ554og8bNsw3bNhw0PXuR/bcjmj/v7tPAiYVKru3wP4e4OIirnsFeCXcOkWqkuTkZNLT03n99dcPSH4P8OGHH5KWlpa/GMCePXtYtWoVn3/+ef5iBsnJySQnJxdZ92OPPcbEiRMBWL16NUuXLqVhw4bExcXljyHs0aMHU6dOPejazz//nLfffhuAwYMHU79+fQA+/vhjZs+eTc+ePYFQz03jxo2ZPn06p512Gm3btgWgQYMG+XUNGTKEWrVq5X+nefPmMWHCBCC0ItjSpUtJSEjg//2//8fnn39OTEwMa9eu5aeffqJbt27cdttt/O53v+O8887j1FNPZcGCBSxYsIBzzjkHCK2w2KxZMwB+/etfF/m7GDlyJIsXLyY1NZXWrVvTt29fDeMQET2Dy+kZPGPGDGJjY1m3bh1bt27l1FNP5eyzzy7mTyXkoYceomnTpvljpR9++GHuvffeA8755z//yaBBg0hISDigPDs7mzVr1tC3b18effRRHn30UW6//XZeeaXI5uZhi87AGhEp0ZAhQ7j99tuZNm1a/hLcEHrD9NZbbxU5NKE006ZN46OPPuLrr7+mdu3anHHGGezZsweA6tWrY2YAxMbGHrASV2ncnWuuueaAiScA7733XrHXFFyVzN15/PHH81fTyvPiiy+SkZHB7NmzqV69Om3atGHPnj106tSJOXPmMGnSJH7/+9/Tr18/fvGLX5CUlMTXX38ddtzVqlU7YAWuvn370qlTp7Cvb9GiBatX/5ykaM2aNUc8FlNEKgY9gyP/DH7ttdcYOHAg1atXp3Hjxpx88snMmjWLli1bFvtszWus16hRgxEjRhS54uTXX3/NF198wT//+U927tzJvn37OPbYY3nooYeoXbt2/sqMF198Mc8991zY8YarwmYFETmajRw5kvvuu49u3bodUD5gwAAef/zx/LF13377LQCnnXYar732GgALFixg3rx5B9WZmZlJ/fr1qV27Nt9//z3Tp08/pJgK3mPy5Mls3boVgH79+jFhwgQ2btwIwJYtW1i5ciV9+vTh888/Z8WKFfnlRRkwYABjx45l//79ACxZsoSsrCwyMzNp3Lgx1atX59NPP2XlypVAaBnb2rVrc+WVV3LHHXcwZ84cjj/+eDIyMvIf6vv372fhwoUlfp9du3aRlZUFwNSpU6lWrVr+5JhwDBkyhHHjxrF3715WrFjB0qVL6dWrV9jXi0jFpWdw5J/BrVq14pNPPgFC47anT59O586d6dmzJ0uXLmXFihXs27ePcePGMWTIEID8cdvuzjvvvEPXrl0Pqvff//43q1atIj09nb/+9a9cffXV/PnPf8bMOP/88/MzQH388ceH9MwPl3qsRSqghISE/NeKBY0ZM4ZbbrmF5ORkcnNzadu2Le+//z433HADI0aMoEuXLnTp0oUePXocdO3AgQN56qmn8ifj9enT55Biuu+++7jssstISkqib9++tGoVWh44MTGRBx54gP79+5Obm0v16tV58skn6dOnD8888wwXXnghubm5NG7cuMjXm6NGjSI9PZ3u3bvj7sTHx/POO+9wxRVXcP7559OtWzdSU1Pp3LkzEMricccddxATE0P16tUZO3YscXFxTJgwgZtvvpnMzEyys7O55ZZbSEpK4qmnngIOfh25ceNGBgwYQExMDC1atDjgdeCoUaP49a9/TWpqKhMnTuSmm24iIyODwYMHk5KSwpQpU0hKSuKSSy4hMTGRatWq8eSTT2ooiUgVoWdw5J/Bo0ePZsSIESQlJeHujBgxIn8IzRNPPMGAAQPIyclh5MiRJCUlAXDFFVeQkZGBu5OSkpJf96xZs3jqqad49tlnS/wdPvzww1x11VXccsstxMfH88ILLxzSn0E4LO9fXcWeYPYX4AFgN/AfIBn4rbu/WubRREhqaqoXNdv/aPbaN6uOuI7Le7cqg0gqjsWLF9OlS5dohyFVTFF/r8xstrunRimkCu9oe2aX9Dyuas/ZkugZLBXFkTy3wxkK0t/dtwPnEUp51wG44zDiFBERERGpssJpWOcNFxkMjHf3zAjGIyIiIiJSKYUzxvp9M/ue0FCQG8wsHtgT2bBERERERCqXUnus3f0uoC+Q6u77gSxgaKQDE4mG0uYciBwK/X0SOTT6b0ai7Uj/Doabbq8zcKmZXU1o6fH+pZwvUunUrFmTzZs368EuZcLd2bx5MzVr1oxaDGY20Mx+MLNlZnZXEcdrmNkbwfFvzKxNgWN3B+U/mNmA0uo0s38H5QvM7Hkzqx6Um5k9Fpw/z8y6R/ZbS2WlZ7BEW1k8t0sdCmJmrwDtCS0vnpN3b+Dlw76rSAWUkJDAmjVryMjIiHYoUkXUrFnzoNW/youZxQJPAucAa4CZZpbm7osKnHYtsNXdO5jZcOBhQp0oicBwIAloDnxkZnmr5xRX57+BK4NzXgNGAWOBc4GOwdY7KOsdoa8tlZiewVIRHOlzO5wx1qlAouufkFLFVa9ePX/pV5EqoBewzN2XA5jZOELD+Ao2rIcC9wf7E4AnLLT821BgnLvvBVaY2bKgPoqr090n5VVqZjOAvP8zDQVeDv4fMt3M6plZM3dfX+bfWCo1PYOlKghnKMgCoGmkAxERkTLVAlhd4POaoKzIc9w9G8gEGpZwbal1BkNAriK07kG4cWBm15nZLDObpR5LEamswumxbgQsCnog9uYVuvuQiEUlIiKV1T+Bz939i0O5yN2fAZ6B0AIxkQhMRCTSwmlY3x/pIEREpMytBVoW+JwQlBV1zhozqwbUBTaXcm2xdZrZfUA8cP0hxiEiUiWEk27vM+B74LhgWxyUiYhIxTUT6Ghmbc0sjtBkxLRC56QB1wT7w4BPgrHQacDwIGtIW0ITD2eUVKeZjQIGAJe5e26he1wdZAfpA2RqfLWIVFXhZAW5BHgEmAYY8LiZ3eHuEyIcm4iIHCZ3zzazG4EpQCzwvLsvNLM/ArPcPQ14DnglmJy4hVBDmeC8NwlNdMwGRrt7DkBRdQa3fApYCXwdmv/I2+7+R2ASMAhYBuwCRkT+24uIREc4Q0HuAXq6+0aAYOXFjwjNIBcRkQoqyNQxqVDZvQX29wAXF3Ptg8CD4dQZlBf5/5OgB3z0IQUuIlJJhZMVJCavUR3YHOZ1IiIiIiJHjXB6rP9jZlOA14PPl1JEb4WIiIiIyNGs1Ia1u99hZhcBJwdFz7j7xMiGJSIiIiJSuYTTY427vwW8FeFYREREREQqrWIb1mb2pbufYmY7gILJ+o3QfJQ6EY9ORERERKSSKLZh7e6nBD+PK79wREREREQqp1Kze5jZK+GUiYiIiIgczcJJm5dU8EOw7G2PyIQjIiIiIlI5FduwNrO7g/HVyWa2Pdh2AD8B75ZbhCIiIiIilUCxDWt3fygYX/2Iu9cJtuPcvaG7312OMYqIiIiIVHjhDAWZYWZ18z6YWT0zuyCcys1soJn9YGbLzOyuIo7XMLM3guPfmFmboPwcM5ttZvODn2cVuGZaUOfcYGscTiwiIiIiIpEUTsP6PnfPzPvg7tuA+0q7yMxigSeBc4FE4DIzSyx02rXAVnfvAPwdeDgo3wSc7+7dgGuAwpMlr3D3lGDbiIiIiIhIlIXTsC7qnHAWlukFLHP35e6+DxgHDC10zlDgpWB/AtDPzMzdv3X3dUH5QqCWmdUI454iIiIiIlERTsN6lpk9ambtg+1RYHYY17UAVhf4vCYoK/Icd88GMoGGhc65CJjj7nsLlL0QDAMZY2ZW1M3N7Dozm2VmszIyMsIIV0RERETk8IXTsL4J2Ae8EWx7gdGRDCqPmSURGh5yfYHiK4IhIqcG21VFXevuz7h7qrunxsfHRz5YERERETmqlTqkw92zgIMmHoZhLdCywOeEoKyoc9YE+bHrApsBzCwBmAhc7e4/FohnbfBzh5m9RmjIycuHEZ+IiIiISJkptWFtZvHAnYQWiqmZV+7uZxV7UchMoKOZtSXUgB4OXF7onDRCkxO/BoYBn7i7m1k94APgLnf/qkAs1YB67r7JzKoD5wEflfYdREREREQiLZyhIP8GvgfaAn8A0gk1mksUjJm+EZgCLAbedPeFZvZHMxsSnPYc0NDMlgG38nPP+I1AB+DeQmn1agBTzGweMJdQg/1fYX1TEREREZEICie7R0N3f87M/sfdPwM+M7NSG9YA7j4JmFSo7N4C+3uAi4u47gHggWKq1XLqIiIiIlLhhNOw3h/8XG9mg4F1QIPIhSQiIiIiUvmE07B+IFh58TbgcaAO8NuIRiUiIiIiUsmEkxXk/WA3EzgzsuGIiIiIiFROpU5eNLO/mFkdM6tuZh+bWYaZXVkewYmIiIiIVBbhZAXp7+7bCaW2SyeUreOOSAYlIiIiIlLZhNOwzhsuMhgY7+6ZEYxHRERERKRSCmfy4vtm9j2wG7ghWDBmT2TDEhERERGpXErtsXb3u4C+QKq77weygKGRDkxEREREpDIJp8caoDPQJlhSPM/LEYhHRERERKRSKrVhbWavAO0JLSGeExQ7aliLiIiIiOQLp8c6FUh0d490MCIiIiIilVU4WUEWAE0jHYiIiIiISGUWTo91I2CRmc0A9uYVuvuQiEUlIiIHMbMY4NhgbQEREalgwmlY3x/pIEREpGhm9hrwa0JzXGYCdczsH+7+SHQjExGRwkptWLv7Z+URiIiIFCnR3beb2RXAZOAuYDaghrWISAVT6hhrM+tjZjPNbKeZ7TOzHDPTa0gRkfJR3cyqAxcAacF6AppMLiJSAYUzefEJ4DJgKVALGAU8GcmgREQk39NAOnAM8LmZtQbUuSEiUgGF07DG3ZcBse6e4+4vAAMjG5aIiAC4+2Pu3sLdB3nISuDMaMclIiIHC6dhvcvM4oC5ZvYXM/ttmNeJiMgRMrMmZvacmU0OPicC10Q5LBERKUI4DeSrgvNuBLKAlsBFkQxKRETyvQhMAZoHn5cAt0QtGhERKVaJDWsziwX+1933uPt2d/+Du98aDA0REZHIa+TubwK5AO6eTSj1XqnMbKCZ/WBmy8zsriKO1zCzN4Lj35hZmwLH7g7KfzCzAaXVaWY3BmVuZo0KlJ9hZplmNjfY7j2cX4KISGVQYro9d88xs9ZmFufu+8orKBERyZdlZg0JMoGYWR8gs7SLgo6RJ4FzgDXATDNLc/dFBU67Ftjq7h3MbDjwMHBpMNxkOJBEqKf8IzPrFFxTXJ1fAe8D04oI5wt3P+8Qv7eISKUTzgIxy4GvzCyN0FAQANz90YhFJSIieW4F0oD2ZvYVEA8MC+O6XsAyd18OYGbjgKFAwYb1UH5eBGwC8ISZWVA+zt33AivMbFlQH8XV6e7fBmWH+z1FRCq9cBrWPwZbDHBcUKYcqiIi5cDd55jZ6cDxgAE/BLmsS9MCWF3g8xqgd3HnuHu2mWUCDYPy6YWubRHsl1ZnUU4ys++AdcDt7r4wjGtERCqdcBrWi9x9fMECM7s4QvGIiAhgZhcWc6iTmeHub5drQIdvDtDa3Xea2SDgHaBj4ZPM7DrgOoBWrVqVb4QiImUknIb13cD4MMpERKTsnF/CMQdKa1ivJZTFKU9CUFbUOWvMrBpQF9hcyrWl1XlgoO7bC+xPMrN/mlkjd99U6LxngGcAUlNT9VZURCqlYhvWZnYuMAhoYWaPFThUB8gOp3IzGwj8A4gFnnX3Pxc6XgN4GehB6GF+qbunm9k5wJ+BOGAfcIe7fxJc04NQ+qlawCTgf9xdD2ERqVLcfcQRVjET6GhmbQk1focDlxc6J41QTuyvCY3b/sTdPZhT85qZPUpo8mJHYAahoSil1XkAM2sK/BTU24vQsMLNR/jdREQqpJJ6rNcBs4AhwOwC5TuA35ZW8ZHMSAc2Aee7+zoz60ooh2ve+L6xwK+Abwg1rAcCk0uLR0SksjKzwYQydNTMKxgqyskAACAASURBVHP3P5Z0TTBm+kZCz89Y4Hl3X2hmfwRmuXsa8BzwSjA5cQuhhjLBeW8SmuiYDYx295wgloPqDMpvBu4EmgLzzGySu48i1GC/wcyygd3AcHWGiEhVVWzD2t2/A74zs9fCnChT2GHPSM+bXR5YCNQKercbAHXcfXpQ58vABahhLSJVlJk9BdQmtIz5s4QaqjPCudbdJxHqgChYdm+B/T1AkXNm3P1B4MFw6gzKHwMeK6L8CeCJcOIVEansSl158TAb1VD0jPQWxZ0TLHqQNyO9oIuAOUHapxZBPSXVCYQmwpjZLDOblZGRcZhfQUQk6vq6+9WE3u79ATgJ6FTKNSIiEgXhLGkeNWaWRGh4yPWHeq27P+Puqe6eGh8fX/bBiYiUj93Bz11m1hzYDzSLYjwiIlKMYhvWZvZK8PN/DrPuQ5mRTqEZ6ZhZAjARuNrdfyxwfkIpdYqIVCXvm1k94BFCqevSgdejGpGIiBSppB7rHkHvyEgzq29mDQpuYdSdPyPdzOIITYpJK3RO3ox0OHBGej3gA+Aud/8q72R3Xw9sN7M+wepgVwPvhvVNRUQqIXf/k7tvc/e3gNZAZ3cfE+24RETkYCU1rJ8CPgY6E8oKUnCbVVrFwZjpvNnji4E382akm9mQ4LTngIbBjPRbgbuC8huBDsC9ZjY32BoHx35DaALPMkIrQmrioohUWWZ2sZnlrXp7B/CCmZ0YzZhERKRoJWUFeQx4zMzGuvsNh1P54c5Id/cHgAeKqXMW0PVw4hERqYTGuPt4MzsFOJvQkJCnCG8pcRERKUfhZAW5wcxOMLMbgy25PAITEREAcoKfg4Fn3P0DQotniYhIBVNqwzpI+v9voHGw/dvMbop0YCIiAsBaM3ua0OJZk4Kc/hU6o5OIyNGqpJUX84wCert7FoCZPUxo+dvHIxmYiIgAcAmhFWb/6u7bzKwZobHWIiJSwYTTsDZ+fhVJsG+RCUdERApy913A2wU+rwfWRy8iEREpTjgN6xeAb8xsYvD5AkLZPEREREREJFBqw9rdHzWzacApQdEId/82olGJiIiIiFQy4fRY4+5zCK34JSIiIiIiRQirYS0iIuXLzHYAXtxxd69TjuGIiEgY1LAWEamA3P04ADP7E6HJiq8Qmjh+BdAsiqGJiEgxSsyFamaxZvZpeQUjIiIHGeLu/3T3He6+3d3HAkOjHZSIiBysxIa1u+cAuWZWt5ziERGRA2WZ2RVBR0eMmV0BZEU7KBEROVg4Q0F2AvPNbCoFHubufnPEohIRkTyXA/8INge+CspERKSCCadh/TYFFicQEZHy4+7paOiHiEilEE4e65fMrBbQyt1/KIeYREQkYGadgLFAE3fvambJhMZdPxDl0EREpJASx1gDmNn5wFzgP8HnFDNLi3RgIiICwL+Au4H9AO4+Dxge1YhERKRIpTasgfuBXsA2AHefC7SLYEwiIvKz2u4+o1BZdlQiERGREoXTsN7v7pmFynIjEYyIiBxkk5m1J1gsxsyGEcprLSIiFUw4kxcXmtnlQKyZdQRuBv4b2bBERCQwGngG6Gxma4EVwJXRDUnKy2vfrCrx+OW9W5VTJCISjnB6rG8CkoC9wOvAduCWSAYlIiIh7r7c3c8G4oHO7n5KkClEREQqmFIb1u6+y93vAfoBZ7r7Pe6+J/KhiYiImf2PmdUBdgF/N7M5ZtY/2nGJiMjBwskK0tPM5gPzCC0U852Z9Yh8aCIiAox09+1Af6AhcBXw5+iGJCIiRQlnjPVzwG/c/QsAMzsFeAFIjmRgIiICgAU/BwEvu/tCM7OSLhARkegIZ4x1Tl6jGsDdv0SpnkREystsM/uQUMN6ipkdhzIziYhUSMX2WJtZ92D3MzN7mtDERQcuBaZFPjQREQGuBVKA5e6+y8waAiOiHJOIiBShpKEgfyv0+b4C+x6BWEREJGBmnd39e0KNaoB2GgEiIlKxFduwdvczyzMQERE5wG3Arzi4kwNCnRtnlW84IiJSmlInL5pZPeBqoE3B89395jCuHQj8A4gFnnX3Pxc6XgN4GegBbAYudff04FXnBKAn8KK731jgmmlAM2B3UNTf3TeWFouISGXi7r8KfqqTQ0SkkggnK8gkYDown0OYMGNmscCTwDnAGmCmmaW5+6ICp10LbHX3DmY2HHiY0BjuPcAYoGuwFXaFu88KNxYRkcrGzC4s6bi7v11esYiISHjCaVjXdPdbD6PuXsAyd18OYGbjgKFAwYb1UOD+YH8C8ISZmbtnAV+aWYfDuK+ISFVwfgnHHFDDWkSkggmnYf2Kmf0KeJ/QsuYAuPuWUq5rAawu8HkN0Lu4c9w928wyCS2AsKmUul8wsxzgLeABd9dkShGpUtxdmT9ERCqZcBrW+4BHgHv4ORuIA+0iFVQprnD3tUEu17cIrUL2cuGTzOw64DqAVq1alW+EIiJlyMwGA0lAzbwyd/9j9CISEZGihLNAzG1AB3dv4+5tgy2cRvVaoGWBzwlBWZHnmFk1oC6hSYzFcve1wc8dwGuEhpwUdd4z7p7q7qnx8fFhhCsiUvGY2VOE5p7cRGgVxouB1lENSkREihROj/UyYNdh1D0T6GhmbQk1oIcDlxc6Jw24BvgaGAZ8UtKwjqDxXc/dN5lZdeA84KPDiE1EpLLo6+7JZjbP3f9gZn8DJkc7KKkYXvtmVbHHLu+tt7Ui5S2chnUWMNfMPuXAMdYlptsLxkzfCEwhlG7veXdfaGZ/BGa5exrwHKEx3MuALYQa3wCYWTpQB4gzswuA/sBKQkv6Vg/q/Aj4V7hfVkSkEspLLbrLzJoTeqvXLIrxiIhIMcJpWL8TbIfM3ScRStdXsOzeAvt7CL3WLOraNsVU2+NwYhERqaTeD9YTeASYQ2iOy7PhXHi4awkEx+4mlBI1B7jZ3aeUVGfQkXIL0B6Id/dNQbkF5w8i9Pbzl+4+57B+EyIiFVypDWt3f6k8AhERkYO5+5+C3bfM7H1CKVAzS7vuSNYSMLNEQm8Qk4DmwEdm1im4prg6vyKUPWpaoVDOBToGW29gLAdniBIRqRLCWXlxBT9nA8kX5gRGERE5AkEDeTAFVr81M9z90VIuPey1BILyce6+F1gRDNfLmyheZJ3u/m1ebIUMBV4O5s9MN7N6ZtbM3deH/1sQEakcwhkKklpgvyahoRsNIhOOiIgU8h6h1WgPafVbjmwtgRaEVtwteG2LYL+0OsOJowWghrWIVDnhDAUpnP7u/8xsNnBvUeeLiEiZSnD35GgHEWlae0BEqoJwhoJ0L/AxhlAPdjg93SIicuQmm1l/d//wEK87lLUE1hRaS6Cka0ur83DiwN2fAZ4BSE1N1Wq6IlIphdNA/luB/WwgHbgkItGIiEhh04GJZhYD7Ce0SIy7e51SrjvstQTMLA14zcweJTR5sSMwI7h3aXUWlgbcGIzH7g1kany1iFRV4QwFObM8AhERkSI9CpwEzC9pAa3CjmQtgeC8NwlNdMwGRrt7DuSn1TugzqD8ZuBOoCkwz8wmufsoQilXB/HzYmMjjuzXISJScYUzFKQGcBEFZqQDuPsfIxeWiIgEVgMLDqVRnecI1xJ4EHgwnDqD8seAx4ood2D0ocYuIlIZhTMU5F0gE5hNgZUXRUSkXCwHppnZZA5c/ba0dHsiIlLOwmlYJ7j7wIhHIiIiRVkRbHHBJiIiFVQ4Dev/mlk3d58f8WhERCRfsDjMce5+e7RjERGR0oXTsD4F+GWwAuNefp6RXuXzqh6ttu3ax9zV2wBoeGwN4o+rQdM6NaMclcjRx91zzOzkaMchIiLhCadhfW7Eo5AKYe3W3Xzy/U98v2HHQWvYd2tRlyEnNOeYGkphLlLO5gbp78YDWXmF7v529EISEZGihJNub2V5BCLRtWzjTl6Znk5cbAynd4qnZ9sGHBNXjc1Ze1m0fjvTvs9g+aYsLjyxBV2alZY+V0TKUE1Ci7acVaDMATWsjyK79mYTE2PUrB4b7VBEpATqfhQWr9/O6zNW0ejYGow4uQ3H1ayef6xZ3Vo0q1uLxGZ1mDB7Da9OX8lVfVrTWY1rkXLh7sr7fJTKyXW+37Cd2Su3suSnHZgZic3q0L1VfTo1ORYzi3aIIlJITLQDkOhatnEn//5mJU3r1mTUqW0PaFQX1KxuLa4/rT3N69Vi3MzVrN22u5wjFTk6mVmCmU00s43B9paZJUQ7LomsXHfemLmKf3+zirXbdnNKh3h6tW3Ajxk7eenrdN6Zu5bDSG0uIhGmhvVRbPe+HCbMXk3DY2sw8uS21I4r+QVGXLUYrjqpNbXjYnn563Q1rkXKxwuElgVvHmzvBWVShU2ev54F67bTP7EJdw7ozMCuTTk/uTl3DezMqR0bMTN9K1MW/hTtMEWkkGIb1ma2w8y2F7eVZ5ASGe/NW8fOvdlc0qNl2OP26tSszjV927AvO5ebX/+W3Fz1mIhEWLy7v+Du2cH2IhAf7aAkcr5ctomvftzMye0bcsbxjYmN+XnIR7XYGAYmNaV32wZ8vjSDz5ZkRDFSESms2Ia1ux/n7nWAfwB3AS2ABOB3wP+VT3gSKfPXZjJ39TbO6tyYFvVrHdK1TerU5PwTmjN75Vb+/Y3mtopE2GYzu9LMYoPtSkKTGaUKWrk5i0nz19O1eR3O7dasyHPMjPNPaE5yQl2mLNzAik1ZRZ4nIuUvnKEgQ9z9n+6+w923u/tYYGikA5PIydy1n3fnriWhfi1O79T4sOo4sWU9Tu3YiIf/8wPrMzUkRCSCRgKXABuA9cAwQBMaqyB3Z9L89RxXsxrDerQkpoTJiTFmXHhiAvVqVee979aRo7eHIhVCOA3rLDO7IugpiTGzKyiQS1Uqn7Gf/cjufTn84sQWB7xiPBRmxv/+ohs5uc6YdxZoEo1IhLj7Sncf4u7x7t7Y3S9w91XRjkvK3oJ121m9dTfndGlCXLXS//ccVy2G85KbsWH7HqYv10sMkYognHR7lxMaDvIPQrlTvwrKpBLauH0PL/53BSe0rEezuoc2BKSwlg1qc1v/TjzwwWI+XPQTA5KallGUImJm95Zw2N39T+UWjERcdm4uHy7cQOPjatC9df2wr+vSrA6dmhzLR4t/oltCXeoUk9lJRMpHqf8kdvd0dx/q7o2CHpML3D29HGKTCHjsk6Vk5zj9Oh/eEJDCftm3De3jj+GRKT+QnZNbJnWKCBB6M1h4A7iW0FwXqUJmrNjC5qx9nNu1aYlDQAozM85Pbk52rjNlwYYIRigi4Si1YW1mnczsYzNbEHxONrPfRz40KWsrN2cxbsZqLuvViobH1iiTOqvFxnDHgONZtnEnb3+7tkzqFBFw97/lbcAzQC1CY6vHAe2iGpyUqeycXD79IYN28cfQqclxh3x9w2Nr0LddQ+au3sbmnXsjEKGIhCucMdb/Au4G9gO4+zxgeCSDksj4v4+WUi3WuOmsDmVa74CkppzQsh7/N3UJe/bnlGndIkczM2tgZg8A8wgN3evu7r9z941RDk3K0Py1mWTtzeb0TvGHvZriKR0bERtjfL5U6fdEoimchnVtd59RqCw7EsFI5Kzdtpu079ZxRe/WNK5Ts0zrNjN+N/B41mXu4dXpSr8nUhbM7BFgJrAD6Obu97v71iiHJREwfflmGh0bR/v4Yw+7juNqVqdH6/rMWbmNzN37yzA6ETkU4TSsN5lZe0ITFzGzYYRSPpXKzAaa2Q9mtszM7irieA0zeyM4/o2ZtQnKG5rZp2a208yeKHRNDzObH1zzmB3uP++PMi/9Nx2AESe3iUj9fds34tSOjXjy02Xs3Kt/d4mUgdsIrbT4e2BdgQW6dmiRrqpjwdpMVm/dTe+2DQ9pbHVRTusYj+N8qV5rkagJp2E9Gnga6Gxma4FbgBtKu8jMYoEngXOBROAyM0ssdNq1wFZ37wD8HXg4KN8DjAFuL6LqscCvgI7BNjCM73BU27k3m9e/WcW5XZuSUL92xO5z6zmd2LprP69/o0xgIkfK3WPcvVbeYl0FtrzFu6QKePnrdKrHGt1bhZ8JpDj1j4njhIR6zEjfwi51cIhERThZQZa7+9mEltDt7O6nhJkVpBewLLh+H6EJN4UXlhkKvBTsTwD6mZm5e5a7f0mogZ3PzJoBddx9uocSJ78MXBBGLEe1N2euZsfebEadGtn5Tie2qs/JHRryry+Wa6y1iEgptu3ax7tz15HSsj614mLLpM7TOsWzP8f5eoXyWotEQzhZQf7HzOoAu4C/m9kcM+sfRt0tgNUFPq8Jyoo8x92zgUygYSl1rimlTikgJ9d5/qsV9GxTn5SW9SJ+v9+c0YGNO/by1pw1pZ8sInIUGz9rDXuzc+nTrkGZ1dmkTk06NTmWGSu2sF8pUEXKXThDQUa6+3agP6FG71XAnyMaVRkws+vMbJaZzcrIOHrHm324cANrtu7m2lPKJztX3/YNOaFlPZ767EfltRYRKcFbc9aQUgaLdRXWp11DduzJZspC5bUWKW/hNKzzZlMMAl5294UFykqyFmhZ4HNCUFbkOWZWDagLlPT+am1QT0l1AuDuz7h7qrunxsfHhxFu1fTqNytpUa8W5yQ2KZf7mRmjz2jP6i27eX9eWHNcRUSOOovXb+f7DTu4sHvZv3Tt1OQ4GhwTx8v/VZYmkfIWTsN6tpl9SKhhPcXMjgPC6YqcCXQ0s7ZmFkco93VaoXPSgGuC/WHAJ8HY6SK5+3pgu5n1CbKBXA28G0YsR6X0TVl8tWwzl/VqSWxM+SVPObtLEzo1OZanPvuREv44RUSOWu/MXUtsjDG4W7MyrzvGjN5tGzAjfQuL1yuBjEh5CqdhfS1wF9DT3XcBcYRW/ypRMGb6RmAKsBh4090XmtkfzWxIcNpzQEMzWwbcGtwHADNLBx4FfmlmawpkFPkN8CywDPgRmBzGdzgqvT5jFdVijEtSW5Z+chmKiTF+dWo7vt+wgy+WbirXe4uIVHS5uc57c9dxWsdGZbYKbmE9WtenRrUYXv5avdYi5alacQfMrLO7fw+kBEXtDjVltLtPAiYVKru3wP4e4OJirm1TTPksoOshBXIU2pudw/jZazi7S5MyXxAmHENSmvPIlB/41xfLOa3T0TsUR0SksBnpW1iXuYffnds5YveoHVeNC1Ja8M63a7nr3M7UrVU9YvcSkZ+V1GN9W/Dzb0Vsf41wXHKEpiz8iS1Z+7i8d6uo3L9GtVh+eXIbvli6Sa8iRUQKeOfbtdSOi4343JerTmrN7v05TFSWJpFyU2zD2t1/Ffw8s4jtrPILUQ7Ha9+spGWDWpzSoVHUYriiV2tqx8Xyry+WRy0GEZGKZG92DpPmr2dAUlNqxxX70rhMdG1Rl+SEurw2Y5Xmu4iUk2Ib1mZ2YUlbeQYph2Z5xk6mL9/C8J6tiCnHSYuF1a1dnUtSW/Led+vYkLmn9AtERKq4aT9ksH1PNkNTmpfL/S7v1YolP+1k9sqt5XI/kaNdSUNBzi9hOy/yocnhGj97DbExxsU9Eko/OcKuPaUtObnOi/9Nj3YoIiJRN3n+eurVrs7J5fQ28fwTmnNsjWq89s2qcrmfyNGu2PdQ7l5q5g+peLJzcnl7zhrO6BQflUmLhbVsUJuBXZvy2jcruemsDhxTI7KvPkVEKqq92Tl8tHgjg7o1pXpsOEm5jtwxNapxwYnNeXPWGu49P5F6tePK5b4iR6uw/ss2s8FmdqeZ3Zu3RTowOTxfLN3ET9v3cnFq9Hur84w6tR3b92Qzftbq0k8WEamivly6iZ17szk3ArmrS3J5r9bsy87lrTlFrqcmImWo1O5DM3sKqA2cSSh/9DBgRoTjksM0fvZqGhwTx1mdy2elxXB0b1Wf7q3q8fxX6Vx1UptyXaxGRKSimDR/A3VqVuPk9uU7qTyxeR1SWtbjtW9WMvLkNhxq6tyilDa0JFoZqUSiLZwe677ufjWw1d3/AJwEdIpsWHI4tmTtY+qin7ggpQVx1crnNWO4fnVqO1Zt2cWHCzdEOxQRkXK3LzuXqYs2cE5i06g8n6/o3YofM7L4ZsWWcr+3yNEknP+6dwc/d5lZc2A/UL7vsSQs785dy/4cr1DDQPL0T2pKywa1ePbLFdEORUSk3P33x01s35PNoG5No3L/85KbU6dmNV6drpUYRSIpnIb1+2ZWD3gEmAOkA69HMig5PONnraFrizp0aVYn2qEcJDbGGHlyW2av3MrsleoxEZGjy+T5Gzi2RjVO6RidtQVqxcUyrEdLpizcQMaOvVGJQeRoUGrD2t3/5O7b3P0toDXQ2d3HRD40ORQL12WyaP12LkltGe1QinVJakvq1qrO059pwRgROXrsz8llyqINnN2lMTWqxUYtjiv6tGJ/jvOmJpKLREypDWszizWzIWZ2MzAauNbMbo18aHIo3pq9lrjYGM5PLp9FBw7HMTWqcfVJrZm6+CeWbdwZ7XBERMrFjBVb2LZrPwO7RncUZfv4YzmpXUNen7GKnFytxCgSCeEMBXkP+CXQEDiuwCYVxL7sXN6Zu5azExtT/5iKnaP0mr5tqB4bw7Na5lxEjhKTF6ynVvVYTu8UH+1QuLJPa9Zs3c3nSzKiHYpIlRROwzrB3S909/vc/Q95W8Qjk7BN+2EjW7L2MawCrLRYmkbH1uDiHgm8PWctG3domXORSDKzgWb2g5ktM7O7ijhew8zeCI5/Y2ZtChy7Oyj/wcwGlFanmbUN6lgW1BkXlP/SzDLMbG6wjYrst65YcnOdKQt/4szO8dSKi94wkDznJDYh/rgavPR1erRDEamSwmlYTzaz/hGPRA7bhNlraHRsDU7rGP3ekHD86tR27M/N5YWv0qMdikiVZWaxwJPAuUAicJmZJRY67VpCqVQ7AH8HHg6uTQSGA0nAQOCfwbDAkup8GPh7UNfWoO48b7h7SrA9G4GvW2HNWbWVjB17GZAUnWwghcVVi+HK3q2Z9kMGP2ZoSJ5IWQunYT0dmGhmu81su5ntMLPtkQ5MwrN5514++X4jF3ZvQbVyWiL3SLVpdAzndm3Kq1+vJHP3/miHI1JV9QKWuftyd98HjAOGFjpnKPBSsD8B6Geh1UOGAuPcfa+7rwCWBfUVWWdwzVlBHQR1XhDB71ZpTF6wgbjYGM7q3DjaoeS7vHcr4mJjeOm/6dEORaTKCacl9iihRWFqu3sddz/O3StePrej1Dtz15Gd61zUveIPAylo9Jkd2LE3mxfVay0SKS2Agukf1gRlRZ7j7tlAJqH5NMVdW1x5Q2BbUEdR97rIzOaZ2QQzKzJ1kZldZ2azzGxWRkbVGP/r7vxnwQZO6diI42pWj3Y4+eKPq8GQlOaMn7WGzF3q3BApS+E0rFcDC9xdU4grGHdn/KzVJCfU5fimlWs+aVLzupzdpQnPfbmcHXv0YBepwt4D2rh7MjCVn3vID+Duz7h7qrunxsdXjmFtpVmwdjtrt+1mYNeKMQykoBEnt2H3/hzemFXy0uQicmjCaVgvB6YFE1luzdsiHZiUbv7aTL7fsKNC564uyc39OrB9TzYvf62VwEQiYC1Q8OGQEJQVeY6ZVQPqAptLuLa48s1AvaCOA+7l7pvdPW9FkmeBHkf0rSqRyQvWExtjnNOlSbRDOUhS87r0btuAl/67kuyc3GiHI1JlhNOwXgF8DMShdHsVypuzVlOjWgxDUipu7uqSJCfU44zj43n2i+Vk7c0u/QIRORQzgY5Bto44QpMR0wqdkwZcE+wPAz4J3k6mAcODrCFtgY7AjOLqDK75NKiDoM53AcysYPLmIcDiMv6eFZK7M3nBBvq0a1Bh06COPKUta7ftZvKCDdEORaTKqFbSwWAG+HHufns5xSNh2rM/h3fnrmNQt2bUqUBj9w7VTWd15KKx/+WV6Sv59entox2OSJXh7tlmdiMwBYgFnnf3hWb2R2CWu6cBzwGvmNkyYAuhhjLBeW8Ci4BsYLS75wAUVWdwy98B48zsAeDboG6Am81sSFDPFkLrIlR5i9fvYMWmLEad2jbaoRTr7C5NaB9/DE9+uozzkpsRmoMqIkeixIa1u+eY2cnlFYyE7z8LNrBjTzYXp1auSYuF9Whdn9M7xTN22o9c1rMVdWtX3n8kiFQ07j4JmFSo7N4C+3uAi4u59kHgwXDqDMqXE8oaUrj8buDuQ429sps0fz0xRoVJs1eU2BjjN2d04Lbx3/Hx4o2cnVjxhqyIVDbhDAWZa2ZpZnaVmV2Yt0U8MinRm7NW06pBbfq0bRjtUI7Y7wZ2Zvue/Yz97MdohyIicsTcnUnz19OnXUMaHVsj2uGUaEhKc1o2qMXjny5DOQpEjlw4DeuahCamnAWcH2znRTIoKdnqLbv474+bubhHAjExlf/VXWLzOlyQ0oIXvlrB+szd0Q5HROSIfL9hB8s3ZTGoW7PST46y6rEx3HB6B75bvY0vl22KdjgilV6pDWt3H1HENrI8gpOivT5jFTEGwyr5MJCCbj2nE+7wf1OXRjsUEZEjkjcMpCKm2SvKRT1a0LROTR7/RL3WIkeq1Ia1mSWY2UQz2xhsb5lZ1WnRVTL7snN5c9Zq+nVpQrO6taIdTplp2aA2V/ZpzfjZq/lhw45ohyMicljcnQ/mr6d324o/DCRPjWqx3HBGe2as2MK0JVVjcR6RaAlnKMgLhFIvNQ+294KyUpnZQDP7wcyWmdldRRyvYWZvBMe/MbM2BY7dHZT/YGYDCpSnm9l8M5trZrPCiaMq+XDRBjbt3McVvVtFO5Qyd9NZHahTqzpj3lmgXhMRqZR++GkHyzOyGJRc8YeBFHRZr1a0aVib//1gsfJaixyBcBrW8e7+grtnB9uLQKnLYgWp+p4EzgUSgcvMLLHQadcCW93/f3vnHR5XcTXu92glrdqq2bLcu42xKcaFjkMoJhBCSSD0Gloaye+DJPDBR0iAEMgXEhISSiAQqgMO8BFCMQSMQ7GNDTa4NyEo2AAAIABJREFU925JbmpWl+b3x8zaV+vd1UpeaVfyeZ/nPnv33pm5Z2bOPffcuVPMSOB3wH0u7ljstE/jgK8Bf3bpBfmqMWa8MWZSDPL3KJ6bvYGBBZlMGdUzVibzUpCdzi1fG8PcdTt5+bPQdSwURVGSn38u3GK7gSTxbCDhSE9N4ZbTx7CyrJoX521KtDiK0m2JxbHeISKXiojPbZdiBzO2xZHAKmPMGmNMAzANODskzNnsXd52OnCy2Ik0zwamGWPqjTFrgVWEmcbpQGNVWTWfrNnBRUcO7hGDFsPx7UmDOGJwPve+uZSKGl3qXFGU7kNLi+HVz7dwwqgiigLdoxuIl9PG9WXy0AIeeGcF1bpol6J0iFgc66uBbwMlwFbsylpXxRBvALDR83+TOxY2jDGmCagAerUR1wAzRGS+iFwXgxw9hhfmbiA1RbrtEuaxkJIi3HX2Iezc3cBvZixLtDiKoigxM2/9LjaX13LuEaGPuu6BiPDfZxzM9up6Hp65KtHiKEq3JJZZQdYbY84yxhQZY/oYY84xxmzoCuEicLwxZgK2i8n3RWRKuEAicp2IzBORedu2df/BGDUNTUyfv4nTxvXtli0h7eGQAXlccexQnp29gY90+idFUboJr3y+max0H1PHdd+FVo4YXMA3jxjAY7PWsKykMtHiKEq3I+LKiyJyR6RzgDHG3NVG2psBb9PqQHcsXJhNIpIK5GG7mUSMa4wJ/paJyCvYLiKzwgj4GPAYwKRJk7r9SLh/fLaZitpGrjxuaKJF2cPzc/b//eriCIMwf3raGD5YsY2bXlzIWz8+gfys9P2+lqIoSmdR39TMv77Ywmnj+pKVHnVR46Tn9jPH8sGKbfxs+hf847vHkuqL5eO2oigQvcV6d5gN7IDDn8WQ9qfAKBEZJiLp2MGIr4WEeQ24wu2fB7xn7HQQrwEXullDhgGjgLkiki0iAQARyQamAotikKVb09JiePLDtRw2MI9JQwoSLU6XkJnu48ELjmB7dT3//cqXOkuIoihJzfvLtlFZ18Q53bQbiJfC7HTuPGscCzdV8NeP1iZaHEXpVkR0rI0xvw1u2JbfTGzf6mnA8LYSdn2mfwC8DSwFXjTGLBaRX4rIWS7YE0AvEVkF/Bdwi4u7GHgRWAK8BXzfGNMMFAMfishCYC7wL2PMWx3Id7di5ooy1mzfzXeOH4Yd23lgcOjAPP5r6mje+LKEl3SUuqIoScyrn2+md46f40b0SrQoceHMw/px6thifjtjBWu2VSdaHEXpNkT9XiUihViH9xLs7B0TjDG7Yk3cGPMG8EbIsTs8+3XA+RHi3gPcE3JsDXB4rNfvKTzx4Vr65mZ0i+Vx4831U0bw4crt3P7qIkb0yWbikMJEi6QoitKK8poG3ltWxqVHD+kx3SZEhLvPOYTTfj+L7z33Ga987zgy031tR1SUA5yIFkBEfoPtzlEFHGqMubM9TrUSH5ZureSjVTu4/NghpPUQg90efCnCny6eQP/8DK57ej4bd9YkWiRFUZRWTJ+/iYbmFs6b2LMWJS7OzeD3F4xneWkVt72qXfIUJRaieWo3YVdavB3YIiKVbqsSER0q3EU8/p+1ZKb5uPjInrfSYqwUZKfz+BWTaWhu4Zq/zaOyTue3VhQlOTDG8PzcDUwYnM/Y/rmJFifunHhQH3508ihe/mwzz89N5IRgitI9iNbHOsUYk2mMCRhjcj1bwBjT86xHErJhRw2vLtjMhUcOOuBnxRjZJ4eHL5nI6m3VXPb4HF08RlGUpGD2mp2s2babi48akmhROo0bTxrFV0YXcedri3UKVEVpgwOvb0E34s8zV+FLEW74yohEi5IUHD+qNw9fOpElWyu5+PHZ7NrdkGiRFEU5wHluznpyM1I587CeOwYmJUX4w4VHMLx3Dtc9PY8vNpUnWiRFSVrUsU5SNu6sYfr8TVw0eRDFuRmJFidpOHVsMY9dPomVZdVc8NgnrN+xu+1IiqIoncD26nreXlzCtyYOJCOtZw/sy8tK4+nvHElBdjpXPvkpZVV1iRZJUZKS7j2LfQ/m4Q9WkyLCDSdqa3UoXz2oD09eOZnvPjufb/zxQ35/4XhOGrP/K5115oI3iqL0PF6at4nGZsMlB8h9X5ybwbPfOYrzHvmYJz5cy1XHDaOvNvwoSiu0xToJ2VJey0vzNnL+pIH0y8tMtDhJyXEje/P6D09gYEEWVz81j3vfWEpNQ1OixVIU5QChsbmFZ2ev56hhhYzsE0i0OF3G0N7ZPH/t0Qjwl1lrdKYmRQlBHesk5H/fXo4gfFdbq6MyuFcWL3/vWC46chCPzlrDqQ/MYsbiEp0SSlGUTue1BVvYXF7LdVPaXC+txzG6OMB1U0aQme7jiQ/XsrykKtEiKUrSoI51krFwYzkvf76Zq48fxsCCrESLk/RkpPm495uH8dINx5DjT+W6Z+bzrYc/5u3FJbS0qIOtKEr8aWkxPPzBasb0DXDSmD6JFichFGanc/2U4fTKSefpT9Yxa8U2bdRQFNSxTiqMMdz1+hJ656Tz/a9qa3V7mDy0kNdvPJ67zjmEbdX1XP/MfE5+4AP+8O+VrNuuAxwVRYkfM5aUsqqsmu+eOAIRSbQ4CSOQkcb1U0YwbkAeby0u4aX5m2hoakm0WIqSUHTwYhLxxpclzFu/i3u/eSiBjLREi9PtSPOlcNnRQ7ho8iDeWFTCs5+s54F3VvDAOysY0zfAMSN6ceyI3owflE9RwJ9ocRVF6YYYY3h45ioGF2bx9UN77hR7sZKemsJFkwfxfm4G/15ayubyWi46gBc0UxR1rJOE2oZm7n1zKWP6Bvj2pEGJFqdbk+pL4azD+3PW4f3ZUl7Lv77YyswVZTw/ZwNPfrQOgD4BPwf3y2V4UTbDemczuDCLsso68rLS8Kf27GmzFEXpOB+v3sHCTRXcc+4hpPr0oy+AiHDSmD4MLszixXkb+fP7q+gT8HPJUYMP6BZ95cBEHesk4f63l7FpVy3TrjsaX4oaonjRPz+Ta6cM59opw6lvambBhnK+3FzBkq2VLN1axdy1O6ltbG4VJzPNR25mKnmZaZ4tnYLsNAqz0snNTCNFHxaKcsDR0mK4982l9MvL4FsTBiZanKRjZJ8cfnjSSKbP38Ttry7inSWl3Petw+ibp1PyKQcO6lgnAXPX7uSpj9dxxTFDOHp4r0SL0y1pzxzUWempTBpSyKQhhRhjqKprYufuBsprGymvaaCitpHKuiYqahvYvKuW3Q2tHe/UFKFXTjq9c/wU52bQNzeDfnkZFGb3vGXndW5vRdnL9PmbWLS5kgcvHN/jF4TpKIGMNK44digtxnDvG8uY+rsPuOMb4/jWhAHaeq0cEKhjnWBqGpr4yfSFDCrI4menj0m0OAccIkJuZhq5mZH7tDc2t1BR28iu3Q3srGlgZ3UD26vrKa2sY8mWSoLj4DPTfMxYUsqEwQUcNbyQ8YPy9eGrKD2EqrpG7n97GROHFHDW4f0TLU5SkyLCpUcP4YRRRfzkpYXc/NJCXvl8E78691CG9MpOtHiK0qmoY51gfvXGUtbvqGHadUeTla7VkYyk+VLoneOnd86+Ax4bmlooq6pjS3kdm3bVUFJRx+//vQLzLqT7Upg4pIATRvdmyqgixvXP1RYbRemmPPT+KrZXN/DEFZO7zX0cjy9O+8Ow3tm8eP0xPDd3A/e/uYypv5vF9786kuumDI/a6BBN7s78AtZWeR1oX9+0PDqGenIJ5KV5G3l29gauPWGYdgHppqSnpjCwIIuBBVkcOayQi48aTEVNI5+u28nsNTv4cNV27n9rOfe/tZziXD8njenDSWOKOWFUb23NVpRuwsrSKp78cB3fmjCQwwflJ1qcbkVKinDZ0UM49eBi7np9CQ+8s4Lp8zdxx5ljOfngPt3mJUVRYkUd6wSxYGM5t726iGNH9OJnX9MuID2JvKw0ThlbzCljiwEoq6pj1ortvL+sjNcXbuWFuRvJTPPxldFFnHZIMSeNKSYvSlcURVESR11jMz984XMCGan87PSDEi1Ot6VvXgZ/umQCF63czs9fW8Q1T8/jmOG9uO3rB3PIgLxEi6cocUMd6wRQVlnH9c/Mo0/Az0MXT9Apm3o4fQIZnDdxIOdNHEhDUwtz1u5gxuJSZiwp4a3FJaT5hGNH9OZrh/Rl6thieoXpcqIoSmK4942lLCup4smrJtMnoLNb7C/Hj+rNWz+ewvNzNvDgv1dy5h8/5KzD+3PjyaMY2Scn0eIpyn6jjnUXU1ZVx8WPz6GqronpNxzbI2eSUCKTnprCCaOKOGFUEb84axwLNpXz1qIS3ly0lVtf/pLbXvmSyUMLmTrOOtmDCnVZe0VJFO8uKeVvn6zn6uOG8dWDDsylyzuDNF8KVxw7lHMnDODRD1bz5EfreP2LLZx1eH++99WRiRZPUfYLday7kG1V9Vz8lzls3lXLU1dNZmz/3ESLpCSQlBRhwuACJgwu4NbTx7BkayVvLSphxuJS7np9CXe9voQxfQN8dUwfTh7Th/GD8vXrhqJ0EYu3VPBfLy5gbL9c7QLSSeRmpPGT08Zw9XHDeGzWGp7+ZD2vLtjC6OIcjhvZmxFFObpmgNLtUMe6i9i4s4arnvp0j1N9lA5WVDyICOP65zGufx43TT2Iddt3M2NJCf9eWsZjs9bw8MzVBPypHDW8F8eN7MXkoYUc3C9XFxNSlE5g9bZqLn9iLjn+VB67fKKuxtrJ9Mrxc+sZB3PDV0bw3Jz1PPLBGp78aB2F2elMGmIbH6JNiaooyYQ61l3AByu2ceMLn2OM4Ul1qluR6Omg4k0885PjT+Ps8QOYOrYvq7ZVs6qsms827OLdpaUA+FNTGFCQSf+8TPrnZ9AnkEHvHD/pqbZVW6dCUpT2s3FnDZc+PgcRePaaoxhYoN2xuoqC7HR+cNIocjPSWLSlgk/X7WLGklLeWVLKkF7ZHDoglymje2udKEmNOtadSENTC3+euYoH/72Sg4oDPHrZRJ0cX2k3mek+Dh2Qx6Fu5Hx5TQPrd9SwbsduNpfXMnvNDppazJ7wuRl2Ofb/rNxGUcC/Z1n2jDQf6b4U0lJtK7cx0NxiqG9qob6phbrGZnbXN1HT0Ex1fRO765tYVVZNfVMLDU0tNDS30NjcQlOzodkYjDG0GBDsghC+FCE9NYV0XwqZ6T6y0n1kp6eyubyGvrkZ9M/PZHBhFoMKs3SqQSUp+Xj1dn74/Oc0Nrcw7bpjGF6kg+kSQaovhfGDChg/qIDtVfUs3FzOl5sq+OcXW/nnF1sZXpTNlFFFTBpqW7P752cmWmRF2YM61p3Ex6u28z//t4jV23Zz7hEDuOfcQ3QBGCUu5Gelk5+Vvmc+3eYWw7bqerZV1bO9up4d1fVU1jaxsqyaT9bsoLK2EY/fHZXUFCEr3UeOP5Vsfyp1jc34U+3/9NQUUlOEVF8KPrF9xAXBYDAGmlpaaGgyNDQ1U9vYTEVtI1vKa1mwqZzmEAH65WUwoiiHEUXZjCoOMKZvgNF9A+Rm6OdepetpaTE8/uEafv3mMob1zubRyybpDBVJQu+An5PHFHPymGLKqurI8acya+V2pn26gac+XgdAUcDPmL4BDioOMLwox73AZ1Kcm6Ev8UqXo55eHDHGMHftTh6dtYb3lpUxuDCLJ6+arKPJlU7FlyL0zc2gb27rqcCCXUFaWgzVDU3UNTbT0NRCY7N1csXF9ael4Pf5yEz37elGEiQeXVsumDyI7dX1bC6vZePOGjbsqGHt9t2s3lbNPz7bTHV9056wA/IzObhfgDF9czm4Xy4H9wswpFe29iVXOo1563Zy1+tLWLipgtMP6ctvzj+cHL8+GpORPoEMLj5qMNecMJzG5haWbq1k/vpdLNpcybKSSp6evZ6GppZWcXIzUukd8JOfmUZ+VjqBjFSy0lPJ8fvITE8lM81HZpr9yrZwYzlpvhT35U3wp/nwp6aQ4X4VJRY61XqIyNeABwEf8Lgx5tch5/3A08BEYAdwgTFmnTt3K/AdoBm40RjzdixpJoLt1fW8+eVWpn+2mYUbyynMTufmqaO55oToy7YqSleQkiLkZqQlrDXYlyIU52ZQnJvBhMEFrc4ZY9hSUcfykkqWlVSxbGsVS7dW8v7ybXtauTPTfIzuG+DgvgFGFwc4qG+AUX1yKAr4ddW2NuhKGywiw4BpQC9gPnCZMaYh2jUSRUuL4ZM1O3j6k3W8vbiU4lw//3v+4XxrwgDVqW5Cmi+Fwwbmc9jAvSthNrcYSirr2LCjho27aiirrKOsqp4d1Q1U1DZSVlXH6m22m1t1fRN1jS1RrtCaFIHfvrOCgqw0euX46Z2TTp9ABn1y/RQHMuiXl0HfPNvlrTs/9+sam9mxu4HtVfUsL6mkpsF+gQx2CWxsbqG5xWCALzdXuK+Y4r5s+shKt10RC7PTKchOp3dOOr1z/N26TNpLpznWIuID/gScCmwCPhWR14wxSzzBvgPsMsaMFJELgfuAC0RkLHAhMA7oD7wrIqNdnLbS7HSq65v4YlM5c9bYZas/XbeTFgMj++Rw1zmHcN6EgWSmHzhKpCgdRUQYkJ/JgPxMThpTvOd4XWMzK0urWbrVOdwllcxYUsq0TzfuCRPISGVEUQ7DemczpFcWQ3tlM7AgkwEFmfQJZBzwrdwJsMH3Ab8zxkwTkUdc2g9Hukbn5n5f6hqb+WzDLj5cuZ3Xv9jKhp015GWmcePJo7jhK8O1q14PwJey154cQ9uTBLS4MSY1DU3UNbXw0ryNNDYbO6akqYX6puY9409qG5rpX5BJeU0D26sbWF5SxX9WbqeqrmmfdHtlp9MvP4P+eZl7Bpj3yw8635kUeQaZdxUtLYZdNQ2UVtZTWlnH1oo6SirrKKmoZWtFHWWV9ZRW1VFe0xgxjRSxLzS+FEFEWLNtN80tdtxNXVPznq+h4cjNSKVvnm1gCZZD8GWkX5794pqXmdYjXmw705IcCawyxqwBEJFpwNmA16ifDdzp9qcDD4kt1bOBacaYemCtiKxy6RFDmvvNjup6yqrq2bm7gR27GyipqGVLeR0bdtaworSKTbtqAatkY/vn8r0TR3Lm4f04qDjQI5RCURJNRpqPQwfmcejAvUsdG2PYXt3AitIqVpXZWVJWb6tm7tqdvLpgM8Zj030pQp+An+LcDIoCtnWpV7af/Cz7OTgvM40cf6r7LGxbWTLTfWSm+UjzSU+5j7vMBovIUuAk4GIX5m8u3YcjXcMYE2PP/9hoam6hsq6JitpGtlfXs7Wijq3ltawsq2ZFaRXLS6qob2rBlyIcNayQm6aO5rRxfQ+oljSlNSkpYu971xDW1sqa4WZaqm1o3uOobq2oZUt5LVsq6ti8q5Z1O3bz0art7G5o3ider+x0igJ+euWkU5gd7Kpivyxm+1PJ9lt7lJ6a4sa3pJAitjGixRiamg1NLS3UNdoXgJr6Zqrqm6iqa6SitpHymkZ21TS4cTcNbKuqbzXIHUAEinL89MvLYHCvLI4cVkifgJ8+uX56ZfuZv37XHrvoT7MyRCuP+qZmdtfb8TW7ahrYtbvBXrvaOvMlFXWUVtaxvKSKbdX1hFqA9NQUinP9FOX46Z3jp3fAT2GWbfkucGUTyEglkGHtd5bfDpLPSPWRkkQNKZ3pWA8ANnr+bwKOihTGGNMkIhXYz4gDgNkhcQe4/bbS3G9uemkhM5dva3Us4E9lQEEmRwwu4MLJgxjbP5dJQwt1sJWidBEiQlHAT1HAz3Eje7c6V9fYzKZdNWzaVcumXbVsrailpMIa8407a1iwsZyduxv2GUQZ/jp2KsM0n53hJNUnpKbYX1+K4HMzoKSIkJICA/OzeOSyiZ2V7f2hK21wL6DcGNMUJnyka2zvcM5C+MusNdzzxtKw54ID2y4/ZgjHjOjFkcN6aR9qJW5kpvsY2jubob3Dz/hljKGyromSijq2VNRS4lqHSyrr2FFdz47dDXy5qZzyWusQx+N1M+BPJS8rjYKsdIpy/Izpm0tRwE9xwE+f3L2txkUBP2lRFh0rq6pv13X9qT78qT4Ks9MZRvQZ0BqbWyitrNvbel5Rx7Yqa7O3VdezfkcN89fvYldNQ0yD79ODfeNTU0hzNjstaLNTBJ97MQm2tv/1ikn0yvG3K3+x0mOti4hcB1zn/laLyPL9TXMR8HbHovYmjg+RTqQ7yNkdZIQkkPOS2IJ1upwxytEWCS/PaDx6OdA+GYd0mjDdlM6w2QDrgXlJrj9R6LZyX9JJcsfJnkQianl38rX3h4ToSRzKI2H63fsHHYoWk93uTMd6MzDI83+gOxYuzCYRSQXysINbosVtK00AjDGPAY91VPh4IiLzjDGTEi1HW3QHObuDjKByxpvuIGcSytiVNngHkC8iqa7V2hs+0jVa0Zk2OwnrJiZU7q5F5e5auqvcbdGZvec/BUaJyDARSccOhHktJMxrwBVu/zzgPdfv7jXgQhHxu5Hmo4C5MaapKIqidKENdnHed2ng0vy/Nq6hKIrS4+i0FmvXl+4H2N4TPuCvxpjFIvJLYJ4x5jXgCeAZNzBmJ9ZI48K9iB1k0wR83xjTDBAuzc7Kg6IoSnclATb4Z8A0Ebkb+NylTaRrKIqi9EREGw46HxG5zn3mTGq6g5zdQUZQOeNNd5CzO8h4oNJd60bl7lpU7q6lu8rdFupYK4qiKIqiKEoc0DU6FUVRFEVRFCUOqGPdSYjInSKyWUQWuO0Mz7lbRWSViCwXkdMSKaeT52tOllUickui5fEiIutE5EtXhvPcsUIReUdEVrrfgrbS6QS5/ioiZSKyyHMsrFxi+YMr3y9EZEICZUw6vRSRQSLyvogsEZHFIvIjdzzZyjOSnElXpgcCInK+q4cWEZkUci5suUeydW4w5hx3/O9uYCZiB2/+3R2fIyJDuzB/CbfL8bJzInKFC79SRK7wHJ/o7PsqF3e/V/mIpz3pYrkzRGSuiCx0cv/CHW+3brZX/+OBiPhE5HMReb07yd0pGGN064QNu9LYzWGOjwUWAn5gGLAa8CVQTp+TYTiQ7mQbm+jy88i3Dugdcux+4Ba3fwtwXwLkmgJMABa1JRdwBvAmIMDRwJwEyph0egn0Aya4/QCwwsmTbOUZSc6kK9MDYQMOBg4CZgKT2ir3aLYOeBG40O0/AnzX7X8PeMTtXwj8vYvylhR2OR52DigE1rjfArdf4M7NdWHFxT09DjLHxZ4kQG4Bctx+GjDHXaNdutkR/Y+TrvwX8DzwekfuqUTJ3Rmbtlh3PXuWCjbGrAW8SwUngj3LHhtjGoDgssfJzNnYJZNxv+d0tQDGmFnYGQ68RJLrbOBpY5mNne+3X4JkjETC9NIYs9UY85nbrwKWYlfrS7byjCRnJJLtXu9RGGOWGmPCLSITqdzD2jrX2ngSdrl12FfXgjo4HTg5Hq2TMZAUdjlOdu404B1jzE5jzC7gHeBr7lyuMWa2sZ7V08TBlsfRnnS13MYYU+3+prnN0H7dbJf+76/cACIyEPg68Lj735F7qsvl7izUse5cfuA+Lf1V9nZXCLfMcLSHc2eTbPKEYoAZIjJf7MpsAMXGmK1uvwQoToxo+xBJrmQr46TVS/dZ8Ahsa03SlmeInJDEZXoAEqncIx2PeTl2ILgce2eTzLrT3vsy2vFNYY7Hjf20J10ut+tOsQAowzryq2m/brY3P/Hg98BPgRb3vyP3VCLk7hTUsd4PRORdEVkUZjsbeBgYAYwHtgK/Taiw3ZfjjTETgNOB74vIFO9J12KQdFPbJKtcJLFeikgO8A/gx8aYSu+5ZCrPMHImbZl2d9qwsUqCSab7MpTuYk+8GGOajTHjsSuXHgmMSbBIbSIiZwJlxpj5iZYlWejMJc17PMaYU2IJJyJ/AV53f2NZZrgrSTZ5WmGM2ex+y0TkFayxKRWRfsaYre6zXFlChdxLJLmSpoyNMaXB/WTSSxFJwz4EnzPGvOwOJ115hpMzWcu0JxCrjQ2hy5dj7wSSWXfae19uBk4MOT7THR8YJvx+Eyd70uVyBzHGlIvI+8AxtF8326v/+8txwFliB21nALnAg91A7k5DW6w7iZA+n+cCwVHVkZYKThRJu0y8iGSLSCC4D0zFlqN3iWTv0smJJpJcrwGXi+VooMLzSbJLSUa9dP3rngCWGmMe8JxKqvKMJGcylukBTk9Yjj1p7TLtvy/fBqaKSIHrJjUVeNudqxSRo929dTlxsOVxtCddLXeRiOS7/UzgVGz/8PbqZrv0f3/lNsbcaowZaIwZ6tJ8zxhzSbLL3amYJBhB2RM34BngS+ALrBL085y7Ddt3ajlxGE0cB1nPwI6cXg3clmh5PHINx44AXggsDsqG7Y/1b2Al8C5QmADZXsB+9m/E9vn6TiS5sKO9/+TK90s8MxgkQMak00vgeOxn2S+ABW47IwnLM5KcSVemB8KGfYnZBNQDpVinJ2q5R7J1ztbMxQ6Yegnwu+MZ7v8qd354F+Yv4XY5XnYOuNqV4SrgKs/xSdgX0dXAQ7hF6/ZT5rjZky6W+zDgcyf3IuCOjupme/U/jvpyIntnBek2csd705UXFUVRFEVRFCUOaFcQRVEURVEURYkD6lgriqIoiqIoShxQx1pRFEVRFEVR4oA61oqiKIqiKIoSB9SxVhRFURRFUZQ4oI51D0JEmkVkgYgsFpGFInKTiHS7OhaRx0VkbBLIMVREFrUdcr+v43crzC0QkQtCzl0pIv07W4b2ICLj3WIAwf9nicgtiZRJUQ4EDlQbLyInisixMYQ7J5Z0ReROEbk51utHSKNLng9dRahdVzqOrrzYs6g1djlURKQP8Dx2FaSf70+intWTugRjzDVdda3OpB3ldgRAsO5CuBI7p+mWMOn7jDHN+yVkxxiPncf1DQBjzGsk+4T9itIzOFBt/IlANfBxG+HOwa58uqQDYh3otLLryn6Q6Im0dYsv5spSAAAZWElEQVTfBlSH/B+OXSpUAB/wG+wqRl8A13vC/Qw7Mf5C4Nfu2Ezg98A84CagCLtE7KduO86FOxL4BDux/cfAQe74OOzk7wvc9Ua545d6jj8K+MLkYyZukn6sMb3HyTYbKA4T/k7gry7eGuBGd3wosMgT7mbgTs81fufytxSYDLyMXTzgbk/8ZcBzLsx0IMudmwh8AMzHrtDVL1y5hchZCLzqymM2dkGAPtiJ8itcmYzwhD/P5X+5O5cJrAPuAz7DrkB1rauPha5+gvI9BfzB1cka4Dx3vB8wy6W3CDjBHX/YybwY+IVHhskujYWu3vKADcA2l8YFWOf/IU+Zvefy+G9gcEfk0U033fbdOABtvLMpJdhlrBcAJ4SzM8CxwE5grQs3gsj28U7g5jByne/s0EJgluf6/8Ha3M+AYz3HF7n9sGUfi30D7nDxFgGPwZ71RWbSxjPKhfsvF3cR8ONQ2dz/0Gfffa6OVrjyTCfErida17vzlnABdItjZYYYXXesHCgGrgNud8f87mYdBpyONZZBgxNcjWom8GdPOs8Dx7v9wdjlYsG2lqS6/VOAf7j9PwKXuP10rFN4MPBPIM0d/zNweRiZZ7LX6BrgG27//mAeQsLf6fLgB3pjHzRpsRgXt/8jbItwP5fGJuwqXUPd9YMPmL+6NNLc9Yrc8QuAv4YrtxA5/wj83O2fBCxw+yfiVquKVhbu/zrgp57/vTz7dwM/dPtPYVe3SgHGAqvc8ZvYu4KlDwiE1LvPXfMwV29rgMneusbjSLvje/67+r3C7V8NvNoReXTTTbd9Nw5sG3+z5380O3OeJ1wk+9gqPU+YL4EBbj/f/WYBGW5/FDDP7Q9lr2MdqezbtG94Vg7GruIaLIuZtP2MmuhkzgZysA0jR9D2s++3bv8M4F23fyUeu65bxzftCnLgMBU4TETOc//zsEbiFOBJY0wNgDFmpyfO3z37pwBjRST4P1dEclw6fxORUVgDmebOfwLcJiIDgZeNMStF5GSsIfjUpZMJlLUhdwP20x7Y1uFTI4T7lzGmHqgXkTLsg6Ytgt0XvgQWG2O2AojIGmAQ9oG10RjzkQv3LHAj8BZwCPCOy4cPu+xvEG+5eTke+BaAMeY9EeklIrkxyBmKN/1DRORuIB9rWN/2nHvVGNMCLBGRYHl8CvxVRNLc+QXu+LdF5Dqs49wP6/waYKsx5lMncyWARwfCcQzwTbf/DPZB2RF5FEVpHz3dxnuJZme8RLOP4fgIeEpEXsS2DoPN70MiMh5oBkaHiRep7GOxb18VkZ9iHfhCrHP8T3eurWfU8cArxpjd7vjL2BbotrrmBfM2H+uEK3FEHesejIgMxxqCMuynwh8aY94OCXNalCR2e/ZTgKONMXUh8R8C3jfGnCsiQ7FvwxhjnheROcDXgTdE5Honw9+MMbe2IxuNxr1Ou7xE0tl6z34wXBOtB+hmRIjTEhK/xXMdQ2sMNh+LjTHHRJBld4Tj8cKb/lPAOcaYhSJyJbb1O4g3TwJgjJklIlOw9fKUiDyA/cx5M7ZlepeIPMW+ZRUPYpLHGPN0J1xbUXocB5iN7whPEdk+7oMx5gYROQqbp/kiMhH4IVAKHI4to7owUcOWPUA0+yYiGdhW/UnGmI0icietbW8sz6hwxPrsi3d5K+isID0WESkCHsF+2jHYN/XvujdnRGS0iGQD7wBXiUiWO14YIckZWAMTTD840C4P2/cN7Kek4PnhwBpjzB+A/8N2Lfg3cJ4bdIOIFIrIkDhkNxKlQB/XMuwHzuxAGoNFJOhAXwx8iO3zXBQ8LiJpIjIuhrT+A1zi4pwIbA+2AkehCghEOR8Atrp6vaQtAVx5lxpj/gI8DkzAfurdDVS4luTTXfDlQD8RmeziBkQktQ2ZPsb2/cbJ858OyKMoShscYDY+1OZEsjOh4dprH0cYY+YYY+7A9jcehM3/Vve17TLsF8pQwpZ9DPYt6PBud18HzqN9/Ac4R0SyXF2f64515NnX1rNGiRF1rHsWmeKmYgLexRrKX7hzj2NHSn/mpgh6FNtv7i3sZ6N5IrIA23IZjhuBSSLyhYgsAW5wx+8H7hWRz2n95vttYJFL8xDgaWPMEuB2YIaIfIE1+P3ikvMwGGMagV9iB2m8gx2I2F6WA98XkaVAAfCwMaYBawDvE5GF2MEebU4Fhe3XN9Hl/dfAFTHEeQp4xNVrZpjz/wPMwX7CjCV/JwILXX1dADxojFmIHZi0DNvP8iMAl88LgD+6fL6DfRC8j/1kvM/0gNgH81Uuj5dh+wa2S54Y8qAoByoHqo3/J3Cuy/sJRLYz04CfiMjnIjKC9tvH34jIl678goO2/wxc4WzgGMJ/kQxb9rRh34wx5cBfsAMP38Z2HYkZY8xn2GfEXJfPx40xn3fw2RfNrivtQPZ+gVEURVEURVEUpaNoi7WiKIqiKIqixAF1rBVFURRFURQlDqhjrSiKoiiKoihxQB1rRVEURVEURYkD6lgriqIoiqIoShxQx1pRFEVRFEVR4oA61oqiKIqiKIoSB9SxVhRFURRFUZQ4oI61oiiKoiiKosQBdawVRVEURVEUJQ6oY60oiqIoiqIocUAda0VRFEVRFEWJA+pYK4qiKIqiKEocUMdaURRFURRFUeKAOtaKoiiKoiiKEgfUsVYURVEURVGUOKCOtaIoiqIoiqLEAXWsFUVRFEVRFCUOqGOtKIqiKIqiKHFAHWtFURRFURRFiQPqWCuKoiiKoihKHFDHWlEURVEURVHigDrWiqIoiqIoihIH1LFWFEVRFEVRlDiQVI61iAwWkWoR8SValq5ARP5bRB6PY3rVIjLc7T8lInfHMe1HROR/4pVeO677XREpdXnr1UXXnCki18QpreNEZKWT/5wYwg8VESMiqfG4fjxpjw5EK8NkzmO82B8daqPs4m0z1onIKfFKLyTtuN1H3QEROUhEFohIlYjc2IXXTchzU0SKRWSWy+9vY4zTJfomIpeIyIzOuE5X0N7nhpJcJMSxdjdXrVOa4NbfGLPBGJNjjGlOhFwhMqaLyHQnqxGRE9sZf6aI1DmjUyki80XkFhHxB8MYY35ljGnzwRPrA8qV3Zr2yBnheleKyIchad9gjLlrf9NupxxpwAPAVJe3HV15/TjxS+AhJ/+roSc780ETbxKhA0prYrUZ4Yj3y3Y86U73QRR+CrxvjAkYY/7QWRcJLasEPjevA7YDucaYm0JPJlLfjDHPGWOmthUuie+JqM8NJTrhfJiuJJEt1t9wShPctnTmxTrYOvYhcClQ0sHL/sAYEwD6ATcBFwJviIh0ML2w9OCWv2IgA1icaEH2gyF0b/kB6G5fkbrqnujB957SfnrEvd4OhgBLjDEm0YL0QCLqkliSqreBEoIxpss3YB1wSpjjQwEDpLr/w4BZQBXwLvAn4Fl37kRgU6R0gTuB6cCzQCVwDfZF4hZgNbADeBEojEHeTcCJ7czjTOCakGODgRrgTI+MwfxkOFl3AOXAp1jH8h6gGagDqrFvsbhy+j6wEljrOTbS7T8FPAK848rvA2BIuHL2ygsc7K7V7K5X7knvbk/4a4FVwE7gNaC/55wBbnCylbt6kwjl5Ad+D2xx2+/dsdHAbpdWNfBehPhHAx+76yz01hNwFbDU5X8NcH1I3LOBBU4/VgNf85TFXcBHLu4MoHeUug5bFi7NFqDW5cEfEu+ZkPM/9dTNFcAGbIvQbZ44Meuwy/uZnv+pwDZggvv/EvalsQJ7n43zhH0KeBh4w9XDKV4dAAqA1116u9z+wBB9uheY68r3/4Jysu99ngc8AWwFNgN3Az53biRWdytcWfw9Ql6DaX7HldusGPSjEHgSq3e7gFfbod+h996pwDIn50NO5ms8ca529bELeBt3L8YSNySfd7LXZkTVlZB41wGNQANW1/7psZk3A1+46/8dyPDEOxN7j5S7cjwsyn0QMR/ACOA9rM5uB54D8iPdB23pZwz290FgI1b35gMneM4dCcxz50qBByKkEVXHQ8K+R2s7PZqQZwBwJfBhrHbS6WDQfi0BJoQrK/a9n/pjdXYnVoevDdGfF4GnXbqLgUlRyvFY7LOowv0e67EPXn06JSReovVtT1kDAvwOKHN1/iVwSBQZg/Y1WO7nhtYh8L9OJ9YCp8doU2LKG2GeG1hdugf7TKrF2sW26vklrE9R5fI8GrjVlcNG7JfgSGXb4TIIk1Z/4B/Y+2gtcKPneC2e5xdwBNY+pMVgN8PeP0TwYbpy69KLeQpkHbE51p+4yksHjnc3RXsc60bgHKwzkgn8CJgNDHTK+ijwQgzy7uNYAxcDX0SJM5MwD0fsA+I+j4zB/FwP/BPIAnzAROwntrBpuXJ6B3sjZ3qOeR3rKmCKy+uD7DU0rco59BqEPAA86QWdqpOc8k9waf8R58h45HgdyMe+TGzDOa1hyuOXrk76AEVYg3NXJDlD4g7APqjPcHV8qvtf5M5/HftAF+Ar2JeaoFN5JNYgn+riDgDGeMpiNdYQZbr/v44gQ1tlsY4wuh7pvCfPf3HXPhyoBw5252PWYeAO4DnP/68DSz3/rwYC7H25WRBS3xXAca58MkJ0oBfwLay+BrBG3PsQmYl1kg8BsrGGNdQhDN7nr7h8ZDs9mIt7CQJeAG7zyHB8hLwG03zapZMZg378C/tgLwDSgK+0Q7/33HtAb+y9dp5L5/8BTey9n87GPvgOxr7c3A587M5FjRsmn3eGKcewuhIm7p76C9G/udiHXCH2IXaDO3cE9iF8FNYmXeHC+8Ok3VYZjHTl78fe57OA30e7T4iinzHY7EuxOpqK/VpYgnPgsM+Vy9x+DnB0hDSi6niY8DNp7UiH/r+SfR3rsHYSOB97/0zG2q+R7G0YaVVW7Hs/zQL+jL1fxrt0T/LoTx32nvBhX35nR8hPIdahucyV40Xuf69I+pRE+ranrIHTsC9X+ex1vPpFkfF8J18KcAG2YaGfJ91G7EuPD/gu1omWNmxKzHmLUMczsS/P41xdpMVYz6e58E9jndrbXNxrcY0CEa7f4TIISSfFlf0dWD9uOLaR6zR3/j1avxD8BnikLbsZw/2zp/4TsSXmolZpqrFvGeU4Y4XHQLiCagKyPPGepX2O9ayQ80uBkz3/+zkFCeu4ecLFpcXaHZ8G/MUjYzA/VxPhLTZcWq6cTgpzzOtYT/Ocy8G+wQ1i/x3rJ4D7Q9JuBIZ65Djec/5F4JYI5bQaOMPz/zRgXag+RIj7M+CZkGNvA1dECP8q8CO3/yjwuyh1d7vn//eAtyKEbass9uhklHsh3EPS2/o7F7iwvTqMfRhX4e4hbCvhHRHkyHfXzfPU99ORdCBM/PHArpAy/LXn/1hsy5CP1vd5MdYZzPSEvQjbVxXsA+ExIrQUhim34bHohyu3FqCgA3Xa6t4DLsfjnGAf3pvYez+9CXzHcz4F+5I3pK24YWS7k30d67C6EibuPvXn9O9Sz//72ftgexj3kus5vxznLIQcb28+zgE+j3QftKWf7d2wDuHhbn8W8AuifIWKRcfDnJ9J+x3rsHbS6emPIlynVVnR+n4ahLXzAc/5e4GnPPrzbsh9WRvhOpcBc0OOfQJcGUmfkkXfaO1YnwSswH69SmlLxjDXWgCc7Ul3ledcliv7vkS3KTHnLUIdzwR+6fkfSz2/4zn3DazPFfwSGHBy58eo+zGVQZh4RwEbQo7dCjzp9q/BfY12dbgRmOL+R7SbMdw/e+o/EVsi++mcY4zJd1u4Ua/9gZ3GmBrPsY3tvEZo+CHAKyJSLiLlWCelGftw7yoGYD/dhPIM1phOE5EtInK/G7wXjbbKY895Y0y1u27/9ggbgf7A+pC0d2DzFsTbL70G65y0mZbbj1XGIcD5wfp0dXo81sAhIqeLyGwR2enOnYFt6QBrmFZHSbtD8kcoi44Q6fox67AxZpU7/w0RyQLOAp4H22daRH4tIqtFpBJryGFv+UAU/RKRLBF5VETWu/izgPyQvtje+OuxLSXe9IP5SQO2evL0KLblGuynbgHmishiEbk6kkxhrhlNPwZh7cuuMGnEUqcbQ8J77zUTRo4HPTLsdHkaEEPcWIhVV9sbfwhwU0j5DSL8/Rk1H24GiWkistnpy7Psqwt4wseinxERkZtFZKmIVDi58zxxv4P9GrVMRD4VkTMjpBGLju8vkcq+LfsUieBzs8pzbD3RbXNGhLECobY5XFododP1zYsx5j1sV5E/AWUi8piI5EYSTkQuFzu7S1CGQ2itd3vk9/gnOUS3Ke3JWyRCbU5b9Vzq2a8Ftpu9A1xrPXLvw36UQShDgP4h+f5v9j6v/gEcIyL9sF/XW4D/eOJGspv7yEHHbF+nkMwd4LcChc4hCDLIs78b+6YE7BlcVRSShgn5vxHbFyjfs2UYYzbHU/BIiMggbBeP/4SeM8Y0GmN+YYwZi+3Xdib2rRz2zQdtHA+yp7xEJAf76W0LtuzAU37YN+5Y092CVfpg2tnYz6YdKcdWaWG/VMQ6kHUjtkXSW5/Zxphfu9lX/oHtSlRsjMnH9hcWT9wRHZA3qvwdKIu2yjqU9urwC9gW4LOxA41WueMXu2OnYJ2OocEsxCjbTcBBwFHGmFysUQyN771fB2NbfbeHyU89tvUwmJ9cY8w4AGNMiTHmWmNMf2x3qT+LyMgocnlljqgf7lyhiOSHSSOWOvVeZyut7zUJyftGbNcWrxyZxpiPY4gbTzqia/eEyJ1ljHkhTNi28vErd/1Dnb5cSnRdi0U/wyIiJ2BfyL6NbT3Mx3ZrEgBjzEpjzEXYl7f7gOmujkOJRcej0eoZRWsb2xbR7FO0etyC1euA59hg4mOb25tWIvWttSDG/MEYMxHbQj8a+Ek4GUVkCLZr1Q+wXV7ygUXEVufRbEp78hYxG579eNZzK/azDELZiO1y4s13wBhzBoB7CZmB7W5yMfYru/HEjWQ326K9uhdXktaxNsasxw4wuVPs1HfHYD9nBFmBfdP+umvZvR3bFy8ajwD3OMVBRIpE5OxIgUXELyIZ7m+6iGR0ZEYP1/LxFewArrlYBy80zFdF5FD3glCJdUJa3OlSbN+k9nKGiBwvIunYwXizjTEbjTHbsDfgpa5l6GpaG/FSYKCLF44XgKtEZLxzYH8FzDHGrOuAjC8At7u66I3ti/VsjHGfxbbGnubykSEiJ4rIQGx/Lj+231WTiJwOeKdfesLl4WQRSRGRASIypoPy709ZtLdu26XD2K5HU7H94J73HA9gHdod2If/r9ohQzB+LVAuIoXAz8OEuVRExrqX418C003IlGDGmK1Yw/pbEcl1dTHC3S+IyPmuPsF+zjfsvS/aIqJ+uOu+iXXUC0QkTUSCjlN76/RfwDgR+aZr+buR1k7UI8CtIjLO5SlPRM6PMW48aa+u/QW4QUSOEku2s7eBMGHbykcA+ym6QkQGsNexiSRbVP0UO53WughyB7DdCLcBqSJyB5DriXupiBQZY1qwXREhvE7FouPRWAB809n/kdiW8lh5HLhZRCa6sh8ZvOeJUo/GmI3YLoX3On0/zF03Vpvq5Q1gtIhcLCKpInIB1jF9Pcb4idS3PYjIZJdmGvZlp47Iz9ZsrI3Z5uJehW2tbZM2bEp78hbLteJZz6F0uAzCMBeoEpGfiUims8OHiMhkT5jnsY2I59H6GRXNbrZFWz5Mp5K0jrXjEuAYrHG9GzsooB7AGFOB7fv6ONZJ3I3tYxWNB7GjaGeISBV2ENhRUcIvxxrWAdhuGrW4N3ixE9C3NbXSQ+46pdjBN//Adq4PZ8T7YmcxqcR+vv8A2z0kKPd5IrJLRNozP+rz2IfBTmxL+aWec9diH247sAMivG+B72FHi5eISGgLI8aYd4H/cfnZinXKL2yHXF7uxr5AfYEdufyZO9Ymzricjf20tA37hvsTbD+6KqyxfRHrkF2Mrftg3LnYWUN+h23N+oB9W2dikWF/y+Je7ItFuYjcHEP4dumwM/afYL+C/N1z6mnsp8PN2FHfs9shM1h9zsS2QM8G3goT5hlsH8YS7ACbSItmXI59EVqCravpuO482MFbc0SkGpvvH5kY52qPph8uyGXYF9hl2IFFP3bx2lWnxpjt2ME+v8beT6Owo/eD51/BtoxOE9ulYBFweixx48wTwFina23OjWuMmYe1Ew9h62UVtu9iuLBt5eMX2MGgFVin6OWQJELvg7b0cxCRy+ltrD6ucGnU0foz+teAxU6nHsT2Sa/dJ5XYdDwav8OOKygF/oYd4xATxpiXsLNAPI8dJ/Eq9osjtG0zLsK28G/BDgz+udPpdmHsugFnYlvud2C/Apzp6joWEqlvXnKxju0urD7swA6S20dGY8wS4LdYm1kKHBol3XBEsikx560dxKWeQ4lDGXjTasbq0Hjs4MntWJ8tzxPsNWz9lRhjFnriRrSbMRDVh+lsgiNZuwUi8ndgmTGmvS0HiqIoSg9B7Kp6PzLGLE20LIqiKF6S2rF2nwt2Yt90pmLf2o8xxnyeUMEURVEURVEUJYRkXzWsL/aTYS9sN4/vqlOtKIqiKIqiJCNJ3WKtKIqiKIqiKN2FZB+8qCiKoiiKoijdAnWsFUVRFEVRFCUOqGOtKIqiKIqiKHFAHWtFURRFURRFiQPqWCuKoiiKoihKHFDHWlEURVEURVHiwP8HtDaxbZTl0OsAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -107,198 +127,153 @@ "plt.legend()\n", "\n", "plt.tight_layout(pad=0.4, w_pad=0.6, h_pad=1.0)\n", - "\n", + "fig1.text(0.5,-0.05,\n", + " \"Figure 1: Distribution of each of the variables recorded in the data, as a function of the distance from an event\",\n", + " size=12, ha=\"center\")\n", "plt.show()" ] }, { - "cell_type": "code", - "execution_count": 80, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4VOX1wPHvyZ6QELYEAiEEZN+FsEiVgrgAKlTFraj8cKOtuLRWS61WarWtXbRu1bqiUEXFIrhSUQE3kIRNFpEtQAJCCCEkIXvO74+5iUPMMiGZTCY5n+e5T+7y3nfOnUnm5L73ve8VVcUYY4w5VQG+DsAYY4x/s0RijDGmXiyRGGOMqRdLJMYYY+rFEokxxph6sURijDGmXiyRGJ8QkadF5N4GqitBRHJFJNBZXiEiNzRE3U5974vIjIaqrw6v+4CIHBGR7xr7tY2pC7H7SExDE5FUoCNQApQCW4GXgWdUtewU6rpBVZfXYZ8VwAJVfa4ur+XsOxfoqapX13XfhiQiCcB2oJuqHm6k11zBKb5vpmWzMxLjLRepahTQDfgL8Bvg+YZ+EREJaug6m4gEILOxkkhTU352afyDJRLjVaqarapLgSuAGSIyEEBE5onIA858BxF5R0SOichREflURAJEZD6uL9S3naaru0QkUURURK4XkX3Ax27r3JPKaSLylYgcF5ElItLOea1xIpLmHqOIpIrIOSIyEbgbuMJ5vY3O9oqmMieue0Rkr4gcFpGXRSTa2VYexwwR2ec0S/2uuvdGRKKd/TOc+u5x6j8H+BDo7MQxr5r9p4rIBucYdznxVxyPW7m5IrLAmQ8TkQUikum832tFpKOIPAicBTzhvOYTTvkxTpls5+cYt3pXOM1vXzj7vC0i7UXkP05Ma0Uk0a18XxH50PmMt4vI5W7b5onIUyLynojkAeNFZLKIbBWRHBFJF5FfV/deGh9TVZtsatAJSAXOqWL9PuDnzvw84AFn/s/A00CwM53F982uJ9UFJAKKq6msFRDuti7IKbMCSAcGOmXexNVkAzAOSKsuXmBueVm37StwNa8BXAfsBHoAkcB/gfmVYnvWiWsIUAj0q+Z9ehlYAkQ5+34LXF9dnJX2HQlkA+fi+oewC9C3mves4piAWcDbQAQQCAwHWlc+Tme5HZAFXAMEAVc5y+3dyu8ETgOicTVhfguc45R/GXjRKdsK2A/MdLadDhwB+rv9PmQDP3KOJww4CJzlbG8LDPP177ZNVU92RmIa0wFcX06VFQNxuK4HFKvqp+p8e9RgrqrmqWp+Ndvnq+pmVc0D7gUub6DmkunAw6q6W1Vzgd8CV1Y6G/qDquar6kZgI66EchInliuB36pqjqqmAv/A9aXtieuBF1T1Q1UtU9V0Vf3Gg/2Kgfa4rgOVqmqKqh6vpuwFwA5Vna+qJar6KvANcJFbmRdVdZeqZgPvA7tUdbmqlgBv4EoYABcCqar6olPXelwJ/jK3upao6ufO8RQ4sfYXkdaqmqWq6zx7a0xjs0RiGlMX4GgV6/+G6z/b/4nIbhGZ40Fd++uwfS+uM50OHkVZs85Ofe51B+HqXFDOvZfVCVxnLpV1cGKqXFcXD+PoCuzysKy7+cAyYKGIHBCRv4pIcDVlKx9rVTEecpvPr2K5/Ni7AaOc5rRjInIMV1Lu5Fa+8md6KTAZ2CsiK0XkjFqOzfiIJRLTKERkBK4voM8qb3P+I79DVXsAU4BficiE8s3VVFnbGUtXt/kEXP/dHgHycDXrlMcVCMTUod4DuL4U3esu4eQvUE8ccWKqXFe6h/vvx9WkVJWTjhG3L2vnjO8PqtofGIPrTOHa8s2V6ql8rHWNsXK8K1W1jdsUqao/dytz0uur6lpVnQrEAm8Br5/C65pGYInEeJWItBaRC4GFuNrpv66izIUi0lNEBFc7eSlQ3k34EK7rEXV1tYj0F5EI4H5gkaqW4mrDDxORC5z/xO8BQt32OwQkikh1fxuvAr8Uke4iEgn8CXjNacrxmBPL68CDIhIlIt2AXwELPKzieWCmiExwLtB3EZG+zrYNuJrbgkUkCZhWvpOIjBeRQU4CPY4rmVX3Xr8H9BaRn4pIkIhcAfQH3qnLsTreceq6xokrWERGiEi/qgqLSIiITBeRaFUtdmKtU9dx03gskRhveVtEcnD9J/o74GFcF1qr0gtYDuQCXwL/UtVPnG1/Bu5xmkPq0mtnPq4LuN/hunB7K7h6kQG/AJ7D9Z91HuDei+sN52emiFTVJv+CU/cqYA9QANxSh7jc3eK8/m5cZ2qvOPXXSlW/wvV+PoIr+a7k+7OHe3GdrWQBf3DqLdcJWITri3mbs998Z9ujwDQRyRKRx1Q1E9cZyx1AJnAXcKGqHqnrgapqDnAerutCB3B9Lg9xchKv7BogVUSOAz/D1RRmmiC7IdEYY0y92BmJMcaYerFEYowxpl4skRhjjKkXSyTGGGPqpbkOeHeSDh06aGJioq/DMMYYv5KSknJEVWNqK9ciEkliYiLJycm+DsMYY/yKiFQe2aBK1rRljDGmXiyRGGOMqRdLJMYYY+qlRVwjMaa5KC4uJi0tjYKCAl+HYpqRsLAw4uPjCQ6ubiDomlkiMcaPpKWlERUVRWJiIq4xLo2pH1UlMzOTtLQ0unfvfkp1WNOWMX6koKCA9u3bWxIxDUZEaN++fb3Oci2RGONnLImYhlbf3ylLJMYYY+rFEokxpk5EhKuvvrpiuaSkhJiYGC688MJGiyE1NZWBAwc22ut5w8MPP0z//v0ZPHgwEyZMYO/e7+/9CwwMZOjQoQwdOpQpU6ZUuf+qVasYNmwYQUFBLFq06KRtd911FwMGDKBfv37ceuutePtxIXax3dTqlTX7GrzOn45KaPA6TeNo1aoVmzdvJj8/n/DwcD788EO6dPH0UfNNS0lJCUFBvvkaPP3000lOTiYiIoKnnnqKu+66i9deew2A8PBwNmzYUOP+CQkJzJs3j7///e8nrf/iiy/4/PPP2bRpEwBnnnkmK1euZNy4cV45DrAzEmPMKZg8eTLvvvsuAK+++ipXXXVVxba8vDyuu+46Ro4cyemnn86SJUsA11nEWWedxbBhwxg2bBhffPEFACtWrGDcuHFMmzaNvn37Mn369Cr/g05JSWHIkCEMGTKEJ598smJ9aWkpd955JyNGjGDw4MH8+9//rtj20EMPMWjQIIYMGcKcOXMAGDduHLfffjtJSUk8+uijZGRkcOmllzJixAhGjBjB559/DsBXX33FGWecwemnn86YMWPYvn07AFu2bGHkyJEMHTqUwYMHs2PHDgAWLFhQsX7WrFmUlpbW+B6OHz+eiIgIAEaPHk1aWlqN5StLTExk8ODBBASc/DUuIhQUFFBUVERhYSHFxcV07NixTnXXlSUSY0ydXXnllSxcuJCCggI2bdrEqFGjKrY9+OCDnH322Xz11Vd88skn3HnnneTl5REbG8uHH37IunXreO2117j11lsr9lm/fj3//Oc/2bp1K7t37674Mnc3c+ZMHn/8cTZu3HjS+ueff57o6GjWrl3L2rVrefbZZ9mzZw/vv/8+S5YsYc2aNWzcuJG77rqrYp+ioiKSk5O54447uO222/jlL3/J2rVrefPNN7nhhhsA6Nu3L59++inr16/n/vvv5+677wbg6aef5rbbbmPDhg0kJycTHx/Ptm3beO211/j888/ZsGEDgYGB/Oc//wHghhtuqHWsv+eff55JkyZVLBcUFJCUlMTo0aN56623PP1YADjjjDMYP348cXFxxMXFcf7559OvX7861VFX1rRljKmzwYMHk5qayquvvsrkyZNP2va///2PpUuXVjS5FBQUsG/fPjp37szs2bMrvmi//fbbin1GjhxJfHw8AEOHDiU1NZUzzzyzYvuxY8c4duwYY8eOBeCaa67h/fffr3i9TZs2VVwnyM7OZseOHSxfvpyZM2dW/Nffrl27ivquuOKKivnly5ezdevWiuXjx4+Tm5tLdnY2M2bMYMeOHYgIxcXFgOuL+sEHHyQtLY1LLrmEXr168dFHH5GSksKIESMAyM/PJzY2FoDnnnuuxvdywYIFJCcns3Llyop1e/fupUuXLuzevZuzzz6bQYMGcdppp9VYT7mdO3eybdu2ijOcc889l08//ZSzzjrLo/1PhSUSY8wpmTJlCr/+9a9ZsWIFmZmZFetVlTfffJM+ffqcVH7u3Ll07NiRjRs3UlZWRlhYWMW20NDQivnAwEBKSko8jkNVefzxxzn//PNPWr9s2bJq92nVqlXFfFlZGatXrz4pHoDZs2czfvx4Fi9eTGpqasU1hp/+9KeMGjWKd999l8mTJ/Pvf/8bVWXGjBn8+c9/9jhucCWxBx98kJUrV570HpRfc+rRowfjxo1j/fr1HieSxYsXM3r0aCIjIwGYNGkSX375pVcTiTVtGWNOyXXXXcd9993HoEGDTlp//vnn8/jjj1dc51i/fj3gOlOIi4sjICCA+fPn13oNwV2bNm1o06YNn332GUBFs1H56z311FMVZwzffvsteXl5nHvuubz44oucOHECgKNHj1ZZ93nnncfjjz9esVx+kTs7O7viC33evHkV23fv3k2PHj249dZbmTp1Kps2bWLChAksWrSIw4cPV7yWey+sqqxfv55Zs2axdOnSirMXgKysLAoLCwE4cuQIn3/+Of3796/9TXIkJCSwcuVKSkpKKC4uZuXKlda0ZYypXkP3qKtLb7r4+PiTrnOUu/fee7n99tsZPHgwZWVldO/enXfeeYdf/OIXXHrppbz88stMnDjxpLMCT7z44otcd911iAjnnXdexfobbriB1NRUhg0bhqoSExPDW2+9xcSJE9mwYQNJSUmEhIQwefJk/vSnP/2g3scee4ybb76ZwYMHU1JSwtixY3n66ae56667mDFjBg888AAXXHBBRfnXX3+d+fPnExwcTKdOnbj77rtp164dDzzwAOeddx5lZWUEBwfz5JNP0q1bN2644QZ+9rOfkZSUdNLr3nnnneTm5nLZZZcBrgSwdOlStm3bxqxZswgICKCsrIw5c+ZUJJLf//73JCUlMWXKFNauXcvFF19MVlYWb7/9Nvfddx9btmxh2rRpfPzxxwwaNAgRYeLEiVx00UV1eq/rSrzdv7gpSEpKUnuw1amz7r9Nx7Zt207679KXicQ0L5V/twBEJEVVk6rZpYI1bRljjKkXSyTGGGPqxRKJMcaYerFEYoypk4Yaa2vcuHEVN+pNnjyZY8eONWic4Lr7+8iRIw1eb2MpKipi5syZFXfnr1ixospyb7zxBgMGDCAgIOAHNz/++c9/pmfPnvTp06fGLtH1Yb22jDF14o2xtt57770Giq7h+XI8rmeffRaAr7/+msOHDzNp0iTWrl37g2FRBg4cyH//+19mzZp10vqtW7eycOFCtmzZwoEDBzjnnHP49ttvCQwMbNA4LZEY48d81cuqfKytadOmVYy19emnnwKusbZuueUWNm/eTHFxMXPnzmXq1Knk5+czc+ZMNm7cSN++fcnPz6+oLzExkeTkZDp06MBPfvIT9u/fT0FBAbfddhs33XQTAJGRkdx222288847hIeHs2TJkh+MIZWZmclVV11Feno6Z5xxxkljdi1YsIDHHnuMoqIiRo0axb/+9S8CAwP54IMPuPvuuyktLaVDhw589NFHzJ07l127drF7924SEhJYsGABc+bMYcWKFRQWFnLzzTcza9YscnNzmTp1KllZWRQXF/PAAw8wdepU8vLyuPzyy0lLS6O0tJR7772XK664gpSUFH71q1+Rm5tLhw4dmDdvHnFxcdW+z1u3buXss88GIDY2ljZt2pCcnMzIkSNPKlfdfSJLlizhyiuvJDQ0lO7du9OzZ8+KMcQakjVtGWPq7FTG2nrqqaeIiIhg27Zt/OEPfyAlJaXKul944QVSUlJITk7mscceq7hrPi8vj9GjR7Nx40bGjh1b8d+6uz/84Q+ceeaZbNmyhYsvvph9+1zdo6sbCysjI4Mbb7yRN998k40bN/LGG29U1LV161aWL1/Oq6++Wu14XmFhYSxevJh169bxySefcMcdd6CqfPDBB3Tu3JmNGzeyefNmJk6cSHFxMbfccguLFi0iJSWF6667jt/97neAa/yup59++gfHM2TIEJYuXUpJSQl79uwhJSWF/fv3e/w5paen07Vr14rl+Ph40tPTPd7fU3ZGYoyps1MZa2vVqlUVNzAOHjyYwYMHV1n3Y489xuLFiwHYv38/O3bsoH379oSEhFRchxk+fDgffvjhD/ZdtWoV//3vfwG44IILaNu2LUC1Y2GtXr2asWPHVjyr3H08rilTphAeHl5xTFWN5xUfH8/dd9/NqlWrCAgIID09nUOHDjFo0CDuuOMOfvOb33DhhRdy1llnsXnzZjZv3sy5554LuEYtLj8b+dnPflble3Hdddexbds2kpKS6NatG2PGjGnwZqmG4NVEIiITgUeBQOA5Vf1Lpe2hwMvAcCATuEJVU0VkJPBMeTFgrqou9qROY0zjqOtYW55YsWIFy5cv58svvyQiIoJx48ZVPEs8ODi44pGwpzIeV1VjYb399tvV7uN+531143nNmzePjIwMUlJSCA4OJjExkYKCAnr37s26det47733uOeee5gwYQIXX3wxAwYM4Msvv/Q47qCgIB555JGK5TFjxtC7d2+P9+/SpctJZzBpaWleeXaM15q2RCQQeBKYBPQHrhKRygPGXA9kqWpP4BHgIWf9ZiBJVYcCE4F/i0iQh3UaYxpBXcfaGjt2LK+88goAmzdvrnjwkrvs7Gzatm1LREQE33zzDatXr65TTO6v8f7775OVlQVQ7VhYo0ePZtWqVezZs6difVWqG88rOzub2NhYgoOD+eSTTyrG1zpw4AARERFcffXV3Hnnnaxbt44+ffqQkZFRkUiKi4vZsmVLjcdz4sQJ8vLyAPjwww8JCgqq07hbU6ZMYeHChRQWFrJnzx527Njxg+srDcGbZyQjgZ2quhtARBYCU4GtbmWmAnOd+UXAEyIiqnrCrUwYUH7FzJM6jTGNoK5jbf385z9n5syZ9OvXj379+jF8+PAf7Dtx4kSefvpp+vXrR58+fRg9enSdYrrvvvu46qqrGDBgAGPGjCEhwdUZoX///lWOhTV69GieeeYZLrnkEsrKyiqemVJZdeN5TZ8+nYsuuohBgwaRlJRE3759AVcvqzvvvJOAgACCg4N56qmnCAkJYdGiRdx6661kZ2dTUlLC7bffzoABAyquj1Ru4jp8+DDnn38+AQEBdOnShfnz558UU/kYXosXL+aWW24hIyODCy64gKFDh7Js2TIGDBjA5ZdfTv/+/QkKCuLJJ5/0StOY18baEpFpwERVvcFZvgYYpaqz3cpsdsqkOcu7nDJHRGQU8ALQDbhGVRd7Uqdb3TcBNwEkJCQMr20kTlM9G2ur6ahqPCRjGkKzHGtLVdeo6gBgBPBbEQmrbZ9K+z+jqkmqmhQTE+OdII0xxng1kaQDXd2W4511VZYRkSAgGtdF9wqqug3IBQZ6WKcxxphG5M1EshboJSLdRSQEuBJYWqnMUmCGMz8N+FhV1dknCEBEugF9gVQP6zSmWWsJj34wjau+v1Neu9iuqiUiMhtYhqur7guqukVE7geSVXUp8DwwX0R2AkdxJQaAM4E5IlIMlAG/UNUjAFXV6a1jMKapCQsLIzMzk/bt21d0hTWmPlSVzMzMHzxquC7swVamVnaxvekoLi4mLS2t4t4KYxpCWFgY8fHxBAcHn7Te04vtdme7MX4kODi44i5sY5qKJttryxhjjH+wRGKMMaZeLJEYY4ypF0skxhhj6sUSiTHGmHqxRGKMMaZeLJEYY4ypF0skxhhj6sUSiTHGmHqxRGKMMaZeLJEYY4ypF0skxhhj6sUSiTHGmHqxRGKMMaZeLJEYY4ypF0skxhhj6sUSiTHGmHqxRGKMMaZeLJEYY4ypF0skxhhj6sUSiTHGmHrxaiIRkYkisl1EdorInCq2h4rIa872NSKS6Kw/V0RSRORr5+fZbvuscOrc4Eyx3jwGY4wxNQvyVsUiEgg8CZwLpAFrRWSpqm51K3Y9kKWqPUXkSuAh4ArgCHCRqh4QkYHAMqCL237TVTXZW7EbY4zxnDfPSEYCO1V1t6oWAQuBqZXKTAVecuYXARNERFR1vaoecNZvAcJFJNSLsRpjjDlF3kwkXYD9bstpnHxWcVIZVS0BsoH2lcpcCqxT1UK3dS86zVr3iohU9eIicpOIJItIckZGRn2OwxhjTA2a9MV2ERmAq7lrltvq6ao6CDjLma6pal9VfUZVk1Q1KSYmxvvBGmNMC+XNRJIOdHVbjnfWVVlGRIKAaCDTWY4HFgPXququ8h1UNd35mQO8gqsJzRhjjI94M5GsBXqJSHcRCQGuBJZWKrMUmOHMTwM+VlUVkTbAu8AcVf28vLCIBIlIB2c+GLgQ2OzFYzDGGFMLryUS55rHbFw9rrYBr6vqFhG5X0SmOMWeB9qLyE7gV0B5F+HZQE/g95W6+YYCy0RkE7AB1xnNs946BmOMMbXzWvdfAFV9D3iv0rrfu80XAJdVsd8DwAPVVDu8IWM0xhhTP7WekYjIR56sM8YY0zJVe0YiImFABNBBRNoC5d1sW/PDbrzGGGNaqJqatmYBtwOdgRS+TyTHgSe8HJcxxhg/UW0iUdVHgUdF5BZVfbwRYzLGGONHar3YrqqPi8gYING9vKq+7MW4jDHG+IlaE4mIzAdOw9XdttRZrYAlEmOMMR51/00C+quqejsYY4wx/seTGxI3A528HYgxxhj/5MkZSQdgq4h8BVSMwKuqU6rfxRhjTEvhSSKZ6+0gjDHG+C9Pem2tbIxAjDHG+CdPem3l4OqlBRACBAN5qtram4EZY4zxD56ckUSVzztPI5wKjPZmUMYYY/xHnYaRV5e3gPO9FI8xxhg/40nT1iVuiwG47isp8FpExhhj/IonvbYucpsvAVJxNW8ZY4wxHl0jmdkYgRhjjPFPnjzYKl5EFovIYWd6U0TiGyM4Y4wxTZ8nF9tfBJbiei5JZ+BtZ50xxhjjUSKJUdUXVbXEmeYBMV6OyxhjjJ/wJJFkisjVIhLoTFcDmd4OzBhjjH/wJJFcB1wOfAccBKYBdgHeGGMM4EEiUdW9qjpFVWNUNVZVf6Kq+zypXEQmish2EdkpInOq2B4qIq8529eISKKz/lwRSRGRr52fZ7vtM9xZv1NEHnPutjfGGOMjnvTaeklE2rgttxWRFzzYLxB4EpgE9AeuEpH+lYpdD2Spak/gEeAhZ/0R4CJVHQTMAOa77fMUcCPQy5km1haLMcYY7/GkaWuwqh4rX1DVLOB0D/YbCexU1d2qWgQs5Ic3Mk4FXnLmFwETRERUdb2qHnDWbwHCnbOXOKC1qq52ntj4MvATD2IxxhjjJZ4kkgARaVu+ICLt8OyO+C7AfrflNGddlWVUtQTIBtpXKnMpsE5VC53yabXUaYwxphF5khD+AXwpIm84y5cBD3ovpO+JyABczV3nncK+NwE3ASQkJDRwZMYYY8p5crH9ZeAS4JAzXaKq82veC4B0oKvbcryzrsoyIhIERON0LXbunl8MXKuqu9zKu99VX1Wd5XE/o6pJqpoUE2O3vRhjjLd4ckaCqm4Fttax7rVALxHpjuvL/krgp5XKLMV1Mf1LXN2KP1ZVdS7uvwvMUdXP3eI4KCLHRWQ0sAa4Fni8jnEZY4xpQHV6HkldONc8ZgPLgG3A66q6RUTuF5EpTrHngfYishP4FVDeRXg20BP4vYhscKZYZ9svgOeAncAu4H1vHYMxxpjaeXRGcqpU9T3gvUrrfu82X4Drmkvl/R4AHqimzmRgYMNGaowx5lR57YzEGGNMy1DtGYmI5ABa3XZVbe2ViIwxxviVahOJqkYBiMgfcY2xNR8QYDoQ1yjRGWOMafI8adqaoqr/UtUcVT2uqk9hj9o1xhjj8CSR5InIdGcI+QARmQ7keTswY4wx/sGTRPJTXMPIl9+QeBk/vB/EGGNMC1Vr919VTcWasowxxlTDk2Hke4vIRyKy2VkeLCL3eD80Y4wx/sCTpq1ngd8CxQCqugnXcCfGGGOMR4kkQlW/qrSuxBvBGGOM8T+eJJIjInIazs2JIjIN130lxhhjjEdjbd0MPAP0FZF0YA9wtVejMsYY4zc86bW1GzhHRFoBAaqa4/2wjDHG+AtPem3dJiKtgRPAIyKyTkTq/MRCY4wxzZMn10iuU9XjuB532x64BviLV6MyxhjjNzxJJOL8nAy8rKpb3NYZY4xp4TxJJCki8j9ciWSZiEQBZd4NyxhjjL/wpNfW9cBQYLeqnhCR9sBM74ZljDHGX9T0YKu+qvoNriQC0EPEWrSMMcacrKYzkjuAG4F/VLFNgbO9EpExxhi/UtMTEm90fo5vvHCMMcb4m5qati6paUdV/W/Dh2OMMcbf1NS0dVEN2xSwRGKMMabGpq1698wSkYnAo0Ag8Jyq/qXS9lDgZWA4kAlcoaqpTs+wRcAIYJ6qznbbZwUQB+Q7q85T1cP1jdU0vOLSMgIDhADrpGFMs+ZJ919E5AJgABBWvk5V769ln0DgSeBcIA1YKyJLVXWrW7HrgSxV7SkiVwIPAVcABcC9wEBnqmy6qiZ7ErtpXLsyctn+XQ6pmXkcOJZPSFAA3dq1onuHVgzqEk3bViG+DtEY08BqTSQi8jQQAYwHngOmAZWfT1KVkcBOZ9BHRGQhrkf2uieSqcBcZ34R8ISIiKrmAZ+JSE8Pj8P4WGFJKe9sOkjK3iyCAoT4tuGc2TOG/OIS9hw5wfZDOXz0zSEuGNSZEYltfR2uMaYBeXJGMkZVB4vIJlX9g4j8A3jfg/26APvdltOAUdWVUdUSEcnGNZ7XkVrqflFESoE3gQdUVSsXEJGbgJsAEhISPAjXnKr0Y/m8tnYfmblFjOsdw/i+sQQHnjxowtG8IhavT+OtDel8891xzh/YiQ6RoT6K2BjTkDwZIqX8WsQJEemM65G7cd4LqVbTVXUQcJYzXVNVIVV9RlWTVDUpJiamUQNsSfZl5vHvlbsoKinj+jO7c96ATj9cuZTwAAAgAElEQVRIIgDtWoUw80fduWBQHDsP53LpU1+QkVPog4iNMQ3Nk0Tyjoi0Af4GrANSgVc92C8d6Oq2HO+sq7KMiAQB0bguuldLVdOdnznAK7ia0IwPHM0rYv7qvUSHBzP77F70iImssXyACD/q2YEbzuzOoeMFzJz3FbmF9tRmY/xdrYlEVf+oqsdU9U2gG9BXVe/1oO61QC8R6S4iIcCVwNJKZZYCM5z5acDHVTVTlRORIBHp4MwHAxcCmz2IxTSwguJSXv4ylVJVrj0jkchQj/ptAJDQvhX/mj6MbQdzmDU/mcKSUu8FaozxOk8utgcCFwCJ5eVFBFV9uKb9nGses4FluLr/vqCqW0TkfiBZVZcCzwPzRWQncBRXsil/3VSgNRAiIj/B9TyUvbhGIA526lwOPFunIzb1VqbKq1/t40huITN/1J2YqLpf6zi7b0f+cskg7ly0iTlvfs3Dlw/BxnIzxj958m/k27i6435NHYePV9X3gPcqrfu923wBcFk1+yZWU+3wusRgGt6XuzLZcTiXi4d24bRamrNqcllSV9Ky8nn0ox2M6xPD1KFdGjBKY0xj8SSRxKvqYK9HYvzCsRNFfLjtEL07RpLUAN14bzm7J6t2ZHDvW5sZ2b0dcdHhDRClMaYxeXKx/X17Rrsp9/amg6gqU4Z0aZCmqKDAAB65fCjFpcpdizZRVlbtJTJjTBPlSSJZDSwWkXwROS4iOSJy3NuBmaZny4Fsth08zoS+HWnXgHeoJ3Zoxe8u6MenO46wYM3eBqvXGNM4PEkkDwNnABGq2lpVo1S1tZfjMk1MYXEpb288QFx0GD/q2aHB658+KoFxfWL483vfcDA7v/YdjDFNhieJZD+wuaZuuab5+2zXEY4XlDB1aBcCAxq+d5WI8MepAylV5S/vf9Pg9RtjvMeTi+27gRUi8j5QcStybd1/TfNxoqiEz3YcoX9caxLaRXjtdbq2i2DW2B48/vFOrhndjaTEdl57LWNMw/HkjGQP8BEQAkS5TaaF+HTHEYpKyjinX0evv9bPx51GXHQY9y3dQqldeDfGL9R4RuLcjBilqr9upHhME5ORU8gXu44wKD6aTtFhte9QTxEhQfx2cj9ufXU9ryfv56qRNuCmMU1djWckqloK/KiRYjFN0FMrdlFSqpzT1/tnI+UuGhzHyMR2/G3ZdnIKihvtdY0xp8aTpq0NIrJURK4RkUvKJ69HZnzuu+wCFqzZy7CEtnQ4hWFQTpWIcM+F/TiaV8Rzn+5ptNc1xpwaTxJJGK4Rec/G9Rz3i3ANlmiauec/201pmTK+b2yjv/bg+DZMGtiJ5z7dTWauDTdvTFNWa6+thnh2u/E/xwuKefWr/VwwKK5Bbz6sizvO68OyLd/xrxW7uPfC/j6JwRhTu1rPSEQkXkQWi8hhZ3pTROIbIzjjO6+u2UduYQk3je3hsxh6xkYybXg887/cS/oxu0nRmKbKk6atF3E9N6SzM73trDPNVFFJGS9+nsqY09ozsEu0T2O57ZzeIPDo8m99GocxpnqeJJIYVX1RVUucaR5gz65txt7eeIDvjhdwow/PRsp1aRPONaO7sSgljd0Zub4OxxhTBU8SSaaIXC0igc50NbU8Dtf4L1Xl2U9306djFON6N43/F34+7jRCgwJ5/OOdvg7FGFMFTxLJdcDlwHfAQVyPxLUL8M3UpzuO8M13Odw4tkeTeWJhh8hQrj2jG0s2pLPLzkqMaXI8eWb7XlWdoqoxqhqrqj9R1X2NEZxpfC99kUqHyFAuGhLn61BOcuPYHq6zko92+DoUY0wl1Xb/FZHfV7cNUFX9oxfiMT60L/MEH28/zC3jexIaFOjrcE7SITKUa8d049lVu5l9di96xp76I36NMQ2rpjOSvComgOuB33g5LuMDC9bsJVCE6aO7+TqUKt10Vg/CggN5/GM7KzGmKak2kajqP8on4BkgHNe1kYWA77vzmAaVX1TKa2v3c/7ATnRs7f3BGU9F+8hQrj0jkaUbD7DzsF0rMaapqPEaiYi0E5EHgE24msGGqepvVPVwo0RnGs2SDelk5xcz44xEX4dSoxvP6k5YUCBP2FmJMU1GtYlERP4GrAVygEGqOldVs+pSuYhMFJHtIrJTROZUsT1URF5ztq8RkURnfXsR+UREckXkiUr7DBeRr519HpOm0rXIj6kqL325l76dohiR2NbX4dSovdODa+nGA9aDy5gmoqYzkjtw3cl+D3BARI47U46IHK+tYudZJk8Ck4D+wFUiUnnApOuBLFXtCTwCPOSsLwDuBap6DspTwI1AL2eaWFsspmbJe7PYdvA4M8YkNpkuvzUp78H1hN1XYkyTUNM1kgBVDVfVKFVt7TZFqWprD+oeCexU1d2qWoTr2srUSmWmAi8584uACSIiqpqnqp/hSigVRCQOaK2qq51nyL8M/MSzQzXVmf/lXqLCgpg6tLOvQ/FIh8hQrh6dwJIN6Xa3uzFNgCc3JJ6qLsB+t+U0Z12VZVS1BMgG2tdSZ1otdQIgIjeJSLKIJGdkZNQx9JbjSG4h728+yKXD4okIqXUw6CbjprGnERIUwBOf2FmJMb7mzUTiU6r6jKomqWpSTEzTGOqjKXojOY3iUuXq0f71SNuYqFCuHtWNt9ans+dIXu07GGO8xpuJJB3o6rYc76yrsoyIBAHR1DyOV7pTT011Gg+VlSmvfLWX0T3a0TM2ytfh1NmsH7vOSuxud2N8y5uJZC3QS0S6i0gIcCWu4ejdLQVmOPPTgI+dax9VUtWDwHERGe301roWWNLwobcMq3ZksP9oPtNHNc0bEGsTE+W6r+StDel2X4kxPuS1ROJc85gNLAO2Aa+r6hYRuV9EpjjFngfai8hO4FdARRdhEUkFHgb+T0TS3Hp8/QJ4DtgJ7ALe99YxNHcLVu+jQ2Qo5w/o5OtQTtmssa673R+zsxJjfMarV1dV9T3gvUrrfu82XwBcVs2+idWsTwYGNlyULVP6sXw+/uYQPx/nah7yV+0jQ5kxJpGnV+5i9tk96d3R/5rojPF3/vsNYupl4Vf7UODKEf51kb0qN53Vg4jgQB5dbmclxviCJZIWqLi0jIVr9zO+Tyxd20X4Opx6a9sqhOvO7M67Xx9k64Fa75U1xjQwSyQt0IdbD5GRU+h3XX5rcsOZPWgdFsTfln3j61CMaXEskbRAC1bvpUubcH7cO9bXoTSY6Ihgfj6uJ59sz2DNbnsStDGNyRJJC7MrI5cvdmXy01EJBAY0/XG16uL/xiTSsXUoD33wDTX0IjfGNDBLJC3Mf1bvIzhQuDypa+2F/Ux4SCC3n9ObdfuO8eHWQ74Ox5gWwxJJC1JQXMqilP2cP6ATMVGhvg7HKy4bHk+PmFb8bdl2SsvsrMSYxmCJpAV5e+MBjheUcHUTfZRuQwgKDODO8/qw43AubyTvr30HY0y9WSJpIVSVl7/cS6/YSEZ1b+frcLxq4sBOJHVry9//t53jBcW+DseYZs8SSQuxfv8xvk7P5lo/eXhVfYgI9100gMy8Inv4lTGNwBJJC/HSF6lEhQZxyelVPr6l2RkUH81lw+N58fM9Nsy8MV5miaQFOJxTwHtfH2RaUjytQv3n4VX19evz+xAaFMiD7271dSjGNGuWSFqAV9fsp7hUufaMRF+H0qhio8KYfXZPlm87zCfbD/s6HGOaLUskzVxRSRn/WbOXH/eOoXuHVr4Op9HN/FEiPWJace9bmzlRVOLrcIxpllpOO0cL9cGW7zicU8hDlyb6OpSTvLJmn1fq/emok8cPCw0K5M8XD+KKZ1bzyIff8rsL+lezpzHmVNkZSTOmqrzw2R66tY/gx71b7nPrR/Voz1UjE3j+sz1sSjvm63CMaXYskTRjKXuz2LD/GNef2Z2AZjauVl3NmdSXDpGhzHnza4pLy3wdjjHNiiWSZuyZVbtpExHMtOHxvg7F56LDg7l/6gC2HjzOv1fu8nU4xjQrlkiaqd0ZuXy47RDXjO5GRIhdCgOYODCOi4Z05pHlO1i/L8vX4RjTbFgiaaae/2wPwQEBLa7Lb20e+MlAOrUO47aFG8ix4VOMaRCWSJqhzNxCFqWkccmwLs12lN9TFR0ezKNXDiUt6wT3Ldni63CMaRYskTRD81fvpbCkjBvO6u7rUJqkpMR23DqhF/9dn86bKWm+DscYv+fVRCIiE0Vku4jsFJE5VWwPFZHXnO1rRCTRbdtvnfXbReR8t/WpIvK1iGwQkWRvxu+PcgtLmPdFKuf0i6VnbJSvw2myZo/vyaju7fjt4q/ZsN+6BBtTH15LJCISCDwJTAL6A1eJSOW7wa4HslS1J/AI8JCzb3/gSmAAMBH4l1NfufGqOlRVk7wVv7966YtUjp0o5tYJvXwdSpMWFBjAU1cPJzYqlBtfTuZgdr6vQzLGb3nzjGQksFNVd6tqEbAQmFqpzFTgJWd+ETBBXGOcTwUWqmqhqu4Bdjr1mRrkFZbw3Ke7Gd8nhsHxbXwdTpPXrlUIz88YwYnCEm56OYX8olJfh2SMX/JmIukCuD+iLs1ZV2UZVS0BsoH2teyrwP9EJEVEbqruxUXkJhFJFpHkjIyMeh2Iv3j5y71knSjmtnN6+zoUv9GnUxSPXXU6mw9kc8ur6+1mRWNOgT9ebD9TVYfhajK7WUTGVlVIVZ9R1SRVTYqJaf7Dg+QVlvDsp7v5ce8Yhna1s5G6mNCvI3+YMoDl2w5x28L1lFgyMaZOvJlI0oGubsvxzroqy4hIEBANZNa0r6qW/zwMLMaavABYsHovR/OK7NrIKbr2jETuuaAf7339HXe8sZHSMvV1SMb4DW8mkrVALxHpLiIhuC6eL61UZikww5mfBnysquqsv9Lp1dUd6AV8JSKtRCQKQERaAecBm714DH4hO7+Yp1fu4qxeHRjera2vw/FbN5zVgzvP78OSDQf45WsbKCyxaybGeMJrY2eoaomIzAaWAYHAC6q6RUTuB5JVdSnwPDBfRHYCR3ElG5xyrwNbgRLgZlUtFZGOwGLnmeNBwCuq+oG3jsFfPPnJTo7lFzNnUl9fh+L3bh7fExH46wfb+S67gH9fM5y2rUJ8HZYxTZq4TgCat6SkJE1Obp63nOw/eoIJ/1jJlKGd+ftlQ7zyGt56dog3VH4eyalasiGdOxdtokubcF74vxEt8qFgxohIiie3Wdhofn7uLx98Q2CA8Ovz+vg6lCahIZPezDGJzF+9l4n/XMWDFw/i0mFdcM6GG0xjPeDLGG/yx15bxpGyN4t3Nx3kxrE96BQd5utwmp1u7Vtx8/iexEWH8+s3NvKL/6zjaF6Rr8MypsmxMxI/VVam/PGdrcREhTJrbA9fh9NstY0I4YazupNbWMI//redNXuOctuEXvx0VALBgfZ/mDFgZyR+a/7qvWzYf4zfTupLq1D7f8CbAkT42Y9PY+nsM+ndMZL7lm7h/EdW8f7XB62bsDFYIvFL6cfy+esH3zC2dwwXn155sADjLf3iWvPqjaN57tokEPj5f9Yx7u+f8Nynu8nOt2ebmJbL/pX1M6rK7xZ/jQJ/unhgg1/8NTUTEc7p35FxfWJYtuUQ877YwwPvbuOvy7YztlcMEwd24px+sbSJsC7DpuWwROJnlmw4wIrtGfz+wv7Et43wdTgtVlBgABcMjuOCwXFsTs9mUUoay7Z8x/JthxCBPh2jGNatLad3bUOvjlF079CK6PBgX4dtjFdYIvEjB47lM/ftLQzt2oYZYxJ9HY5xDOwSzcAu0dx3UX82pWXzyfbDpOzN4u0NB07q3tu+VQixrcPoEBlCTGQokWFB7M08QUhQAEEBQoAIgc7PAHGd/QQIBDjrggKEoEAhKCCAkKAAwoICCA0OJDw4kMAAOzM1vmOJxE8UlZRx8yvrKClVHr58iH1xNEEiwpCubRjiDJpZWqbsOZLH7oxc9hzJIzUzj4ycQjJyi9idkUdeUQk5+SWUNsBNweHBgUSGBhEVHkTb8BAO5xSQ0C6C02IiOS02kkjrkGG8yH67/MRDH3zD+n3HePKnw+gRE+nrcIwHAgOEnrGR9Iyt/vN6Zc0+SsrKKC1VSlUpLVPK1HUtrPxnqSplZa7EVFJWRnGpUlxaRkFxKQXFpZwoLiW3oIS8whKy84v59nAOKfuyTnqduOgw+se1ZkDn1vTv3JohXdsQFx3u7bfAY3Zjpn+zROIHPth8kOc/28P/jUnkgsFxvg7HNLCggACCGrj/5CXDupCWdYKdh/PYlZHLt4dy2HrgOJ9sP0x5j+WOrUM5vWtbhndry/DEtgzsHE1IQwdiWgRLJE3clgPZ/PqNTQzp2oa7J/fzdTjGT4QFB9IzNoqesVEnrS8oLmXrweNs3H+MDfuPsX7fMT7Y8h0AoUEBDO3ahlHd2zGiezuGJbS1e5SMR+y3pAlLPZLHjBe+IiosiKemD7P/Fk29hQUHMiyhLcMSvn/cwOGcAlJSs1ibmsXa1KM88clOyj52Nc0N6NyaEYntGJHYluHd2hETFerD6E1TZYmkiTp8vIBrXlhDaZmy8KZRdG7TdNqzTfMSGxXGpEFxTBrkajbNKShm3b5jrN1zlK9SjzJ/9V6e/2wPAAntIjg9oQ1DnU4F/eNaExYc6MvwTRNgiaQJOpxTwLUvfEVmbhGv3ji6xou1xjS0qLBgftw7hh/3dj2iurCklM3px1m3N4vkvUdZvTuTJRsOAK6zltNiWjGgczR9O0XRu2MUPWMj6dImnADrWdhiWCJpYnYezmHGC2s5mlfEczOSKrqSGuMroUGBrgvy3dpyI64BQr/LLmDD/iw2px9ny4FsPt95hMXr0932CSChXQTd2reia7twOkeHE9cmjE6tw4iJCiUmKpSIEPv6aS7sk2xCvtpzlBtfTiY4UHht1mgGx1sSMU1Tp+gwJkbHMXHg970Ij50oYufhXL49lEtqZh6pzr0zX+46Ql7RDx9bHB4cSLtWIbRtFUxBURlhIa6bK11TwPfLzs+IkCAiQgIJDQqwoYGaGEskTUBZmfLC53v46wfbiW8XzkszR9K1nQ1/0pT401MiwffxJrZvRWJ711MlVZWC4jKy84s5XlBMbkEJOYUl5BYUc6KolBNFpRSWlHIsv5j84lLyi0qoaVDlQBEiQgKJDAty3YQZFkTr8GCinaltRAhtI0Ksc0ojskTiY+nH8vn16xv5cncm5/TryN+mDbZnhJtmRURcZxUhgR49gE1VKS5VV1IpLiW/yLnxsqiUE0UlnCgqJa+whFxnOpxTSE5B8Q+ST6vQIP67Lo3uHVrRIyaS02Ja0btjFF3bRdjIEA3MEomPFBSX8tIXqa6ulmXKXy8dzGVJ8XbKblo8ESEkSAgJCvB4oMsyVXIKXHf2Z50oIiuviKN5RQQGCCu+zeCNlLSKsqFBAfSMjaRvp9b07RRFv7jW9IuLon2kdW0+VZZIGllRSRlvrU/nkeXfcjC7gHF9Yrh/ykAS2ltTljGnKkCkomkrwa1ZuHyIlJyCYnYezmXH4Vx2HMph+6FcPt2RwZvrvk8wHVuH0j/ONYTMgM7R9I9rTUK7COt95gFLJI1k/9ETLFy7j9fWpnEkt5AhXdvw8OVDOeO09r4OzZhmLyosmNMT2nK6242YAJm5hXzznWv4mK0Hj7P1wHFW7ThS8eTLViGB9HXOWPp2cv3s3TGKqDB7JIA7SyReoqp8eyiX5dsO8dG2Q6zffwwBzu4by/TR3RjXO8aasYzxsfaRofyoZyg/6tmhYl1BcSnfHsph28HjbDvoSjJL1h9gQeH3HRg6R4fRs2MUvWMj6RETSfcOrTgtphUxUaEt8u/aq4lERCYCjwKBwHOq+pdK20OBl4HhQCZwhaqmOtt+C1wPlAK3quoyT+r0hZLSMtKy8tmVkcs33+Wwbm8W6/cf42heEQCDukTzy3N6c+nweLrYHerGNGlhwYEMjm9zUvd7VSX9WD7bv8vhm+9ynG7OOczfnUlhSVlFufDgQBLaRdC1XQRd2oTRuU04cW3C6dQ6jNioUGJbN8/7Z7x2RCISCDwJnAukAWtFZKmqbnUrdj2Qpao9ReRK4CHgChHpD1wJDAA6A8tFpLezT211NphvD+WQlVdEXlEJeYWlZOcXc+xEEcdOFHMkt5CD2QV8d7yAg8cKKCr9/pepZ2wkE/rGMrxbW8b1ifWop4oxpukSEeLbRhDfNoIJ/TpWrC8rUw5k57M7I489R/LYd/QEezNPsP/oCdbsySSnoOQHdZXfP9M+MoTo8GDaRIQQHR5EZGgwUWFBtAoJJCI0yLl3JpCwYNe9MyHOFBwYQEhgAEGBrgehBQcEEBDgevCZ+4PRAkQQ5wFp3ubN1DgS2KmquwFEZCEwFXD/0p8KzHXmFwFPiOuopwILVbUQ2CMiO5368KDOBvOL/6xj5+HcH6wPDw6kfWQIcdFhDI5vw6SB4ZwW4+pi2DM20h6pakwLERDwfYIZ6wwp4+54QTEHjxVwOKeAQ8cLOXS8gKN5rl5lmXlFHMsvJi0rn+z8YnIKiikurf9Dzir75o8TvT4emjcTSRdgv9tyGjCqujKqWiIi2UB7Z/3qSvt2ceZrqxMAEbkJuMlZzBWR7adwDKeqA3CkEV/P1+x4mz+/PObpp76rXx5vVcIf8qhYdcfbzZOdm19jnUNVnwGe8cVri0iyqib54rV9wY63+Wtpx2zHWzfeHEMgHejqthzvrKuyjIgEAdG4LrpXt68ndRpjjGlE3kwka4FeItJdREJwXTxfWqnMUmCGMz8N+FhV1Vl/pYiEikh3oBfwlYd1GmOMaURea9pyrnnMBpbh6qr7gqpuEZH7gWRVXQo8D8x3LqYfxZUYcMq9jusieglws6qWAlRVp7eOoR580qTmQ3a8zV9LO2Y73joQ1wmAMcYYc2psnGVjjDH1YonEGGNMvVgiaSAiMldE0kVkgzNNdtv2WxHZKSLbReR8X8bZkERkonNMO0Vkjq/j8RYRSRWRr53PNdlZ105EPhSRHc7PtrXV01SJyAsiclhENrutq/L4xOUx5zPfJCLDfBf5qavmmJvt37CIdBWRT0Rkq4hsEZHbnPUN8jlbImlYj6jqUGd6D6DScC8TgX85w8f4NbchcCYB/YGrnGNtrsY7n2t5X/s5wEeq2gv4yFn2V/Nw/W66q+74JuHqRdkL1w2/TzVSjA1tHj88Zmi+f8MlwB2q2h8YDdzsHFeDfM6WSLyvYrgXVd0DuA/34s8qhsBR1SKgfLialmIq8JIz/xLwEx/GUi+qugpXr0l31R3fVOBldVkNtBGROPxMNcdcHb//G1bVg6q6zpnPAbbhGi2kQT5nSyQNa7ZzGviCW1NHVUPFdPnhrn6nuR5XVRT4n4ikOEPvAHRU1YPO/HdAx6p39VvVHV9z/9yb/d+wiCQCpwNraKDP2RJJHYjIchHZXMU0Fdep32nAUOAg8A+fBmsa0pmqOgzX6f7NIjLWfaNzE22z7Uff3I/PTbP/GxaRSOBN4HZVPe6+rT6fc7Mda8sbVPUcT8qJyLPAO85icx3Wpbke1w+oarrz87CILMbVrHFIROJU9aBzyn/Yp0E2vOqOr9l+7qp6qHy+Of4Ni0gwriTyH1X9r7O6QT5nOyNpIJXaDy8GynuDVDfci79rEcPViEgrEYkqnwfOw/XZug/vMwNY4psIvaa641sKXOv06hkNZLs1jfi15vw3LCKCaySRbar6sNumhvmcVdWmBpiA+cDXwCbnQ4hz2/Y7YBewHZjk61gb8JgnA986x/Y7X8fjpWPsAWx0pi3lx4nrcQcfATuA5UA7X8daj2N8FVdTTjGutvDrqzs+QHD11tvl/L4n+Tr+BjzmZvs3DJyJq9lqE7DBmSY31OdsQ6QYY4ypF2vaMsYYUy+WSIwxxtSLJRJjjDH1YonEGGNMvVgiMcYYUy+WSEyTJiKlzkisW0Rko4jcISJ+93srIs819qCWIjLUfQRbY7zF7mw3TV2+qg4FEJFY4BWgNXBffSoVkSBVLWmA+Dyiqjc01mu5GQokAe811gs29vtqmga/+8/OtFyqehjXkNaznTtuA0XkbyKy1hlob1Z5WRH5jbieIbJRRP7irFshIv8U1zNFbhORGBF509l/rYj8yCk3UkS+FJH1IvKFiPRx1g8Qka+cM6RNItLLWX+12/p/VzXEuPPaSc58rog86MS2WkR+MOCjiESKyIvOMWwSkUvL93UrM01E5jnzlznjvm0UkVXOaAP3A1c4cV0hrmdPvOXUt1pEBjv7zhWRl0TkUxHZKyKXiMhfndf+wBlaAxEZLiIrxTV45bLyO8GreF9PiqWeH7vxB76+49Imm2qagNwq1h3DNUrpTcA9zrpQIBnojmtwxS+ACGdb+d26K4B/udXzCq4BGQEScA0fAa4zniBn/hzgTWf+cWC6Mx8ChAP9gLeBYGf9v4Brq4h5Bc7dwbjuML7Imf9r+TFUKv8Q8E+35baV3w9gGjDPmf8a6OLMt3F+/h/whFv5x4H7nPmzgQ3O/FzgMyAYGAKcwLl7G1iMa2jxYOc9jXHWXwG8UM37+oNYbGrekzVtGX92HjBYRKY5y9G4xkE6B3hRVU8AqKr7cydec5s/B+jvGoYIgNbiGh01Gnjp/9u7nxAbozCO49+fSRmF0OwUjSKZpEYxsiCsrCYTCxt2I42VBZFSyr+dLCgLNhYWs2T+lFFCE8Mwf0rKXshCCtPMY3HOnXlnunfG7c7CTL/P6nbOeZ/7vLfuPb3n3J6TnziC9CMK8BI4L2kd0BkRHyXtB5qBVzlOPXMXcPzDVEHAAeBgmTEHSPXLyPfwfY6Yz4F7kh4CnRXG7AEO53hPJK2VtDL3PY6IMUlDQB3QlduHgA3AZqAJ6M33WUcqMVJS/Fz/JRdbRDyR2IIiqREYJ/1YC+iIiO4ZY2Y7CvVn4fUSYFdE/Jpx/S2gLyJalc5ueAoQEQ8k9QOHgEd5KU3A/Sph7K0AAAGNSURBVIg4V8VtjEVEqTbRONV9D4s1jZZNNka0S9qZcxuQ1FxFTIDfOc6EpGJ+Ezk/ASMR0VLh+snPtVwuEfGtynxsAfEeiS0YkhqA26TlmgC6gZOFNfxNShV6e4ETkpbn9jUVQvYAHYX42/PLVUyVzD5e6G8EPkXETVKV1G2kgndt+Y8ApTOw18/D7fYCpwrvXTpk6bOkLUr/XGst9G+MiP6IuAh8IZUA/wGsKMR8BhzL4/cCX2PGmRSz+AA0SGrJ1y+VtLXcwAq52CLmicT+d/V5s3iEVJ20B7iU++4Co8AbScPAHdLeRhepeutrSYPAmQqxTwM78ubzKNCe268DVyS9ZfrTwhFgOMdsIh1FOgpcIJ2g+J40AczH0bOXgdWlTWtgX24/S1oWe8H0paUbeXN8OPe9A/pIS3eDko6S9kKac55XmSofPqdIxym3AddyPoPA7grDy+Vii5ir/5qZWU38RGJmZjXxRGJmZjXxRGJmZjXxRGJmZjXxRGJmZjXxRGJmZjXxRGJmZjX5C9lduu2JExD1AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The mean decrease in the number of customers on Day 62 is: 25.18\n", - "The median decrease in the number of customers on Day 62 is: 9.10\n" - ] - } - ], "source": [ - "cust_mm = 'Mean decrease: {:.2f} \\nMedian decrease: {:.2f}'.format(data[\"cust_dec_62\"].mean(), data[\"cust_dec_62\"].median())\n", - "cust_dist = sns.distplot(data[\"cust_dec_62\"], kde = True, label=cust_mm)\n", - "cust_dist.set(xlabel='Decrease in customers', ylabel='Normalised count', title='Distribution of customers')\n", + "Using a mean/median of the reference period, obtained by taking the midpoint of the minimum and maximum values over for each distance measure, a value can be reconstructed for the measurement on Day 62 (for each location) using:\n", + "\n", + "\\begin{equation}\n", + "\\textrm{value} = \\frac{\\textrm{min} + \\text{max}}{2} - \\textrm{decrease.}\n", + "\\tag{1}\n", + "\\end{equation}\n", + "\n", + "We can then plot the maximum and minimum values for the reference period, as well as the reconstructed Day 62 variables to observe the behaviour of consumer spending after the event." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dist = data[\"distance\"]\n", + "\n", + "cust_min = data[\"cust_ref_min\"]\n", + "cust_max = data[\"cust_ref_max\"]\n", + "cust_recon = data[\"recon_cust_val\"]\n", + "\n", + "spend_min = data[\"spend_ref_min\"]\n", + "spend_max = data[\"spend_ref_max\"]\n", + "spend_recon = data[\"recon_spend_val\"]\n", + "\n", + "trans_min = data[\"trans_ref_min\"]\n", + "trans_max = data[\"trans_ref_max\"]\n", + "trans_recon = data[\"recon_trans_val\"]\n", + "\n", + "sales_min = data[\"sales_ref_min\"]\n", + "sales_max = data[\"sales_ref_max\"]\n", + "sales_recon = data[\"recon_sales_val\"]\n", + "\n", + "fig1 = plt.figure()\n", + "fig1.set_figheight(12)\n", + "fig1.set_figwidth(12)\n", + "\n", + "plt.subplot(411)\n", + "plt.plot(dist, cust_min, label='Min. # of Customers (Ref.)')\n", + "plt.plot(dist, cust_max, label='Max. # of Customers (Ref.)')\n", + "plt.plot(dist, cust_recon, label='Day 62 # of Customers')\n", + "plt.xlabel('Distance from event (km)')\n", + "plt.ylabel('Customers')\n", + "plt.title('Effect on Number of Customers on Day 62')\n", "plt.legend()\n", - "plt.show()\n", "\n", - "print(\"The mean decrease in the number of customers on Day 62 is: %.2f\" % data[\"cust_dec_62\"].mean())\n", - "print(\"The median decrease in the number of customers on Day 62 is: %.2f\" % data[\"cust_dec_62\"].median())" + "plt.subplot(412)\n", + "plt.plot(dist, spend_min, label='Min. Median Spending Amt.(Ref.)')\n", + "plt.plot(dist, spend_max, label='Max. Median Spending Amt. (Ref.)')\n", + "plt.plot(dist, spend_recon, label='Day 62 Median Spending Amt.')\n", + "plt.xlabel('Distance from event (km)')\n", + "plt.ylabel('Median Spending Amount')\n", + "plt.title('Effect on Median Spending on Day 62')\n", + "plt.legend()\n", + "\n", + "plt.subplot(413)\n", + "plt.plot(dist, trans_min, label='Min. # of Transactions (Ref.)')\n", + "plt.plot(dist, trans_max, label='Max. # of Transactions (Ref.)')\n", + "plt.plot(dist, trans_recon, label='Day 62 # of Transactions')\n", + "plt.xlabel('Distance from event (km)')\n", + "plt.ylabel('Transactions')\n", + "plt.title('Effect on Number of Transactions on Day 62')\n", + "plt.legend()\n", + "\n", + "plt.subplot(414)\n", + "plt.plot(dist, sales_min, label='Min. Sales Amt. (Ref.)')\n", + "plt.plot(dist, sales_max, label='Max. Sales Amt. (Ref.)')\n", + "plt.plot(dist, sales_recon, label='Day 62 Sales Amt.')\n", + "plt.xlabel('Distance from event (km)')\n", + "plt.ylabel('Total Sales Amt.')\n", + "plt.title('Effect on Total Sales Amount on Day 62')\n", + "plt.legend()\n", + "\n", + "plt.tight_layout(pad=0.4, w_pad=0.6, h_pad=1.0)\n", + "fig1.text(0.5,-0.05,\n", + " \"Figure 2: The reconstructed values for Day 62 of each variable plotted against their respective minimums and\\n maximums over the reference period\",\n", + " size=12, ha=\"center\",transform=ax1.transAxes)\n", + "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "From the above the mean decrease of the distribution of customers \n", + "Using the data recorded, for each of the three distance recorded, the mean and standard deviation of the reference period can be calculated. The z-score for each observed value on Day 62 can be computed using:\n", "\n", - "What does the mean tell us? What does the median tell us?" + "\\begin{equation}\n", + "\\textrm{Z} = \\frac{\\textrm{X} - \\mu}{\\sigma},\n", + "\\tag{2}\n", + "\\end{equation}\n", + "\n", + "where X is the observed value, \\mu and \\sigma are the mean and standard deviation (respectively) of the reference period." ] }, { "cell_type": "code", - "execution_count": 55, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4XNW19/HvT12WZcuW5SYX2bjTsTHNIZjegoFQA4QkJLwESM9NIAmk55LkXpJwQwkBEiAh9GLAYKoJ1UY2Nu623CXc5CLLtmS19f5xjsggVEaWRjOS1ud55tHMKfuso5Fmzd77nL1lZjjnnHP7KyneATjnnOvcPJE455xrE08kzjnn2sQTiXPOuTbxROKcc65NPJE455xrE08krkWS7pJ0UzuVNUzSbknJ4etZkr7aHmWH5b0g6cr2Kq8Vx/2VpFJJm+Jw7LWSTg6f/0jSPR0dQ0fpTufamaTEOwAXX5LWAgOAGqAWWAI8ANxtZnUAZnZNK8r6qpm90tQ2ZrYe6Nm2qD8+3s+AUWZ2eUT5Z7RH2a2MYxjwPWC4mW3p6ONHMrPfxPP4Hak7nWui8xqJA/icmWUDw4FbgB8C97b3QSR11S8uw4Bt8U4izsWLJxL3MTMrM7PpwMXAlZIOApD0d0m/Cp/3k/ScpJ2Stkt6U1KSpAcJPlCfDZuufiCpQJJJukrSeuC1iGWRSeUASXMk7ZL0jKS+4bFOkFQcGWN904ak04EfAReHx1sQrv+4qSyM6yeS1knaIukBSb3DdfVxXClpfdgs9eOmfjeSeof7bw3L+0lY/snAy8DgMI6/N7LvCZKKw9/JFkkbJZ0r6UxJK8Lf448itk+SdIOkVZK2SXq0/ncSrr8ijGFbw5gl/UzSPyJePyZpk6QySf+WdGDEur9Lul3S85LKJc2WdEAT558h6R/hMXdKel/SgIjf+X839h6G64+W9E643wJJJ0SsmyXpl5LeDmN4SVK/1p5rS++npExJ90vaIWlp+F584m/L7T9PJO5TzGwOUAx8ppHV3wvX5RE0if0o2MWuANYT1G56mtnvIvb5LDAeOK2JQ34R+AowiKCJ7bYoYnwR+A3wSHi8QxvZ7EvhYyowkqBJ7c8NtpkCjAVOAm6WNL6JQ/4f0Dss57NhzF8Om/HOAD4K4/hSE/sPBDKAfOBm4K/A5cBEgt/zTZJGhNt+Azg3PM5gYAdwO4CkCcCdwBXhulxgSBPHBHgBGA30B+YB/2yw/hLg50AfoAj4dRPlXBme/9DwmNcAFRHrG30PJeUDzwO/AvoC3weekJQXse8XgC+HMaaF2+zPuULT7+dPgQKC9+8Ugt+9ayeeSFxTPiL4x2+omuDDYriZVZvZm9bygG0/M7M9ZlbRxPoHzWyRme0BbgIuUtgZ30aXAbea2Woz2w3cCFzSoDb0czOrMLMFwALgUwkpjOUS4EYzKzeztcD/EnzARasa+LWZVQMPA/2AP4XlLSbom6o/9jXAj82s2Mz2AT8DLgjjvgB4zsz+Ha67Cahr6qBmdl94jPpyDq2vlYWeMrM5ZlZDkGQOayb+XII+qVozm2tmuyLWN/UeXg7MMLMZZlZnZi8DhcCZEfv+zcxWhH8fj0bE0KpzDTX1fl4E/MbMdphZMVF8WXHR80TimpIPbG9k+e8Jvrm+JGm1pBuiKGtDK9avA1IJPmjbanBYXmTZKQQ1qXqRV1ntpfELAfqFMTUsK78VsWwzs9rweX1C3RyxviLi2MOBp8KmoJ3AUoILIQYQnNPHv6/wg3tbYweUlCzplrCJbBewNuJ86kVz/gAPAjOBhyV9JOl3klIj1jf1Hg4HLqw/l/B8phB8GWkphqjPtbVl0fLfpGsFTyTuUyQdSfAh+VbDdeG32++Z2UjgHOC7kk6qX91EkS3VWIZGPB9G8O23FNgD9IiIK5mgSS3acj8i+CCLLLuGT36AR6M0jKlhWSWtLCdaG4AzzCwn4pFhZiXARiJ+X5J6ENQUGvMFYBpwMkGzVEH9bq0NKKx9/tzMJgDHAmcTNGfVa+o93EBQW4k8lywzuyWKw7bmXKMpK7JZbGhTG7rW80TiPiapl6SzCZpe/mFmCxvZ5mxJoyQJKCP4plzf3LCZoA26tS6XNCH8oPgF8Hj47X0FkCHprPDb70+A9Ij9NgMFkpr6O/4X8B1JIyT15D99KjWtCS6M5VHg15KyJQ0Hvgv8o/k999td4bGGA0jKkzQtXPc4cLakKZLSCH5fTZ1/NrCP4Ft8D4Lz3y+Spko6OEzmuwgSRWQzU1Pv4T+Az0k6LawhZSi4+KClvg5o3bm25FHgRkl9wn6b6/ezHNcITyQOgiutygm+Pf4YuJWg87Mxo4FXgN3Au8AdZvZ6uO6/gZ+ETRjfb8XxHwT+TtAskQF8E4KryIBrgXsIvv3vIejor/dY+HObpHmNlHtfWPa/gTVAJUFH9v74Rnj81QQ1tYfC8mPhT8B0gubDcuA94CiAsD/luvD4Gwk64pu6+ugBgmamEoI+mPfaENNAgg/2XQRNbW8Q/G7rNfUebiCoFf0I2ErwN/ZfRPHZ08pzbckvwn3XEPz9Pk6QZF07kE9s5ZxrC0mzCGqwneYuc0lfBy4xs8/GO5auwGskzrkuT9IgSccpuEdnLMFl7E/FO66uoqveaeycc5HSgL8AI4CdBP2Ad8Q1oi7Em7acc861iTdtOeeca5Nu0bTVr18/KygoiHcYzjnXqcydO7fUzPJa2q5bJJKCggIKCwvjHYZzznUqkta1vJU3bTnnnGsjTyTOOefaxBOJc865NolpIpF0uqTlkooaGyVWUrqkR8L1syUVhMsnS5ofPhZIOi9in7WSFobrvOPDOefiLGad7eHgbrcTTCJTDLwvabqZLYnY7Cpgh5mNknQJ8FuC2fkWAZPMrEbSIGCBpGcjBtubamalsYrdOedc9GJZI5kMFIWTClUR3Ek6rcE204D7w+ePAydJkpntjUgaGbQ8XLhzzrk4iWUiyeeTk8cU8+mJgD7eJkwcZYTzDUg6StJiYCFwTURiMYJRUedKurqpg0u6WlKhpMKtW7e2ywk555z7tITtbDez2WZ2IHAkwTwCGeGqKWZ2BME82ddJOr6J/e82s0lmNikvr8X7aZxzzu2nWCaSEj45C9kQPj2j3MfbhPNR96bBVJpmtpRg7ouDwtcl4c8tBKN3To5B7M4556IUyzvb3wdGSxpBkDAuIZj6M9J04EqCCZIuAF4zMwv32RB2tg8HxgFrJWUBSWZWHj4/lWDCGufcfnho9vp2L/MLRw1r9zJdYotZIgmTwPXATCAZuM/MFkv6BVBoZtOBe4EHJRUB2wmSDcAU4AZJ9dN5XmtmpZJGAk8Fs7ySAjxkZi/G6hycc861LKZjbZnZDGBGg2U3RzyvBC5sZL8H+eQ0nvXLVwOHtn+kzjnn9lfCdrY755zrHDyROOecaxNPJM4559rEE4lzzrk28UTinHOuTTyROOecaxNPJM4559rEE4lzzrk28UTinHOuTTyROOecaxNPJM4559rEE4lzzrk28UTinHOuTTyROOecaxNPJM4559rEE4lzzrk28UTinHOuTTyROOecaxNPJM4559rEE4lzzrk28UTinHOuTWKaSCSdLmm5pCJJNzSyPl3SI+H62ZIKwuWTJc0PHwsknRdtmc455zpWzBKJpGTgduAMYAJwqaQJDTa7CthhZqOAPwC/DZcvAiaZ2WHA6cBfJKVEWaZzzrkOFMsayWSgyMxWm1kV8DAwrcE204D7w+ePAydJkpntNbOacHkGYK0o0znnXAeKZSLJBzZEvC4OlzW6TZg4yoBcAElHSVoMLASuCddHUybh/ldLKpRUuHXr1nY4Heecc41J2M52M5ttZgcCRwI3Sspo5f53m9kkM5uUl5cXmyCdc87FNJGUAEMjXg8JlzW6jaQUoDewLXIDM1sK7AYOirJM55xzHSiWieR9YLSkEZLSgEuA6Q22mQ5cGT6/AHjNzCzcJwVA0nBgHLA2yjKdc851oJRYFWxmNZKuB2YCycB9ZrZY0i+AQjObDtwLPCipCNhOkBgApgA3SKoG6oBrzawUoLEyY3UOzjnnWhazRAJgZjOAGQ2W3RzxvBK4sJH9HgQejLZM55xz8ZOwne3OOec6B08kzjnn2sQTiXPOuTbxROKcc65NPJE455xrE08kzjnn2sQTiXPOuTbxROKcc65NPJE455xrE08kzjnn2sQTiXPOuTbxROKcc65NPJE455xrE08kzjnn2qTFYeQl9W1kcbmZVccgHuecc51MNDWSecBWYAWwMny+VtI8SRNjGZxzzrnEF00ieRk408z6mVkucAbwHHAtcEcsg3POOZf4okkkR5vZzPoXZvYScIyZvQekxywy55xznUI0U+1ulPRD4OHw9cXAZknJBPOpO+c6wEOz18c7BOcaFU2N5AvAEODp8DEsXJYMXBS70JxzznUGLdZIzKwU+EYTq4vaNxznXEcyMyTFOwzXyUVz+e8Y4PtAQeT2ZnZiFPueDvyJoPZyj5nd0mB9OvAAMBHYBlxsZmslnQLcAqQBVcB/mdlr4T6zgEFARVjMqWa2paVYnHNQU1vHsk3lrC7dw+qtu9m2u4oBvdMZ1rcHw3OzOGhwb5KTPLG41ommj+Qx4C7gHqA22oLDPpTbgVOAYuB9SdPNbEnEZlcBO8xslKRLgN8S9MGUAp8zs48kHQTMBPIj9rvMzAqjjcU5B6Xl+3j4/fV8VFZJarIoyM1idP+ebNxVybz1O3lv9Xbeyinl/CPyGdQ7M97huk4kmkRSY2Z37kfZk4EiM1sNIOlhYBoQmUimAT8Lnz8O/FmSzOyDiG0WA5mS0s1s337E4Vy398H6HTwz/yNSksWlk4cxflA2KUn/6SKtM2NRSRnPfriR218v4oSx/Zk6tr/XTlxUokkkz0q6FngK+PiD3My2t7BfPrAh4nUxcFRT25hZjaQyIJegRlLv88C8Bknkb5JqgSeAX5mZNTy4pKuBqwGGDRvWQqjOdV2vLN3Ma8u2UJCbxcVHDqV3ZuqntkmSOGRIDqPyevLcwo28tmwL23bv48JJQ0nyPhTXgmgSyZXhz/+KWGbAyPYP55MkHUjQ3HVqxOLLzKxEUjZBIrmCoJ/lE8zsbuBugEmTJn0q0TjXHczfsIPXlm1h4rA+nHt4fos1jB7pKVw0aSgDstOZuWQzyUlJnH9EvicT16xortoasZ9llwBDI14PCZc1tk2xpBSgN0GnO5KGENSCvmhmqyLiKQl/lkt6iKAJ7VOJxLnubsP2vTw5r4QR/bKYdvjgVjVTfXZsf6rrjNeWbSElSUw7bLBf3eWa1GQikXSimb0m6fzG1pvZky2U/T4wWtIIgoRxCcH9J5GmE9R43gUuAF4zM5OUAzwP3GBmb0fElALkmFmppFTgbOCVFuJwrtspq6jmH++to1dmKpdNHvaJ/pBonTSuPzW1xr9XbiWnRyonjO0fg0hdV9BcjeSzwGvA5xpZZ0CziSTs87ie4IqrZOA+M1ss6RdAoZlNB+4FHpRUBGwnSDYA1wOjgJsl3RwuOxXYA8wMk0gyQRL5a8un6Vz3YWY8NncDVbV1fGXKCHqkR9OC/WmSOO3AAeysqOLlJZsZnpvFiH5Z7Ryt6wrUSD91lzNp0iQrLPSrhV3nFu0QKfM37ODRwmKmHTaYo0bktvm4ldW13P56EdW1dVx/4mh6tpCYvnCUX9zSVUiaa2aTWtquuaat7za3o5nduj+BOedip6KqlucXbmJIn0yOLGhsKqHWy0hN5tLJw7jrjVU8VriBK48t8M539wnNNZxmh49JwNcJLtXNB64Bjoh9aM651nppySb27qvh3MPa90qrwTmZnHXIIFZu2c07RaUt7+C6lSZrJGb2cwBJ/waOMLPy8PXPCDrCnXMJZMP2vcxZs52jD8hlcE7735k+uaAvyzeV8/LSzYwf1Ivcnj6LhAtEcynHAILxrupVhcuccwnCzHh+4UZ6ZqRwyvjY/HtKYlpY03lqfgndoX/VRSeaRPIAMEfSz8LayGzg/phG5ZxrlaKtu1m/fS9Tx/YnIzU5ZsfpnZnK6QcNZPXWPcxdtyNmx3GdS4uJxMx+DXwF2BE+vmxmv4l1YM656JgZry7dQu/MVCYN7xPz4x1Z0JeC3CxmLNrIrsrqmB/PJb5o71KaTzAK8FPANkl+fZ9zCaJoS1AbOWFsHinJrb/xsLWSJM4/PJ+aWmPGwo0xP55LfC3+1Un6BrAZeBl4jqCj/bkYx+Wci4KZ8eqyoDYysQNqI/X6ZafzmdF5fFhcxprSPR12XJeYovn68i1grJkdaGaHmNnBZnZIrANzzrVsZWRtZD+GQWmLz47JIyczlWcXfERtnXe8d2fR/OVtAMpiHYhzrvVeX76FnA6ujdRLS0nizIMHsWlXJXPWbOvw47vEEc0gPKuBWZKe55Pzkfid7c7FUfGOvazbtpezDh7U4bWRegcO7sWovJ68vHQzBw/JaXH4FNc1RfPXt56gfySN/9ztnh3LoJxzLXu7qJT0lKS41EbqSeLsQwZRVVPHy0s2xS0OF1/RzEdSf4d7DzPbG/uQnHMtKauoZmFJGceMzI3pfSPR6N8rg2NG5vLOqm0cPbLtg0S6zieaq7aOkbQEWBa+PlTSHTGPzDnXpPdWb8MMjjmgX7xDAeDEcQPISE1mxsKNfsd7NxRN09YfgdMIZy40swXA8bEMyjnXtKqaOuas2c74Qb3om5UW73AAyExL5uTx/Vm1dQ+vLN0S73BcB4uqh87MNjRYVBuDWJxzUZi/YScV1bUcNyoxaiP1Jo/IJa9nOr+ZsZSqmrp4h+M6UFSX/0o6FjBJqZK+DyyNcVzOuUaYGe+sKmVwTgYFuT3iHc4nJCeJMw8eyJrSPTzw7tp4h+M6UDSJ5BrgOoK5SD4CDgtfO+c62Lpte9lSvo+jR+SiBJxcasyAbI4fk8f/vVbEzr1VLe/guoRoBm0sNbPLzGyAmeWZ2eVm5ncfORcHc9ZuJz0liUOG5MQ7lEZJ4sdnjqe8spo/vboy3uG4DhLNVVsjJT0raaukLZKekTSyI4Jzzv3H3n01LCop4/BhOaSlxOcGxGiMHZjNJZOH8eC761i9dXe8w3EdIJq/xoeAR4FBwGCCUYD/FcugnHOfNm/DTmrqjMkFiX+vxndOHkNGajL//cKyeIfiOkA0iaSHmT1oZjXh4x9ARjSFSzpd0nJJRZJuaGR9uqRHwvWzJRWEy0+RNFfSwvDniRH7TAyXF0m6TYnYUOxcOzMz5qzZzrC+PRjYO6p/v7jKy07n2qkH8PKSzbyzyud47+qiSSQvSLpBUoGk4ZJ+AMyQ1FdS36Z2kpQM3A6cAUwALpU0ocFmVwE7zGwU8Afgt+HyUuBzZnYwcCXwYMQ+dwJfA0aHj9OjOAfnOrXZa7ZTunsfkwua/JdLOF85bgT5OZn86rmlPjpwFxdNIrkI+H/A68As4OvAJcBcoLCZ/SYDRWa22syqgIeBaQ22mcZ/pu19HDhJkszsAzP7KFy+GMgMay+DgF5m9p4Ft88+AJwbxTk416k9NHs9GalJHDykd7xDiVpGajI/PGMcSzbu4om5xfEOx8VQNFdtjWjm0Vynez7BEPT1isNljW5jZjUEw9U3bAD+PDDPzPaF20f+RTZWJgCSrpZUKKlw69atLZ2mcwlr594qXly0icOH9iG1A2ZAbE+fO2QQRwzL4fcvLWf3vpp4h+NiJJqrti6UlB0+/4mkJyUdHvvQQNKBBM1d/6+1+5rZ3WY2ycwm5eXltX9wznWQZ+Z/RFVtHZMK4jfK7/6SxE1nT2Br+T7umrUq3uG4GInm681NZlYuaQpwMnAvcFcU+5UAQyNeDwmXNbqNpBSgN+GYXpKGEMwR/0UzWxWx/ZAWynSuS3m0cAMH5fdiUO/MeIeyXw4f1odphw3mr2+upmRnRbzDcTEQTSKpH1frLOBuM3ueYG6SlrwPjJY0QlIaQb/K9AbbTCfoTAe4AHjNzExSDsHc8DeY2dv1G5vZRmCXpKPDq7W+CDwTRSzOdUqLSspY/NEuLpo0tOWNE9gPTh8HwC1+OXCXFE0iKZH0F+Bigqu10qPZL+zzuB6YSTA216NmtljSLySdE252L5ArqQj4LlB/ifD1wCjgZknzw0f/cN21wD1AEbAKeCGaE3WuM3qscANpKUmcc+jgeIfSJvk5mVx9/EieXfARc9dtj3c4rp2ppbkDJPUguMR2oZmtDK+cOtjMXuqIANvDpEmTrLCwuQvMnEs8ldW1HPWbV4Oxqy49nIdmr493SFH5wlHDGl2+Z18NJ/7vLAb0yuDpa48jKclvAUt0kuaa2aSWtoumZrHXzJ40s5Xh642dKYk411m9vGQzZRXVXNzJm7XqZaWn8MPTx/FhcRlPfuBdm11J57qW0Llu5NHCDeTnZHLsAYk/JEq0zj0sn8OG5vC7F5exxy8H7jI8kTiXgD7aWcFbRaV8fuKQLtUElJQkfvq5CWwp38cds4riHY5rJ55InEtAT31QghlccMSQljfuZA4f1ofzDs/nr2+uYf22vfEOx7WDJhOJpHJJu5p6dGSQznUnZsbjc4s5akRfhiXYLIjt5YenjyMlSfx6xpJ4h+LaQZOJxMyyzawX8CeCy3LzCW4A/CHwx44Jz7nuZ976Hawp3cMFE7tebaTewN4ZXDd1FDMXb+btIh8duLOLpmnrHDO7w8zKzWyXmd3JpwdfdM61k8cKi+mRlsyZBw+KdygxddWUEQztm8kvnl1CTW1dvMNxbRBNItkj6TJJyZKSJF0G7Il1YM51RxVVtTz34UbOOGgQWekp8Q4npjJSk/nxmRNYvrmcf3aSe2Rc46JJJF8gGEp+c/i4MFzmnGtnMxdvYve+mi7drBXptAMHcNyoXG59eQU79lTFOxy3n6K5IXGtmU0zs35mlmdm55rZ2g6Izblu5/G5xQzpk8lRIzrPBFZtIYmbzz6Q3ftquPXlFfEOx+2naIaRHyPpVUmLwteHSPpJ7ENzrnsp2VnB26tKOf+IrnXvSEvGDszm8qOG8c/Z61i2yS8I7Yyiadr6K3AjUA1gZh8SjOTrnGtHT80rxgwu7CbNWpG+c8oYemWm8vPpS2hp/D+XeKJJJD3MbE6DZT62gXPtqP7ekaNH9mVo365570hzcnqk8b1TxvDu6m3MXLwp3uG4VoomkZRKOgAwAEkXABtjGpVz3Uzhuh2s3baXCyZ2jQEa98elk4cxbmA2v3p+KZXVtS3v4BJGNInkOuAvwDhJJcC3ga/HNCrnupnHw3tHzjhoYLxDiZuU5CRuPnsCxTsquO/tNfEOx7VCNFdtrTazk4E8YJyZTfGrtpxrP3uranh+4UbOPLjr3zvSkmNH9ePUCQO4/bUituyqjHc4LkrRXLX1LUm9gL3AHyTNk3Rq7ENzrnvobveOtORHZ46nqraO/3lpebxDcVGKpmnrK2a2CzgVyAWuAG6JaVTOdSOPzy1maN9MJhd0j3tHWlLQL4svHzeCx+YWs6ikLN7huChEk0jqL2g/E3jAzBZHLHPOtUHxjr28s2obn+9m94605PoTR9G3Rxq/eM4vB+4MokkkcyW9RJBIZkrKBnyENefaweNziwG8WauBXhmpfPfUMcxZs52XlmyOdziuBdEkkqsIhpE/0sz2AmnAl2MalXPdQF2d8VhhMccd0I8hfbrfvSMtuXjSUEb378ktLyyj2kcHTmjNTWw1Lnx6WPhzpKQjgOFAVJeWSDpd0nJJRZJuaGR9uqRHwvWzJRWEy3MlvS5pt6Q/N9hnVljm/PDRP5pYnEs0767eRsnOCi6c5LWRxqQkJ3HjmeNYU7qHh3x04ITWXEL4HvA14H8bWWfAic0VLCkZuB04BSgG3pc03cwip0S7CthhZqMkXQL8FrgYqARuAg4KHw1dZmaFzR3fuUT3aOEGemWkcNqB3ffekZZMHdufYw/I5Y+vrOC8I/LplZEa75BcI5qbIfFr4c+pjTyaTSKhyUBReB9KFfAwn54Qaxpwf/j8ceAkSTKzPWb2FkFCca7LKdtbzQuLNjHtsHwyUpPjHU7CksSPzhzPzopq7nh9VbzDcU1oskYi6fzmdjSzJ1soOx/YEPG6GDiqqW3MrEZSGcElxi3Nvfk3SbXAE8CvrJHLOiRdDVwNMGzYsBaKc65jTf/wI6pq6rj4yO47JEq0DsrvzXmH5XPf22u44pjh5Odkxjsk10Bzne2fa+ZxduxDa9JlZnYw8JnwcUVjG5nZ3WY2ycwm5eXldWiAzrXkscINjB/UiwMH94p3KJ3C904bC8Affc6ShNRkjcTM2nplVgkQ+XVrSLissW2KJaUAvYFtzRVqZiXhz3JJDxE0oT3Qxlid6zBLN+7iw+Iybj57ApLfOxKN/JxMvnj0cO57ew1XHz+S0QOy4x2SixDN5b9IOkvSDyTdXP+IYrf3gdGSRkhKI5jDZHqDbaYDV4bPLwBea6yZKiKOFEn9wuepBDWjRdGcg3OJ4uE560lLTuK8w/PjHUqncu3UUWSlpfD7mT50SqJp8TJeSXcBPYCpwD0EH/gN5yf5lLDP43pgJpAM3GdmiyX9Aig0s+nAvcCDkoqA7URMmCVpLdALSJN0LsEQLesIbopMDct8hWDiLecSSlOXq1bX1vFI4QbGDcrmhUVdc96NWF6qe9TIXF5asplbXljGsDbO2/KFo7zvtL1Ecz/IsWZ2iKQPzeznkv4XeCGaws1sBjCjwbKbI55XAhc2sW9BE8VOjObYziWiRSVlVFbX+bha++m4UbkfT3711SkjvGkwQUTTtFUR/twraTDBlLuDYheSc13X+2u3k5uVxoh+WfEOpVNKT0nmxLF5rCndQ9GW3fEOx4WiSSTPScoBfg/MA9YC/4plUM51RVt2VbJ2216OLOjr36Tb4MgRfcnJTOXlpZt9QMcEEc3EVr80s51m9gTB8CjjzOym2IfmXNdSuG4HSYLDh+XEO5ROLSUpianj+lO8o4Llm8vjHY4jus72ZOAsoKB+e0mY2a2xDc25rqOmto5563cwflAvsn2YjzY7Ylgf3lixlVeWbmbsgGyv4cVZNE1bzwJfIrjjPDvi4ZyL0uLE9XOFAAAe9klEQVSNu9hbVcuR3sneLpKTxIlj+/PRzkqWbNwV73C6vWiu2hpiZofEPBLnurDZq7fRNyuNUf17xjuULuPQoTnMWrGFV5ZuZvygXiR5rSRuoqmRvOBztDu3/zaFneyTC/r6h107Sk4SJ44bwOZd+3xK3jiLJpG8BzwlqULSLknlkrwu6VyUZq/eRkqSmDi8T7xD6XIOGdKbfj3TmbV8K3V+BVfcRJNIbgWOAXqYWS8zyzYzH2nOuSjsq6ll/oadHJzfm6z0qOaDc62QJDF1bB6bdlWyzPtK4iaaRLIBWNTcGFjOucbN37CTfTV1HDXCO9lj5ZAhOfTNSuO1ZVv8vpI4ieYr0mpglqQXgH31C/3yX+eaZ2bMXr2dQb0zGNrGcaFc05KTglrJE/NKWL65nHEDvcGko0VTI1kDvAqk4Zf/Ohe19dv3smlXJUeNyPX7HGLssKF96NMj1WslcdJsjSS8GTHbzL7fQfE412W8s2obGalJHDq0d7xD6fKSk8Rnx/Tn6fklrNyymzE+X0mHarZGYma1wHEdFItzXUZZRTWLPypj0vC+pKf4nOwd4YjhOfTOTGXW8q3xDqXbiaaPZL6k6cBjwJ76hVHM2e5ctzV79TbM4OiRufEOpdtISUpiyqh+PL9wI2tL91DgIyx3mGj6SDIIpr89kcSYs925hFZZXcuctdsZP6gXfbPS4h1Ot3JkQV96pCXzxgqvlXSkFmsk7TB3u3PdyjPzS9hbVcuxB3htpKOlpSRx3Kh+vLxkMx/trGBwTma8Q+oWWqyRSBoi6SlJW8LHE5KGdERwznU2Zsbf3l7LwF4ZPnlVnBw9Ipf0lCSvlXSgaJq2/gZMBwaHj2fDZc65Bt5bvZ1lm8o59gC/5DdeMtOSOXpkLotKyigt39fyDq7NokkkeWb2NzOrCR9/B/JiHJdzndI9b66mb1Yahw71yavi6bhR/UhOEm+s9FpJR4gmkWyTdLmk5PBxOUHnu3MuQtGWcl5dtoUvHjOc1ORo/rVcrPRMT2FSQR/mr99JWUV1vMPp8qL5a/8KcBGwCdgIXABE1QEv6XRJyyUVSbqhkfXpkh4J18+WVBAuz5X0uqTdkv7cYJ+JkhaG+9wmbz9wCeKv/15DekoSVxw9PN6hOGDKqDwM4+2i0niH0uVFM2f7OjM7x8zyzKy/mZ1rZutb2i+8K/524AxgAnCppAkNNrsK2GFmo4A/AL8Nl1cCNwGN3VF/J/A1YHT4OL2lWJyLtS3llTz1QQkXThpCbs/0eIfjgL5ZaRyc35s5a7ezt6om3uF0aU1e/ivp5mb2MzP7ZQtlTwaKzGx1WN7DwDRgScQ204Cfhc8fB/4sSWa2B3hL0qgGMQ0CepnZe+HrB4BzgRdaiMW5mLr/nbVU19Vx1ZSR8Q7FRTh+TB4List4b/V2ThzXP97hdFnN1Uj2NPKAoBbxwyjKzicYgr5ecbis0W3MrAYoI5gbvrkyi1soEwBJV0sqlFS4dat3uLnY2bOvhn+8t57TJgz0S34TzKDemYwdkM27q0qpqqmLdzhdVpOJxMz+t/4B3A1kEvSNPAwk/NcuM7vbzCaZ2aS8PL/IzMXOo4UbKKuo5mvHJ/y/Rbd0/Jg89lTVMnfd9niH0mU120ciqa+kXwEfEjSDHWFmPzSzLVGUXQIMjXg9JFzW6DaSUoDeNH9FWElYTnNlOtdhqmrquPvfq5lc0Nen0k1QBbk9GNa3B28WlVJb50PMx0KTiUTS74H3gXLgYDP7mZntaEXZ7wOjJY2QlAZcQnBjY6TpwJXh8wuA15qbidHMNgK7JB0dXq31ReCZVsTkXLt6cl4xG8sque7EUS1v7OJCEp8dk8fOvdV8WLwz3uF0Sc3VSL5HcCf7T4CPJO0KH+WSWpwcOezzuB6YCSwFHjWzxZJ+IemccLN7gVxJRcB3gY8vEZa0lmC++C9JKo644uta4B6gCFiFd7S7OKmpreOOWas4ZEhvjh/dL97huGaMHZhN/+x03lixlTqf+KrdNXnVlpm1+Y4qM5sBzGiw7OaI55XAhU3sW9DE8kLgoLbG5lxbPffhRtZv38uPz5row6EkuKSwVvLY3GJWbCpn3CCfjrc9+e23zu2Hujrj9teLGDOgJ6eMHxDvcFwUDhmSQ06PVB/MMQY8kTi3H15asomVW3Zz3dRRJCV5baQzSE4SnxnVj3Xb97K2dE/LO7ioeSJxrpXq6ow/vrKSEf2yOPuQwfEOx7XCxOF9yUpLZtaKaC48ddHyROJcK81YtJFlm8r59smjSfbaSKdSP/HVis27WVRSFu9wugxPJM61Qm2d8YeXVzC6f0+vjXRSR4UTX905a1W8Q+kyPJE41wrPzC9h1dY9fPeUMV4b6aQy05I5ZmQuMxZtZNXW3fEOp0vwROJclKpr6/jTqyuZMKgXpx04MN7huDY4dlQ/r5W0I08kzkXpibnFrNu2l++dOsav1OrkeqancMmRw3j6gxKKd+yNdzidnicS56JQUVXLH15ZwWFDc3w48i7i6uNHIsHd/14d71A6PU8kzkXh3rdWs3nXPn581ni/i72LGJyTyeePGMLD729g867KeIfTqXkica4Fpbv3cdcbqzl1wgCOLOgb73BcO7pu6ijq6sz7StrIE4lzLbjt1ZVUVNfywzPGxTsU186G9u3B+Ufk868569nitZL95onEuWas3rqbh2av59LJQzkgr2e8w3ExcP3U0dTUGXe94X0l+8sTiXPN+O8XlpGeksS3ThoT71BcjAzL7cH5h+fzz9nrvFaynzyRONeEWcu38PKSzVx34ijystPjHY6LoetPHEVNnfEXv4Jrv3gica4R+2pq+fmzSxjZL4urpoyIdzguxobnZnHe4fk8+N46NpZVxDucTscTiXONuO+ttawp3cNPzzmQ9JTkeIfjOsC3ThqNmXHbqyvjHUqn44nEuQY2llXwf6+t5NQJA/jsmLx4h+M6yNC+PbjsqOE8WljMah+Dq1U8kTjXwK+eX0ptnXHT2RPiHYrrYNdNHUVachK3vrwi3qF0Kk3O2e66j4dmr2/3Mr9w1LB2LzNWIs9/6cZdPP/hRk4eP4A3V5bGMSoXD3nZ6XxlSgG3v76Kr59QxoGDe8c7pE7BayTOhSqqanlmfgkDe2V4k1Y3dvXxB9A7M5Xfvbg83qF0GjFNJJJOl7RcUpGkGxpZny7pkXD9bEkFEetuDJcvl3RaxPK1khZKmi+pMJbxu+7lhUUbKa+s4fNHDPG5Rrqx3pmpXDf1AN5YsZU3VmyNdzidQswSiaRk4HbgDGACcKmkho3OVwE7zGwU8Afgt+G+E4BLgAOB04E7wvLqTTWzw8xsUqzid91L0ZbdFK7bwWdG9yO/T2a8w3FxduWxBQzP7cGvnltCTW1dvMNJeLGskUwGisxstZlVAQ8D0xpsMw24P3z+OHCSgqFVpwEPm9k+M1sDFIXlOdfuKqtreeqDYnKz0jhp/IB4h+MSQHpKMj86czwrt+zmX3Pavw+xq4llIskHNkS8Lg6XNbqNmdUAZUBuC/sa8JKkuZKuburgkq6WVCipcOtWr566xpkZz8wvoayimgsmDiE12bsNXeDUCQM4ZmQut768grK91fEOJ6F1xv+aKWZ2BEGT2XWSjm9sIzO728wmmdmkvDzvOHWNe+qDEhYUl3HiuP4Mz82KdzgugUjiprMnsLOimtte85sUmxPLRFICDI14PSRc1ug2klKA3sC25vY1s/qfW4Cn8CYvt5/WbdvDTU8voiC3ByeM9VkP3adNGNyLS44cyv3vrGXpxl3xDidhxTKRvA+MljRCUhpB5/n0BttMB64Mn18AvGZmFi6/JLyqawQwGpgjKUtSNoCkLOBUYFEMz8F1UZXVtXzzXx+QnCQumjSUJJ/10DXhB6eNo1dmKjc+uZDaOot3OAkpZokk7PO4HpgJLAUeNbPFkn4h6Zxws3uBXElFwHeBG8J9FwOPAkuAF4HrzKwWGAC8JWkBMAd43sxejNU5uK7JzLjp6UUsKC7jdxccSk6PtHiH5BJYn6w0bjp7PPM37OSfs9fFO5yEFNM7281sBjCjwbKbI55XAhc2se+vgV83WLYaOLT9I3Xdyf3vrOWxucV886TRnH7QwJjc2e+6lnMPy+fJeSX87sXlnDphIAN7Z8Q7pITSGTvbndtv7xSV8svnl3LKhAF8+6TR8Q7HdRKS+NW5B1FdW8dPpy8iaIF39TyRuG5j5eZyrn1oHiP7ZXHrRYeS5Hevu1YYnpvFd04Zw8zFm3l6fsPrhro3TySuW9iwfS9X3DuH1OQk7rlyEtkZqfEOyXVCX/vMSCYX9OWmpxezftveeIeTMDyRuC5vS3kll987m4rqWh68arLfL+L2W3KSuPXiQ5Hg24984MOnhDyRuC5ta/k+vnjvHLaW7+NvXz6ScQN7xTsk18kN6dODX593MPPW7+TPrxfFO5yE4InEdVnrt+3lgrveYe22Pdx9xSSOGNYn3iG5LuKcQwdz/uH53PbqSt5c6UMweSJxXdLij8o4/853KKuo5qGvHc2U0f3iHZLrYn557kGMGZDN9Q99wJrSPfEOJ648kbguZ8bCjVz8l/dISxaPX3OM10RcTGSlp/DXL04iSfC1Bwopr+y+Azt6InFdRmV1LT95eiHX/nMeB/TvyeNfP5ZR/bPjHZbrwob27cEdl01kbekevvXw/G47hIrP2e6oqqljY1kFW8r3sWVXJdv2VLFnXw17q2qprK4FIClJJEv0SE8mOz2V7IwU+vVMp392Ov17ZdCnRyqK43hVCzbs5IYnF7J04y6uPn4k3z91LGkp/j3Jxd4xB+Ty03MO5KanF/Ffjy/gfy7ofvcoeSLphmpq65izdjv/XlHKnDXbWLChjNrwTt2UJNGvZzpZ6cnk9EgjMzWYmLLOjNo6Y29VLeWV1RTvrGDPvh0fl5mZmszQvpkM7dOD4blZVFTVkpmW3Ojx29OWXZX89sXlPDGvmH4907nvS5M4cZxPTuU61hVHD2fHnipufXkFGanJ/Prcg+L6xaqjeSLpJqpq6pi1fAszFm7k9eVbKauoJiVJHDKkN8eN6sfw3B4M6JVBTo/UqEfCraiqZUt5JZt2VVKyo4INO/aycvMWDHjwvbUcOiSHo0fmcvTIXCYO79OuiWXV1t08+O46Hi3cQE2tcc1nD+C6qQf4jYYubr5x4igqqmu5c9Yq0lOSuPnsCd0mmXgi6cLMjHnrd/LkvGKeX7iRnXuryemRyknj+3PqhAF8ZnQeWekp+z1oYWZaMsNzs4Ib/EYEyyqra1m3bS8ZaUnMXr2dO99YxZ9fLyI1WRyc35uJw/swcXgfDhmSw6DeGa36R1u3bQ9vrizlxUWbeKuolNRkcebBg/jOyWMo6Oc3Gbr4ksQPThtLZXUtf3t7Lbsra/j1eQd3iyZWTyRd0Lbd+3hyXgmPFG6gaMtuMlOTOfXAAZx7eD5TRvWL6XSyGanJjB2YzReOGgbA7n01FK7dzrurtzF37Q7uf3cdf31zDQDZGSmMHZBNQb8s+menk5edTnZGKmaGGeypqmHD9qCms2zTLjZsrwAgPyeT750yhksmDyMvOz1m5+Jca0ni5rMnkJ2Rym2vrqRkZwV3Xj6R3pldu6bsiaSLMDPeXb2Nh2avZ+biTVTXGkcMy+F3nz+Esw4ZRFZ6fN7qnukpnDC2/8czEO6rqWXxR7tY8tEulm8qZ/mmct5aWUrp7n3UNHLFS33fy4GDevPVKSOZMrofI/tldZsmA9f5SOK7p4xhWN8e3Pjkh1xw5zvcdcVEDsjrGe/QYsYTSSdXunsfT8wt5uH3N7CmdA+9MlK4/OjhXDp5GGMGJN6lr+kpyRwxrM+n7u2oqzN27K1i974akiSkIIn0zUrzpOE6pQsmDmFwTgbX/nMeZ932Jj8+awKXHzWsS/49eyLphGpq63izqJTHC4t5aUlQ+5g0vA/XTx3FWYcMIiM19ldLtbekJJHbM53cnt5U5bqOYw/ox8xvH89/Pf4hNz29iFeXbubX5x1Mfk5mvENrV55IOgkzY+nGcp5ZUMLTH5Swedc++vRI5YqjC7h08lBGJ2DtwzkHA3plcP+Xj+SBd9fxmxlLOfF/ZnHVlBF8/YSuc5WhJ5IEVp88XlqyiWcXfMSqrXtIThInjMnj5+cM4cRxA7rFFSHOdXaSuPLYAk4a35//mbmcO2at4tHCDVw1ZSSXTh5KTo+0eIfYJp5IEkx5ZTWzV2/nraJSXl6ymZKdFUhwZEFfvnzcCM48eBB9szr3H51z3dWQPj344yWH8+XjRvC7mcv47YvL+NOrKzjv8CFcNGkIhw3N6ZR9KJ5I4sjM2FK+jw/W72De+p0Urt3OguIyauuMjNQkpozqxzdPGsWJ4wb4Za7OdSGHDs3hn189mqUbd3H/O2t5cl4x/5qznvycTE4/aCAnjuvPEcPa9ybeWIppIpF0OvAnIBm4x8xuabA+HXgAmAhsAy42s7XhuhuBq4Ba4JtmNjOaMhNRTW0dm3ZVsm7bXtaU7mH11j0s37yLZRvL2banCoC05CQOyu/FNZ8dyZRReRwxPIf0lM7xR+Sc2z/jB/Xils8fwo1njueVJZuZsXAjD767jnvfWvPxTbyHD+vDuIHZjBvYiwP6Z9EjLfG+/8csIknJwO3AKUAx8L6k6Wa2JGKzq4AdZjZK0iXAb4GLJU0ALgEOBAYDr0gaE+7TUpntpqKqlqqaOqrr6qipNapr69hXU0dVTR2VNbVUVAWPPVU17KqsobyymrKKarbvrmL7nipKd+9j065KtpbvI/IWiYzUJMYOyObk8QMYNyibw4bmMGFwL08cznVTvTNT+fzEIXx+4hB276vh/bXbmb16O7PXbOMf761jX81/pvTNzUpjSJ9MBvbOoF94pWPfHqlkZwSDqfbMSCEzNZnMtOTgPqw+PWI+iGQsU9tkoMjMVgNIehiYBkR+6E8DfhY+fxz4s4IGwmnAw2a2D1gjqSgsjyjKbDdn/9+brNrauglr0pKT6JuVRt+sNHJ7pjF2YDYDe2cyqHcGw3N7MKJfFgOyM7rd6KDOuej0TE9h6tj+TA1v4q2tM9Zt28PyTeWs2baHDdsrKN4RtG4Urt3B9r1VWDOj1y/75elkJMX2S2osE0k+sCHidTFwVFPbmFmNpDIgN1z+XoN988PnLZUJgKSrgavDl7slLd+Pc4iXfkBpvINoi8s6/zl09vih859DTOO/LFYFf1Lc34PM37Zp9+HRbJR4jW3txMzuBu6Odxz7Q1KhmU2Kdxxt0dnPobPHD53/HDp7/NA1ziEasbwJoQQYGvF6SLis0W0kpQC9CTrdm9o3mjKdc851oFgmkveB0ZJGSEoj6Dyf3mCb6cCV4fMLgNfMzMLll0hKlzQCGA3MibJM55xzHShmTVthn8f1wEyCS3XvM7PFkn4BFJrZdOBe4MGwM307QWIg3O5Rgk70GuA6M6sFaKzMWJ1DHHXKJrkGOvs5dPb4ofOfQ2ePH7rGObRI1lx3v3POOdcCH6jJOedcm3gicc451yaeSBKMpG9IWiZpsaTfRSy/UVKRpOWSTotnjNGQ9D1JJqlf+FqSbgvP4UNJR8Q7xsZI+n34+/9Q0lOSciLWdYr3QNLpYYxFkm6IdzzRkDRU0uuSloR/+98Kl/eV9LKkleHPPi2VFU+SkiV9IOm58PUISbPD9+KR8CKhLscTSQKRNJXgTv1DzexA4H/C5ZFDxpwO3BEOQZOQJA0FTgXWRyw+g+Dqu9EEN4reGYfQovEycJCZHQKsAG6EzvMeRAxNdAYwAbg0jD3R1QDfM7MJwNHAdWHcNwCvmtlo4NXwdSL7FrA04vVvgT+Y2ShgB8GwUF2OJ5LE8nXglnBoGMxsS7j84yFjzGwNEDlkTCL6A/ADIPJKjmnAAxZ4D8iRNCgu0TXDzF4ys5rw5XsE9ypB53kPPh6ayMyqgPphhBKamW00s3nh83KCD+N8gtjvDze7Hzg3PhG2TNIQ4CzgnvC1gBMJhn+CBI+/LTyRJJYxwGfCqvAbko4Mlzc23Ez+p/ZOAJKmASVmtqDBqk5zDhG+ArwQPu8s8XeWOJskqQA4HJgNDDCzjeGqTcCAOIUVjT8SfIGqH2ExF9gZ8cWk070X0eqyQ6QkKkmvAAMbWfVjgvejL0HV/kjgUUkjOzC8qLRwDj8iaNZKWM3Fb2bPhNv8mKC55Z8dGVt3J6kn8ATwbTPbFTnJk5mZpIS8X0HS2cAWM5sr6YR4x9PRPJF0MDM7ual1kr4OPBne3T9HUh3BoG8JNTRMU+cg6WBgBLAg/AAYAsyTNJkEOofm3gMASV8CzgZOsv/caJUw8begs8T5KZJSCZLIP83syXDxZkmDzGxj2BS6pekS4uo44BxJZwIZQC+CeZNyJKWEtZJO8160ljdtJZangakA4fwraQQjhzY1ZExCMbOFZtbfzArMrICgKn+EmW0iOIcvhldvHQ2URTRZJAwFE6f9ADjHzPZGrOoU7wGddBihsD/hXmCpmd0asSpyGKUrgWc6OrZomNmNZjYk/Lu/hGC4p8uA1wmGf4IEjr+tvEaSWO4D7pO0CKgCrgy/ETc5ZEwnMgM4k6CTei/w5fiG06Q/A+nAy2Gt6j0zu6a5YXsSSVNDE8U5rGgcB1wBLJQ0P1z2I+AWgibeq4B1wEVxim9//RB4WNKvgA8IkmWX40OkOOecaxNv2nLOOdcmnkicc861iScS55xzbeKJxDnnXJt4InHOOdcmnkhcTEiqlTQ/HMl1QTgacKf7e5N0T7wGPZRUEF4KjqRJkm6LRxxtIemEiJFwz+ksoxG71vH7SFysVJjZYQCS+gMPEdzt+9O2FBpxl3CHMLOvdtSxmmNmhUBhvONoi3B67YS/OdK1Xqf7hug6n3AU46uB68M725PDeT/eD+f9+H/120r6oaSFYS3mlnDZLEl/lFQIfEtSnqQnwv3fl3RcuN1kSe+G80G8I2lsuPxASXPCGtKHkkaHyy+PWP6XxoaFD489KXy+W9Kvw9jek/SpAQQl/UzS/ZLelLRO0vmSfhee04vhMCBImhgOzDlX0sxw+I/65QskLQCuiyg38pt9U+f5JUlPhsdZqYj5bBrEeIuCeT8+lFQ/VcHfJd0lqVDSCgVjR9XPr/Gp9yqMZ5akxxXM3/LP8O70+vlQlkmaB5wfcdwvSfpzxPFuC+NfLemCcHmSpDvC/V+WNKN+nUtgZuYPf7T7A9jdyLKdBKO3Xg38JFyWTvBNewTBHBrvAD3CdX3Dn7OAOyLKeQiYEj4fRjCsBgQ1npTw+cnAE+Hz/wMuC5+nAZnAeOBZIDVcfgfwxUZingVMCp8b8Lnw+e/qz6HB9j8D3gJSgUMJ7uI/I1z3FMEw4qnheeaFyy8muAMd4EPg+PD574FF4fMTgOdaOM8vAauB3gTjPa0DhjaILxdYzn9uRs4Jf/4deJHgy+VoguFtMpp5r04AygjGj0oC3gWmhPtsCMsQ8GhE3F8C/hxxvMfCfScQDH0PwXAiM8LlAwnm8Lgg3n/P/mj+4U1bLh5OBQ6J+KbZm+CD52TgbxaOcWVm2yP2eSTi+cnABP1nZNheCkaN7Q3cH9Y4jOADG4IPuR8rmC/iSTNbKekkYCLwflhOJi0PCFgFPBc+nwuc0sR2L5hZtaSFBMOUvBguXwgUAGOBg/jPMCzJwEYFszHmmNm/w+0fJEiuDTV1nhBMAlUGIGkJMJxPDitfBlQC94Y1nOci1j1qZnXASkmrgXE0/V5VAXPMrDg81vzw3HYDa8xsZbj8HwTJqDFPh8dbElG7mwI8Fi7fJOn1JvZ1CcQTiesQCobDryX4sBbwDTOb2WCb5qav3RPxPAk42swqG+z/Z+B1MztPwZwWswDM7CFJswkmHZoRNs8IuN/MbmzFaVRb+LU5PJem/n/qJyarkxS5T124j4DFZnZMg/hziM4vaeQ8I4/dVIwWjMU1GTiJ4Nv/9QSTL8EnJyKrf93Ue3VCS8eKQuT+anIrl/C8j8TFnKQ84C6CZg0jGFDw6xH9BWMkZRFMc/tlST3C5X2bKPIl4BsR5R8WPu3Nf4bp/lLE+pHAajO7jWD01UMIpm29QMGFAPVzgw9vh9ONxnIgT9Ix4bFTJR1oZjuBnZKmhNtd1sT+jZ5nNOprbmY2A/gOQfNbvQvDPooDgJFhnE29V01ZBhSEZQBc2pr4gLeBz4dxDCBoQnMJzmskLlYyw+aOVILRch8E6ocHv4egGWRe2EG7FTjXzF4Mk0KhpCqCtvIfNVL2N4HbJX1I8Df8b+Aagn6L+yX9BHg+YvuLgCskVRPMsvcbM9sebveSgsuSqwk6t9e122+gCWZWFTYV3Sapd3gOfwQWE4yKfJ+CCZxeaqKIps4zGtnAM5IyCGoB341Yt55gaPxewDVmVimp0feqmXOrlHQ18LykvcCb4TGj9QRBbWkJQZPcPILmOJfAfPRf5xyS/k7QKf54S9t2QCw9zWy3pFyCxHbc/2/vDo0AAGEgCEbROC3RHwjSwZuI3SZuMi9y/08bhnKRANOc3otWVW0Rmc9FAkDE2A5AREgAiAgJABEhASAiJABEHmmzaMPuiGRXAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The mean decrease in the median spending on Day 62 is: 3.27\n", - "The median decrease in the median spending on Day 62 is: 4.20\n" - ] - } - ], + "outputs": [], "source": [ - "spend_dist = sns.distplot(data[\"spend_dec_62\"], kde = True)\n", - "spend_dist.set(xlabel='Decrease in median spending', ylabel='Normalised spending', title='Distribution of median spending')\n", - "plt.show()\n", + "# Computing all the z scores\n", + "z_cust_r1 = (data[\"r1_cust_62\"][0] - data[\"r1_cust_change\"].mean())/data[\"r1_cust_change\"].std()\n", + "z_cust_r2 = (data[\"r2_cust_62\"][0] - data[\"r2_cust_change\"].mean())/data[\"r2_cust_change\"].std()\n", + "z_cust_r3 = (data[\"r3_cust_62\"][0] - data[\"r3_cust_change\"].mean())/data[\"r3_cust_change\"].std()\n", + "z_spend_r1 = (data[\"r1_spend_62\"][0] - data[\"r1_spend_change\"].mean())/data[\"r1_spend_change\"].std()\n", + "z_spend_r2 = (data[\"r2_spend_62\"][0] - data[\"r2_spend_change\"].mean())/data[\"r2_spend_change\"].std()\n", + "z_spend_r3 = (data[\"r3_spend_62\"][0] - data[\"r3_spend_change\"].mean())/data[\"r3_spend_change\"].std()\n", "\n", - "print(\"The mean decrease in the median spending on Day 62 is: %.2f\" % data[\"spend_dec_62\"].mean())\n", - "print(\"The median decrease in the median spending on Day 62 is: %.2f\" % data[\"spend_dec_62\"].median())" + "print(tabulate([['Customers', '< 2km', data[\"r1_cust_62\"][0], z_cust_r1],\n", + " ['Customers', '2km - 4km', data[\"r2_cust_62\"][0], z_cust_r2],\n", + " ['Customers', '> 4km', data[\"r3_cust_62\"][0], z_cust_r3],\n", + " ['Median Spending', '< 2km', data[\"r1_spend_62\"][0], z_spend_r1],\n", + " ['Median Spending', '2km - 4km', data[\"r2_spend_62\"][0], z_spend_r2],\n", + " ['Median Spending', '> 4km', data[\"r3_spend_62\"][0], z_spend_r3]],\n", + " headers=['Variable', 'Distance', 'X', 'Z']))\n", + "print(\"\\nFigure 3: The z score computed using equation 2 and the temporal data\")" ] }, { - "cell_type": "code", - "execution_count": 52, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecFdX9//HXeysL7NJ2QXpXxI4IxhZjC5aIiSYaTSyxpagppmiaxmgS4y+aGP3G2EtibNGEqBF7VwQUpSgBFqQKLGWB7eXz+2PO4nXdMrB79+6Fz/PxmMfOnTlz7ufOvXs/d86ZOSMzwznnnNteGakOwDnnXHrzROKcc65NPJE455xrE08kzjnn2sQTiXPOuTbxROKcc65NPJHswCTdIukX7VTXEElbJGWGxy9KOq896g71/VfSWe1V3zY879WSSiR91NHP3SiOwyUtT+Hzf1HSsvAe75eqOJItvL4RqY5jR+OJJE1JWiKpQtJmSRslvS7pm5K2vqdm9k0z+3XMuo5qqYyZLTWz7mZW1w6xXynpb43qP9bM7mlr3dsYxxDgUmCsme3Skc/dCf0/4KLwHr/TeKUkkzQqBXFtt6Z+7ITXV5yqmHZUnkjS2xfMLB8YCvwO+AlwR3s/iaSs9q6zkxgCrDOzNakOpD1t5/s1FJjbwc/pdhRm5lMaTsAS4KhGyyYA9cCe4fHdwNVhvhB4HNgIrAdeIfohcV/YpgLYAvwYGAYYcC6wFHg5YVlWqO9F4LfAW8Am4N9A77DucGB5U/ECk4BqoCY837sJ9Z0X5jOAnwMfAmuAe4EeYV1DHGeF2EqAn7Wwn3qE7deG+n4e6j8qvOb6EMfdTWx7OLCc6KhlDbAKOCdh/daYw+OzgVcTHhvwbWABsBn4NTASeD3ss4eAnEbP9dPwmpYAZyTUlUt01LAUWA3cAuQ12vYnwEfAfU28lib3aah3S4i1DFjUxLYvJ6zfApza1HMCvYg+Y2uBDWF+UKP99WvgtbA/ngYKw7ouwN+AdUSf0elAv7DuHOD9sE0xcGGj+CYDs8I+XUT0GbsGqAMqQ8w3Jbwno1r6bCS+l2GfbwAWA8c2eq+LQ0yLE9+rnXFKeQA+becb10QiCcuXAt8K83fzcSL5bfjyyQ7ToYCaqouPv6zvBboBeTSdSFYAe4Yy/wT+FtYdTjOJJMxf2VA2Yf2LfJxIvgEsBEYA3YFHCV+OCXHcFuLaB6gCdm9mP91LlOTyw7b/A85tLs5G2x4O1AJXhX12HFAO9Gocc3h8Np9OJP8GCoA9QpzPhdfVA5gHnNXoua4n+nL/LNEX925h/Q3AFKB3eC3/AX7baNtrw7Z5TbyWZvdpQqyjWtgXn1jf1HMCfYCTga4hxoeBfzV6jxcBu4byLwK/C+suDK+pK5AJ7A8UhHXHEyVghf1SDowL6yYApcDRRMlyIDCmqfen8eto5bNxNtGPnfNDPN8CVoYYuhElrYb3pj+wR6q/E1I5edPWjmcl0ZdNYzVEH/ihZlZjZq9Y+C9owZVmVmZmFc2sv8/M5phZGfAL4CsNnfFtdAZwvZkVm9kW4HLgtEbNJ78yswozexd4lyihfEKI5TTgcjPbbGZLgD8AX9+GWGqAq8I+e5Lo1+1u27D9781sk5nNBeYAT4fXVQr8F2jcsf0LM6sys5eAJ4j2qYALgO+b2Xoz2wz8Jry2BvXAFWHbpt6vOPt0W33iOc1snZn908zKQ4zXEH3xJ7rLzP4XYnwI2DcsryFKRKPMrM7MZprZJgAze8LMFlnkJaIjmUPDducCd5rZM2ZWb2YrzOyD1gKP+dn40Mxus6hf8B6i/59+Ca99T0l5ZrYqvL87LU8kO56BRE1XjV1H9Iv0aUnFki6LUdeybVj/IdGv9sJYUbZsQKgvse4sPv4nhqg5pUE50a/sxgpDTI3rGrgNsawzs9oYz9Wc1QnzFU08TqxrQ0jKDT4k2hdFRL/UZ4YTKzYCT4XlDdaaWWULccTZp9vqE88pqaukv0r6UNImoiaxno1+XDT3vt0HTAUekLRS0u8lZYd6j5X0pqT14bUfx8efs8FERznbKs5nY2usZlYeZruH9+hU4JvAKklPSBqzHTHsMDyR7EAkHUD0j/Bq43XhV9elZjYCOBH4gaQjG1Y3U2VrRyyDE+aHEP2qLCFqkumaEFcmn/zSa63elUSdv4l11/LJL+E4SkJMjetasY31NOcTrxNo65lfvSR1S3g8hGhflBAlnT3MrGeYephZYhLqqH2aqPFzXkp0tDbRzAqAw8JytVpRdMT3KzMbCxwEnACcKSmXqNn0/xH1mfQEnkyocxlRs1ec+BK16bNhZlPN7Giio5QPiJpad1qeSHYAkgoknQA8QNT3MLuJMidIGhWaSUqJOiLrw+rVRG3n2+prksZK6krUj/BIaAb4H9BF0vHhV+XPidrRG6wGhiWeqtzIP4DvSxouqTtRM86DjY4MWhVieQi4RlK+pKHAD4g6ddvDLOBL4Zf4KKJmlrb6laQcSYcSfZk+bGb1RF9UN0jqCyBpoKTPb0O9bd2ncT4j+UQJb6Ok3sAVcYOT9DlJe4UfHZuIvuTrgRyiz85aoFbSscAxCZveAZwj6UhJGWG/NBwdNBtzWz4bkvpJmhySfhVRc2d9K5vt0DyRpLf/SNpM9KvsZ0Qdtec0U3Y08CzRh/4N4P/M7IWw7rfAz0OzyQ+34fnvI+rQ/4jorJtLAEL7/7eB24l+4ZURneHT4OHwd52kt5uo985Q98tEZ8RUAhdvQ1yJLg7PX0x0pHZ/qL893EB0Btpqojb0v7exvo+IzhBaGer6ZkJ7/0+ImibfDM1Gz7JtfTVt3adXAveEz8hXminzR6JO9BLgTaLmt7h2AR4hSiLvAy8R9cFtJvpcPUS0b04nOukAADN7i+gzfwPRD6SX+Pgo40/AKZI2SLqxiefc3s9GBlHSWUnUjPxZos74nVbDWTvOOefcdvEjEuecc23iicQ551ybeCJxzjnXJp5InHPOtclOMdBaYWGhDRs2LNVhOOdcWpk5c2aJmRW1Vm6nSCTDhg1jxowZqQ7DOefSiqQPWy/lTVvOOefayBOJc865NvFE4pxzrk08kTjnnGsTTyTOOefaxBOJc865NvFE4pxzrk08kTjnnGsTTyTOOefaZKe4st1tv/unLW23uk6fOKTd6nLOdR5+ROKcc65NPJE455xrE08kzjnn2sQTiXPOuTbxROKcc65NkppIJE2SNF/SQkmXNbE+V9KDYf00ScPC8gmSZoXpXUlfjFunc865jpW0RCIpE7gZOBYYC3xV0thGxc4FNpjZKOAG4NqwfA4w3sz2BSYBf5WUFbNO55xzHSiZRyQTgIVmVmxm1cADwORGZSYD94T5R4AjJcnMys2sNizvAtg21Omcc64DJTORDASWJTxeHpY1WSYkjlKgD4CkiZLmArOBb4b1ceokbH+BpBmSZqxdu7YdXo5zzrmmdNrOdjObZmZ7AAcAl0vqso3b32pm481sfFFRq/eud845t52SmUhWAIMTHg8Ky5osIykL6AGsSyxgZu8DW4A9Y9bpnHOuA7WaSCT9XlKBpGxJz0laK+lrMeqeDoyWNFxSDnAaMKVRmSnAWWH+FOB5M7OwTVZ4/qHAGGBJzDqdc851oDhHJMeY2SbgBKIv81HAj1rbKPRpXARMBd4HHjKzuZKuknRiKHYH0EfSQuAHQMPpvIcA70qaBTwGfNvMSpqrM95Ldc45lwxxRv9tKHM88LCZlUqKVbmZPQk82WjZLxPmK4EvN7HdfcB9cet0zjmXOnESyeOSPgAqgG9JKgIqkxuWc865dNFq05aZXQYcRHSBYA1Qhl+74ZxzLoh7Y6sxwLCGDvDg3iTE45xzLs20mkgk3QeMBGYBdWGx4YnEOecc8Y5IxgNjzcxaLemcc26nE+f03znALskOxDnnXHqKc0RSCMyT9BZQ1bDQzE5sfhPnnHM7iziJ5MpkB+Gccy59tZpIzOwlSf2IBk8EeMvM1iQ3LOecc+kizlhbXwHeIroC/SvANEmnJDsw55xz6SFO09bPgAMajkLCle3PEt2Iyjnn3E4uzllbGY2astbF3M4559xOIM4RyVOSpgL/CI9PxQdNdM45F8TpbP+RpJOBg8OiW83sseSG5ZxzLl3EGmvLzP4J/DPJsTjnnEtDzSYSSa+a2SGSNhONrbV1FWBmVpD06JxzznV6zSYSMzsk/M3vuHCcc86lmzjXkXzqToVNLXPOObdzinMa7x6JD8I9SfZPTjjOOefSTbOJRNLloX9kb0mbwrQZWA38u8MidM4516k1m0jM7Lehf+Q6MysIU76Z9TGzyzswRuecc51YnKattyT1aHggqaekk5IYk3POuTQSJ5FcYWalDQ/MbCNwRfJCcs45l05ijbXVxLJYFzI655zb8cVJJDMkXS9pZJiuB2bGqVzSJEnzJS2UdFkT63MlPRjWT5M0LCw/WtJMSbPD3yMStnkx1DkrTH3jvVTnnHPJECeRXAxUAw+GqQr4TmsbScoEbgaOBcYCX5U0tlGxc4ENZjYKuAG4NiwvAb5gZnsBZwGNr1s5w8z2DZPfZMs551IozqCNZcCnjiZimAAsNLNiAEkPAJOBeQllJvPxrXwfAW6SJDN7J6HMXCBPUq6ZVeGcc65TaTWRhBtZ/ZjowsQuDcvN7IhmN4oMBJYlPF4OTGyujJnVSioF+hAdkTQ4GXi7URK5S1Id0UCSV5tZ4lhgDXFfAFwAMGTIkFZCdc45t73iNG39HfgAGA78ClgCTE9iTFtJ2oOouevChMVnhCavQ8P09aa2NbNbzWy8mY0vKipKfrDOObeTipNI+pjZHUCNmb1kZt8AWjsaAVgBDE54PCgsa7JMGHqlB9EdGJE0CHgMONPMFjVsYGYrwt/NwP1ETWjOOedSJE4iqQl/V0k6XtJ+QO8Y200HRksaLikHOA2Y0qjMFKLOdIBTgOfNzCT1BJ4ALjOz1xoKS8qSVBjms4ETgDkxYnHOOZckca4HuTpc2X4p8GegAPh+axuFPo+LgKlAJnCnmc2VdBUww8ymAHcA90laCKwnSjYAFwGjgF9K+mVYdgxQBkwNSSQTeBa4Ld5Ldc45lwxqop96hzN+/HibMWNGqsNIS/dPW9pudZ0+0U96cC6dSJppZuNbKxfnfiS/l1QgKVvSc5LWSvpa+4TpnHMu3cXpIznGzDYR9UcsIWpy+lEyg3LOOZc+4iSShn6U44GHEwdwdM455+J0tj8u6QOgAvhWuECxMrlhOeecSxetHpGY2WXAQcB4M6shOnNqcrIDc845lx7iDgc/BhgWLhpscG8S4nHOOZdm4oy1dR8wEpgF1IXFhicS55xzxDsiGQ+MbWpgROeccy7OWVtzgF2SHYhzzrn0FOeIpBCYJ+ktoptaAWBmJyYtKuecc2kjTiK5MtlBOOecS19x7pD4UkcE4pxzLj3FGWvrQEnTJW2RVC2pTtKmjgjOOedc5xens/0m4KvAAiAPOA+4OZlBOeecSx9xEglmthDINLM6M7sLmJTcsJxzzqWLOJ3t5eEOh7Mk/R5YRcwE5JxzbscXJyF8PZS7iGicrcHAyckMyjnnXPpo8YhEUibwGzM7g2jE3191SFTOOefSRotHJGZWBwwNTVvOOefcp8TpIykGXpM0hahpCwAzuz5pUTnnnEsbcRLJojBlAPlhmQ/g6JxzDoiXSOaZ2cOJCyR9OUnxOOecSzNxztq6POYy55xzO6Fmj0gkHQscBwyUdGPCqgKgNtmBOeecSw8tHZGsBGYQnfY7M2GaAnw+TuWSJkmaL2mhpMuaWJ8r6cGwfpqkYWH50ZJmSpod/h6RsM3+YflCSTdKUtwX65xzrv01e0RiZu8C70q638xqtrXicA3KzcDRwHJguqQpZjYvodi5wAYzGyXpNOBa4FSgBPiCma2UtCcwFRgYtvkLcD4wDXiSaLiW/25rfM4559pHq30k25NEggnAQjMrNrNq4AFgcqMyk4F7wvwjwJGSZGbvmNnKsHwukBeOXvoDBWb2Zrj1773ASdsZn3POuXaQzDGzBgLLEh4v5+Ojik+VMbNaoBTo06jMycDbZlYVyi9vpU4AJF0gaYakGWvXrt3uF+Gcc65lzSYSSfeFv9/tuHA+FcMeRM1dF27rtmZ2q5mNN7PxRUVF7R+cc845oOUjkv0lDQC+IamXpN6JU4y6VxAN8NhgUFjWZBlJWUAPYF14PAh4DDjTzBYllB/USp3OOec6UEsXJN4CPAeMIDpbK/HsKAvLWzIdGC1pONGX/WnA6Y3KTAHOAt4ATgGeNzOT1BN4ArjMzF7b+qRmqyRtknQgUWf7mcCfW4nDOedcEjV7RGJmN5rZ7sCdZjbCzIYnTK0lkYY+j4uIzrh6H3jIzOZKukrSiaHYHUAfSQuBHwANpwhfBIwCfilpVpj6hnXfBm4HFhIN3eJnbDnnXAopOvmplULSPsCh4eHLZvZeUqNqZ+PHj7cZM2akOoy0dP+0pe1W1+kTh7RbXc655JM008zGt1au1bO2JF0C/B3oG6a/S7q47SE655zbEcQZtPE8YKKZlQFIupaoT8P7JpxzzsW6jkRAXcLjOj7Z8e6cc24nFueI5C5gmqTHwuOTiDrJnXPOudYTiZldL+lF4JCw6BwzeyepUTnnnEsbcY5IMLO3gbeTHItzzrk0lMyxtpxzzu0EPJE455xrkxYTiaRMSS90VDDOOefST4uJxMzqgHpJPTooHuecc2kmTmf7FmC2pGeAsoaFZnZJ0qJyzjmXNuIkkkfD5Jxzzn1KnOtI7pGUBwwxs/kdEJNzzrk0EmfQxi8As4CnwuN9JU1JdmDOOefSQ5zTf68EJgAbAcxsFq3f1Mo559xOIk4iqTGz0kbL6pMRjHPOufQTp7N9rqTTgUxJo4FLgNeTG5Zzzrl0EeeI5GJgD6AK+AewCfheMoNyzjmXPuKctVUO/Czc0MrMbHPyw3LOOZcu4py1dYCk2cB7RBcmvitp/+SH5pxzLh3E6SO5A/i2mb0CIOkQoptd7Z3MwJxzzqWHOH0kdQ1JBMDMXgVqkxeSc865dNLsEYmkcWH2JUl/JepoN+BU4MXkh+accy4dtNS09YdGj69ImLckxOKccy4NNZtIzOxzba1c0iTgT0AmcLuZ/a7R+lzgXmB/YB1wqpktkdQHeAQ4ALjbzC5K2OZFoD9QERYdY2Zr2hqrc8657dNqZ7uknsCZwLDE8q0NIy8pE7gZOBpYDkyXNMXM5iUUOxfYYGajJJ0GXEvUdFYJ/ALYM0yNnWFmM1qL3TnnXPLF6Wx/kiiJzAZmJkytmQAsNLNiM6sGHgAmNyozGbgnzD8CHClJZlYWOvUrYzyPc865FIpz+m8XM/vBdtQ9EFiW8Hg5MLG5MmZWK6kU6AOUtFL3XZLqgH8CV5vZp/psJF0AXAAwZMiQ7QjfOedcHHGOSO6TdL6k/pJ6N0xJj6x5Z5jZXsChYfp6U4XM7FYzG29m44uKijo0QOec25nESSTVwHXAG3zcrBWnf2IFMDjh8aCwrMkykrKAHkSd7s0ysxXh72bgfqImNOeccykSJ5FcCowys2FmNjxMce5HMh0YLWm4pBzgNKDxDbGmAGeF+VOA55tqpmogKUtSYZjPBk4A5sSIxTnnXJLE6SNZCJRva8Whz+MiYCrR6b93mtlcSVcBM8xsCtHwK/dJWgisJ0o2AEhaAhQAOZJOAo4BPgSmhiSSCTwL3LatsTnnnGs/cRJJGTBL0gtEQ8kDrZ/+G8o8SXTWV+KyXybMVwJfbmbbYc1U6wNGOudcJxInkfwrTM4559ynxLkfyT2tlXHOObfzinNl+2KaGFsrZoe7c865HVycpq3xCfNdiPo0UnkdiXPOuU6k1dN/zWxdwrTCzP4IHN8BsTnnnEsDcZq2xiU8zCA6QolzJOOcc24nECchJN6XpBZYAnwlKdE455xLO3HO2mrzfUmcc87tuOI0beUCJ/Pp+5FclbywnHPOpYs4TVv/BkqJBmusaqWs28nUm/FRaSWZGaJnXja52ZmpDsk518HiJJJBZjYp6ZG4tLJ8QznvLtvInJWbKK2o2bq8S3YGew7owVFj+1HQJTuFETrnOkqcRPK6pL3MbHbSo3GdXl298fS8j3hlQQmZGWLXvt05Zmw/MjPExvIa1myu5J2lG3l3+UYOHV3EYaOLyMmKM8i0cy5dxUkkhwBnhyvcqwABZmZ7JzUy1+lsqarlgbeWUlxSxoThvfn82F3Iy/l0U9bnduvL1Hmref6DNXywahNnHzyc7rl+xrhzO6o4/93HJj0K1+mt21LF7a8upqyqllPGDWLc0F7Nlu3TPZfTJwzhg482cf+0pdz2SjHnHjy8A6N1znWkOFe2f9jU1BHBuc6hsqaOe9/8kOraer752ZEtJpFEY3Yp4OyDh1FaUcOtrxSzbP0239bGOZcGvPHataiu3vjHW0tZt6WKMyYOYUDPvG3afkRhd849eDgV1XWcdedbbK6saX0j51xa8UTiWvTfOatYsGYLk/cZyIii7ttVx+DeXTnjwCF8uL6cHz38Hi3cTdk5l4Y8kbhmPfHeKl5ftI6DR/bhgOFtG/B5RGF3Lps0hqfmfsRtrxS3U4TOuc6g2c52SZtp4j4kDcysICkRuU5hQ1k1V0yZw8CeeUzas3+71HneocN5Z9kGrn1qPnsN7MlnRvZpl3qdc6nV7BGJmeWHZPEn4DJgIDAI+Anwx44Jz6XKNU++z8byGr40biCZGWqXOiXx+1P2YWifrvzgoVneX+LcDiJO09aJZvZ/ZrbZzDaZ2V+AyckOzKXOqwtKeGTmci787Aj699i2zvXWdM/N4vqv7MvqTZVc+9QH7Vq3cy414iSSMklnSMqUlCHpDKAs2YG51CivruXyx95jRGE3Lj5idFKeY9/BPTnn4OH87c2lTCtel5TncM51nDiJ5HSi+4+sDtOXwzK3A/rrS8UsW1/Bb7+0F12SOADjpcfsyuDeeVz26Gwqa+qS9jzOueSLc0HiEjObbGaFZlZkZieZ2ZIOiM11sDWbK7ntlWKO36s/E0cktyO8a04Wv/3i3iwuKeNPzy1I6nM555Kr1UQiaVdJz0maEx7vLenncSqXNEnSfEkLJV3WxPpcSQ+G9dMkDQvL+0h6QdIWSTc12mZ/SbPDNjdKap+eYMefnl1AdW09P/r8bh3yfIeMLuSU/Qdx28vFLFq7pUOe0znX/uI0bd0GXA7UAJjZe8BprW0kKRO4mWisrrHAVyWNbVTsXGCDmY0CbgCuDcsrgV8AP2yi6r8A5wOjw+RD3LeDRWu38MD0ZZw+cQjDCrt12PP+ZNIY8rIzufrxeR32nM659hUnkXQ1s7caLauNsd0EYKGZFZtZNfAAnz7bazJwT5h/BDhSksyszMxeJUooW0nqDxSY2ZsWXR59L3BSjFhcK657aj5dsjK45MjkdLA3pyg/l0uOHM0L89fywgdrOvS5nXPtI04iKZE0knBxoqRTgFUxthsILEt4vDwsa7KMmdUS3Ymxpcb5gaGeluokxHmBpBmSZqxduzZGuDuvt5du4Km5H3HBYSMp7J7b4c9/1kHDGFHYjV8/Po/q2voOf37nXNvESSTfAf4KjJG0Avge8K2kRtUOzOxWMxtvZuOLiopSHU6n9sdnF9C7Ww7nHZqaod5zsjL4xQljKS4p457Xl6QkBufc9otz1laxmR0FFAFjzOyQmGdtrQAGJzweFJY1WUZSFtADaOnCghWhnpbqdNtg1rKNvPy/tZx/6Ai6pfDmU58b05fDdyvixucWsL6sOmVxOOe2XZyztr4rqQAoB26Q9LakY2LUPR0YLWm4pByiDvopjcpMAc4K86cAz1sLQ8Oa2Spgk6QDw9laZwL/jhGLa8afn1tAz67ZfP0zQ1MdCj87bnfKqmu50U8Hdi6txGna+oaZbQKOIeq/+Drwu9Y2Cn0eFwFTgfeBh8xsrqSrJJ0Yit0B9JG0EPgB0ZheAEhaAlxPdJvf5QlnfH0buB1YCCwC/hvjNbgmzFlRynMfrOEbneRWuKP75XPqAYP525sfsqTEB09wLl3E+fZouE7jOODekAxiXbthZk8CTzZa9suE+UqiK+Wb2nZYM8tnAHvGeX7XspueX0h+bhZnHTQs1aFs9f2jduVf76zkuqnzufmMcakOxzkXQ5wjkpmSniZKJFMl5QN+ak2am//RZp6a+xFnHzyMHnnZqQ5nq74FXTj/sBE8MXsV7yzdkOpwnHMxxEkk5xI1OR1gZuVADnBOUqNySfeXFxfSNSeTbxycmjO1WnLBYSMo7J7Lb5583++m6FwaaDaRSBoTZvcNf0dIGgcMJV6TmOuklm8o5z/vreKrE4bQq1tOqsP5lO65WXzvqNFMX7KBZ+atTnU4zrlWtJQQLiUaiuQPTawz4IikROSS7vZXFiPg3EM639FIg1MPGMydry3m2qc+4IgxfcnK9LtCO9dZtXSHxPPD3881MXkSSVMbyqp5cPoyTtx3AAN6tu9Nq9pTdmYGP/78GBatLePhmctb38A5lzIt3bP9Sy1taGaPtn84LtnufeNDKmrquPCwkakOpVWf36Mf+w/txQ3P/I/J+w6ga463qDrXGbX0n/mFFtYZ4IkkzVRU13HPG0s4YkxfdtslP9XhtEoSlx87hlNueYM7X13MRUm6Y6Nzrm2aTSRm5mdm7WAenrmM9WXVfPOznf9opMH4Yb05Zmw/bnmpmNMmDEnJoJLOuZbF6sGUdLykH0v6ZcOU7MBc+6qrN25/ZTH7DenJAcN6pTqcbfKTY8dQWVPHH5/9X6pDcc41Ic5YW7cApwIXE13l/mWiU4BdGnlqzkcsXV/OhYeNIN1uKjmyqDtnTBzC/dOWsmD15lSH45xrJM4RyUFmdibRnQx/BXwG2DW5Ybn2ZGbc+vIihvXpytFjd0l1ONvlu0ftSrfcLH7z5PupDsU510icRFIR/pZLGkB0y93+yQvJtbdpi9fz7vJSzjt0BJkZ6XU00qB3txwuPmIUL8xfyysL/EZlznUmcRLJ45J6AtcBbwNLgH8kMyjXvm59uZje3XI4Zf9BrRfuxM46aBiDe+dxzRPvU1fvQ6fe7asgAAAar0lEQVQ411nEubHVr81so5n9k6hvZIyZ/SL5obn2sGD1Zp7/YA1nfmYoXbIzUx1Om+RmZXL5sbvzwUebuX/ah6kOxzkXtHqFl6RM4HhgWEN5SZjZ9ckNzbWHW18upkt2Bmd+ZliqQ2kXx+65CweN7MN1U+dz3F796eOnAzuXcnGatv4DnE10U6v8hMl1cqtKK/jXrBV8ZfxgenfCwRm3hyR+deIelFfXcd3U+akOxzlHvFF8B5nZ3kmPxLW7O19dTL3B+YeOSHUo7Wp0v3zOOXgYt7+6mNMmDGHfwT1THZJzO7U4RyT/jXmPdteJlJbXcP+0pZywd38G9+6a6nDa3XeP2pWi7rn88t9zvOPduRSLk0jeBB6TVCFpk6TNkjYlOzDXNve9uYSy6rq0Gg5lW3TPzeJnx+/Oe8tL+dub3vHuXCrFSSTXE12E2NXMCsws38wKkhyXa4PKmjruem0Jh+9WxO79d9y36sR9BnD4bkVc+9QHLFtfnupwnNtpxUkky4A55vc8TRsPz1jGurJqvrWDHo00kMRvvrgXGRKXPzrbb8vrXIrESSTFwIuSLpf0g4Yp2YG57VNdW88tLxWz35CeTBjeO9XhJN2AnnlcduwYXl1YwkMzlqU6HOd2SnESyWLgOSAHP/2303vsneWs2FjBJUeOTrvBGbfX6ROGcOCI3lz9+Pus3FjR+gbOuXbV4um/4WLEfDP7YQfF49qgpq6em15YyN6DenD4rkWpDqfDZGSIa0/em+P+9Arfe2AW958/0e/x7lwHavG/zczqgIO3t3JJkyTNl7RQ0mVNrM+V9GBYP03SsIR1l4fl8yV9PmH5EkmzJc2SNGN7Y9sR/eudFSxbX8F3d6KjkQZD+3Tj6i/uyVtL1nPjcwtSHY5zO5U4FyTOkjQFeBgoa1jY2j3bw9HMzcDRwHJguqQpZjYvodi5RMPTj5J0GnAtcKqkscBpwB7AAOBZSbuGxAbwOTMrifcSdw61dfXc/MJC9hhQwBFj+qY6nJT44n6DeG3hOv78wkImjujDwaMKUx2SczuFOMf/XYB1wBFE93H/AnBCjO0mAAvNrNjMqoEHgMmNykwG7gnzjwBHKvopPRl4wMyqzGwxsDDU55rxn/dWsmRd+U7VN9KUqybvwYjCbnzvwVms2VyZ6nCc2ynEGf33nCamb8SoeyDRqcMNlodlTZYxs1qglGhMr5a2NeBpSTMlXdDck0u6QNIMSTPWrt2x719RU1fPjc8tZMwu+Rwztl+qw0mprjlZ3HT6ODZX1nDBvTOprKlrfSPnXJvEGf13EPBnPu4reQX4rpktT2ZgLTjEzFZI6gs8I+kDM3u5cSEzuxW4FWD8+PE79AUGD81YxuKSMm4/c3ynPhq5f9rSdq3v9IlDmly+e/8C/njqfnzr7zP5wUOzuOmr48hI0xt6OZcO4jRt3QVMIeqrGEA0GvBdMbZbAQxOeDwoLGuyjKQsoAdRM1qz25pZw981wGPs5E1e5dW1/PHZBYwf2osjd985+0aaMmnPXfjpsbvz5OyP+L2PEuxcUsVJJEVmdpeZ1YbpbiDOuaXTgdGShkvKIeo8n9KozBTgrDB/CvB8uIJ+CnBaOKtrODAaeEtSN0n5AJK6AccAc2LEssO667UlrN1cxWXHjunURyOpcN6hwzl94hBueWkRd722ONXhOLfDinPW1jpJX+Pj2+t+leiooUVmVivpImAqkAncaWZzJV0FzDCzKcAdwH2SFgLriZINodxDwDygFviOmdVJ6kc0gGRD7Peb2VPb8Hp3KBvKqrnlxUUctXs/xg/b8a9i31aSuOrEPSjZXMWv/jOPunrjvB1sSH3nOoM4ieQbRH0kNxB1dL8OnBOncjN7Eniy0bJfJsxXAl9uZttrgGsaLSsG9onz3DuDm19YSFl1LT+etFuqQ+m0sjIzuPmMcXzvgVlc/cT7VNfV8+3DR6U6LOd2KK0mEjP7EDixA2Jx26B47RbueWMJJ48bxK79fMSalmRnZvCn0/YlM0P8/qn5lJbX8ONJY8j0Dnjn2kWziUTSL5tbB5iZ/ToJ8bgYzIwrpsylS1YmP540JtXhpIWszAxuOHVfCvKy+OvLxbz/0WZuPG1fenbdMW5B7FwqtdTZXtbEBNHV6D9JclyuBU/N+YhXFpRw6TG7UpSfm+pw0kZmhrj6pL347Zf24o1FJZx402vMWVGa6rCcS3vNHpGY2R8a5sOZUt8l6ht5APhDc9u55CqvruXXj89jzC75fO3AoakOJy19dcIQdu2Xz7f+NpPJN7/GBYeN4LtHjqZLdma7PUdHXTPjXGfQ4um/knpLuhp4jyjpjDOzn4RrOFwK3PT8QlaWVvLrk/b0EW7bYP+hvXj6+4fxpf0G8pcXFzHpjy/zwvw1fnMs57ZDs99Ekq4juhZkM7CXmV1pZhs6LDL3KXNWlHLry8WcPG4QB/jpvm3Ws2sO1315H/527kQMOOeu6XzpL6/z0v/WekJxbhu09JP2UqIr2X8OrJS0KUybJW3qmPBcg8qaOr7/4Cz6dM/hFyfsnupwdiiHjC7kme9/lmu+uCerSys56863OP7GV7nn9SVsLK9OdXjOdXot9ZF4u0kn8v+mzmfBmi3c840JfqZREuRkZXDGxKF8ef/BPDJzOfe/9SFXTJnLNU+8z2d3K+Jzu/Xl8N2KGNAzL9WhOtfpxLkg0aXYG4vWccdri/nagUP47E5058NUyMnK4PSJQzh94hDmrdzEwzOX8fTc1TwzbzUAIwq7se/gnuwzuCd7DuzBqKLu9OianeKonUstTySd3Iayan748LsM7d2Vnx7nTVodaeyAAq4YsAe/PGEsC9ds4cX5a5m2eD0vLyjh0Xc+Hn+0sHsuIwq7MbBXHgN6dqF/jzw+WLWZ/C5Z5HfJontulp8Y4XZonkg6sdq6er5z/9us3VLFQxd+hq45/nalgiRG98tndL98zj9sBGbGqtJK5q3cRHHJFhatKWPxujKmL1nPR6WV1NZ/uqO+S3YG3XOztyaW7l2yKOiSTUGXLArysunVNYceedl+tb1LS/7N1Ild8+T7vL5oHX/48j7sO7hnqsPZ4W3PtR/dc7PZJzR1AdSbsbmyls2VNeFvLVuqEqbKWlaVVrB5dS1VtfWfqEtAj7xsenfPobB7LoXdc+mbn0u/gi6Y2U4zurNfg5N+PJF0Ug/NWMZdry3h3EOGc/L+g1IdjospQ6JHXjY98lrvN6mqqaO0soZNFbVsLK9mY0UNG8qqKdlSxezlpVQk3N3xlpcWMbZ/AXsN6sFeA3uw7+CeDOqVt9MkF9e5eSLphF6cv4afPzaHQ0YVcvmxPpbWjio3O5O+2Zn0bWbMzbKqWlZvrmT1piq652Yxb2Upd7+2hOq66EimsHsu44b0ZPywXkwc3oc9BhR4X4xLCU8kncyrC0q44L6ZjOrbnZtPH+dfDDuxbrlZjMjtzojC7lubZ6pr6/nf6s3MWraRtz/cwMylG3g6nFHWLSeT8cN6c9DIPhw0spCxAwq8z8V1CE8kncgbi9Zx3r3TGVHYjb+fN9FPK3WfkpOVwZ4De7DnwB5bx1pbs6mSaYvXM23xOt4sXs9v//sBEPW3HDSyDwePKuSQUYUM7dPVm8JcUngi6SSembeaS/7xDkN6d+Xv502kVze/6NDF07egC1/YZwBf2GcAECWW1xet4/VFJby6oIT/zvkIgIE98zh4VJRYPjOyD33zu6QybLcD8USSYmbG/724iP/39Hz2HtiD2886gD7dfWh4t/36FnThpP0GctJ+AzEzlqwr59WFJby+sISpc1fz0IzlAIzu253PjOzDhOG9mTCsN30LPLG47eOJJIW2VNXy00dnM+XdlUzedwDXnrx3uw5l7pwkhhd2Y3hhN75+4FDq6o25K0t5Y9E6Xl+0jkdmLufeNz4EYFifrowb0ov9hvRkvyG92LVfPjlZ3kfnWueJJEVe+t9afvrobFaWVvDjSbvxrc+O9PbrbdTe1xt0Zu39WvO7ZPP5PXbhqN37saq0gsUlZSxZV87T81ZvvWo/U6JvQS4DeuTRtyC6pqUov8unLpz06zScJ5IOtmZTJdc+NZ9/vr2cUX2788g3D2L/ob1SHZbbSWVmiEG9ujKoV1cOHR01tW6sqGHZ+nJWbqxkVWkFH6zezMylH99BIkNRR37Prjnkd8li4ZotFOZHV+Z3z42GhemSlUl2VgbZmRlkCMzAgLp6o7q2npq6eqpq66msqaOipo6K6jrKq+uoqK7l7aUbqamLylTXGbV19dTVG7X1Rr0Z9fWGEV3AKYkMiexMkZWZQXam6JKVSZfsTPKyM+iam0Xf/Fz6dM+hX0EX+ubn+pmQSeCJpIOs2VTJLS8V8/dpH1JXb1x8xCguOmIUuVnelOU6D0n06ppDr6457J1wHWx5VS1rt1SxdnMV68ur2VgeXTy5fEMFi9Yspay6rvlKt1F2psjJzIgSUUYGWZkiK0Nkhik7M4OG46F6M+otus1CTWUtNXX1VIYEVReGqnksYVy0DEFRfi4DeuYxuFdXBvfOY2jvbgzt05Vhhd3om5/rLQPbwRNJEtXXG28tWc/DM5bz+Hsrqa03vrTfQC46YhRD+3RLdXjOxdY1N4uhuVlNfm5PnziEiuo6NoVhYbZU1VJVU0dNnVFdV0fDPcIkyMzIICczg5wskZOZSV5OBrlZmeTlZNI1J5MuWZk8MH1Zu8RcU1dPWVUth4wupGRLFas3VbFqYwUrSytZubGCd5Zt4InZq7YmHIC87MyoT6moGyPD3xGF3Rle1I2CLn46fnM8kbSzypo6ZizZwMsL1vLUnI9Yur6c7rlZfGncIC48bATDCj2BuB1PXk6UDPoVpDqSj2VnZtCzaw57D2p+nLraunpWlVaGPqIylpSUU1yyhdnLS/nv7FUkjr9Z2D2X4YVdGV7YjaF9ujGsT3QkM7hX153+mq+kJhJJk4A/AZnA7Wb2u0brc4F7gf2BdcCpZrYkrLscOBeoAy4xs6lx6uxIFdV1fLi+jPkfbWbOilLeWx5NFTV15GRmMHFEb75/9Ggm7dGfvBxvwnKus8nKzGBw764M7t2Vw/jkvX6qautYuq6c4pIyiteWsaSkjMUlZTz/wVpKtiz/RNmCLlkM7t2VAT3zGNCjC/175rFLQZdwkkIXirrnUpCXtcM2myUtkUjKBG4GjgaWA9MlTTGzeQnFzgU2mNkoSacB1wKnShoLnAbsQXS732cl7Rq2aa3OdvP6ohLWbKqitKKG0ooa1pdVs3pTJWs2V7FiQwUfbarcWjYnK4Pd+xdw6gGDOWzXQg4c0ceHfXcujeVmZW69fUBjZVW1fLiunKXry1i2voKl68tZvqGcZevLebN4HZsraz+1TVaG6N0th97dcsLJCtnkd8kO963JJj83i7ycTLrlZpKXnUludtTUl5sdNQfmhpMXGvqJGvcdZYQTD6J5OjRpJfObbgKw0MyKASQ9AEwGEr/0JwNXhvlHgJsUvfrJwANmVgUslrQw1EeMOtvNFf+ey4I1W7Y+zu+StXVY74NG9WF4n24MLezGyKJu7Novn2w/G8S5nUK33CzGDihg7ICm2/K2VNVGPzo3VbFmcyUlW6pZt6WKki1VbCyvYWN5DcVryz5xm4FkkOD9qyYl/fq0ZCaSgUBir9lyYGJzZcysVlIp0Ccsf7PRtgPDfGt1AiDpAuCC8HCLpPnb8RqSpRAoSXUQbZDO8adz7NAJ4z9j24p3ePzbGF9LOt2+jyPv48b/7Yl/aJxCO2zbi5ndCtya6jiaImmGmY1PdRzbK53jT+fYweNPpXSOHZIbfzLbYlYAgxMeDwrLmiwjKQvoQdTp3ty2cep0zjnXgZKZSKYDoyUNl5RD1Hk+pVGZKcBZYf4U4Hkzs7D8NEm5koYDo4G3YtbpnHOuAyWtaSv0eVwETCU6VfdOM5sr6SpghplNAe4A7gud6euJEgOh3ENEnei1wHfMrA6gqTqT9RqSqFM2uW2DdI4/nWMHjz+V0jl2SGL8MrPWSznnnHPN8PNVnXPOtYknEuecc23iiaQDSbpS0gpJs8J0XMK6yyUtlDRf0udTGWdzJE0K8S2UdFmq44lD0hJJs8P+nhGW9Zb0jKQF4W+nGcdf0p2S1kiak7CsyXgVuTG8H+9JGpe6yJuNPW0+85IGS3pB0jxJcyV9Nyzv9Pu/hdg7Zv+bmU8dNBFdxf/DJpaPBd4FcoHhwCIgM9XxNooxM8Q1AsgJ8Y5NdVwx4l4CFDZa9nvgsjB/GXBtquNMiO0wYBwwp7V4geOA/xLdmuNAYFonjD1tPvNAf2BcmM8H/hfi7PT7v4XYO2T/+xFJ57B1SBgzWwwkDgnTWWwd8sbMqoGG4WnS0WTgnjB/D3BSCmP5BDN7megMxkTNxTsZuNcibwI9JfXvmEg/rZnYm9PpPvNmtsrM3g7zm4H3iUbU6PT7v4XYm9Ou+98TSce7KBwG35nQpNLUcDItfQhSIR1ibIoBT0uaGYbNAehnZqvC/EdAv9SEFltz8abLe5J2n3lJw4D9gGmk2f5vFDt0wP73RNLOJD0raU4T02TgL8BIYF9gFfCHlAa7czjEzMYBxwLfkXRY4kqLjvPT5hz4dIuXNPzMS+oO/BP4npltSlzX2fd/E7F3yP7fYcfaShUzOypOOUm3AY+Hh+kw9Es6xPgpZrYi/F0j6TGiw/fVkvqb2arQFLEmpUG2rrl4O/17YmarG+bT4TMvKZvoi/jvZvZoWJwW+7+p2Dtq//sRSQdq1H76RaDh7JbmhoTpTNJueBpJ3STlN8wDxxDt88Shec4C/p2aCGNrLt4pwJnh7KEDgdKEJphOIZ0+85JENNrG+2Z2fcKqTr//m4u9w/Z/qs4y2Bkn4D5gNvBeeCP7J6z7GdGZE/OBY1MdazPxH0d0Nsgi4GepjidGvCOIzkx5F5jbEDPRrQqeAxYAzwK9Ux1rQsz/IGqCqCFqtz63uXiJzha6Obwfs4HxnTD2tPnMA4cQNVu9B8wK03HpsP9biL1D9r8PkeKcc65NvGnLOedcm3gicc451yaeSJxzzrWJJxLnnHNt4onEOedcm3gicS2SVBdGDZ0r6V1Jl0pKu8+NpNslje0EcQxLHB03ic+TG0ZZmCXp1EbrzpY0INkxbAtJ+zYamfZEpckI086vbHetqzCzfQEk9QXuBwqAK9pSqaQsM6tth/hiMbPzOuq5kmkb9tt+AA3vXSNnE12YtrKJ+jMt3Na6g+0LjAeeBLDoVtyd+oJXlyDVFwH51LknYEujxyOAdUQXY2UC1xFd9f4ecGFCuZ8QXQj1LvC7sOxF4I/ADOBSoIhoSIfpYTo4lJsAvAG8A7wO7BaW70F09e2s8Hyjw/KvJSz/K00Mhx2ee3zDawKuCbG9STQoX+PyVwJ3hu2KgUvC8mF8cpj0HwJXJjzHDeH1vQ8cADxKdCHb1QnbfwD8PZR5BOga1u0PvATMBKYSLh5rvN8axdkb+FfYH28CewN9iUZzLQ37ZGRC+VPC658f1uURDbV/LfA20YgF54f3493w/jTEdzdwY3hPioFTwvL+wMuhvjnAoWH5X0LMc4FfJcRwQKjj3fC+9QCWAmtDHacSJbubEvbZ8+E1PgcM2Z54fEri90SqA/Cpc080SiRh2UaiEVAvAH4eluWGL43hRAMkvp7wBdRwJfCLwP8l1HM/0aCKAEOIhneA6IgnK8wfBfwzzP8ZOCPM54Qvwd2B/wDZYfn/AWc2EfOLfJxIDPhCmP99w2toVP7K8BpygUKi5JlN64mk4V4V3yX6xd8/1LGc6ArpYeH5G5LmnaGO7PB8RWH5qcCdTe23RnH+GbgizB8BzArzhwOPN7PN1n0RHi8BfpzwuE/C/NXAxWH+buBhoibxsUS3FYDoR0HDqAGZQH6j9z0zPOfe4X0rBg5IfK9JSBxh+dbH4f09K8x/A/jX9sTjU/Imb9pybXEMsLekU8LjHkRj9hwF3GVm5QBmlniPigcT5o8CxkbDBAFQEEYv7QHcI2k00Zdudlj/BvAzSYOAR81sgaQjiX7JTw/15NH6IIzVfDx43Uzg6GbKPWFmVUCVpDXEG26+oTlmNjDXwthLkoqJBsnbCCwzs9dCub8BlwBPAXsCz4TXkUk03EiDxP2W6BDgZAAze15SH0kFMeJsLLH+PSVdDfQEuhMdHTX4l5nVA/MkNeyP6cCdYdDAf5nZrLD8K2Ho/iyihDqW6P1cZWbTQ8ybABI+A035DPClMH8fUfLfnnhckngicdtE0gigjujLWkS/Vqc2KtPSbTvLEuYzgAPNrLLR9jcBL5jZF8O9FV4EMLP7JU0DjgeelHRhiOEeM7t8G15GjYWfq+G1NPd/UJUw31Culk+epNKlmW3qG21fn/A8jcclMqLXMdfMPtNMLGXNLG8vifXfDZxkZu9KOpvo6KZB4msSRDe0CsPzHw/cLel64BWiI60DzGyDpLv59L5qD7HiMbN7k/DcLki7s29c6kgqAm4hanIwol+q3wq//JC0axhl9xngHEldw/LezVT5NHBxQv0NHcM9+HhI67MT1o8Ais3sRqIRWPcmajM/JZwI0HB/7aHt8HKbsxroG3755wInbEcdQyQ1JIzTgVeJ+iyKGpZLypa0R4y6XgHOCNscDpRYo3toNGEz0e1Ym5MPrArv6xmtBRD292ozuw24neh2uwVEyak0HCkcG4rPB/pLOiBsmy8pq5WYXifquyHE88p2xOOSyI9IXGvyJM0ial6qJWpaaBim+naiNv+3wzDWa4l+yT4VksIMSdVEZ+L8tIm6LwFulvQe0WfxZeCbRE0X90j6OfBEQvmvAF+XVEN0p7rfmNn6UO7pcFpyDfAd4MN22wMJzKxG0lVEncQriDrOt9V8opts3QnMA/5iZtWhifBGST2I9scfiTqqW3IlUTPOe0A5Hw933pK7gVskVRA1GzX2C6K7660Nf1tKOhAdsfwovC9biPqoFkt6h2j/LANeAwiv81Tgz5LygAqiJs4XgMvCZ+23jeq/GLhL0o9CTOdsazytlHdt5KP/OuecaxNv2nLOOdcmnkicc861iScS55xzbeKJxDnnXJt4InHOOdcmnkicc861iScS55xzbfL/AVKeGwik0XZpAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The mean decrease in the number of transactions on Day 62 is: 29.46\n", - "The median decrease in the number of transactions on Day 62 is: 9.10 \n" - ] - } - ], "source": [ - "trans_dist = sns.distplot(data[\"trans_dec_62\"], kde = True)\n", - "trans_dist.set(xlabel='Decrease in number of transactions', ylabel='Normalised number of transactions', title='Distribution of number of transactions')\n", - "plt.show()\n", + "## Discussion" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As shown in each of the subplots of Figure 1, the mean and median values of the decrease in each of the distributions are greater than zero (note: higher values of the decrease variable indicate a larger decrease/negative change). These mean and median values can be used to perform a one-sample hypothesis tests, which finds that since each of the mean/median values is greater than zero, we can infer that the event had a net decreasing affect on the number of customers, median spending amount, number of transactions, and total sales amount.\n", "\n", - "print(\"The mean decrease in the number of transactions on Day 62 is: %.2f\" % data[\"trans_dec_62\"].mean())\n", - "print(\"The median decrease in the number of transactions on Day 62 is: %.2f \" % data[\"trans_dec_62\"].median())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now to plot some data..." - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEWCAYAAABWn/G6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8HNW9///XR922ZMuWC+6ysQ2YDgbTA8EJJQGTXAgOvSSkUHJDSIBfSC6Q5CaEm5DwpYUQehzboSSGUBKKA6G4YhsXjHvHXbYk26qf3x9zBGuhsjLaXWn1fj4e89DozMyZzxlp97Mzc/aMuTsiIiLJkpHqAEREpGNR4hERkaRS4hERkaRS4hERkaRS4hERkaRS4hERkaRS4pHPzMweMLOftFJdg8yszMwyw+9TzOwbrVF3qO9FM7u0teprwX5/bmabzeyjZO877N/NbFgr17nCzMa0Zp3SMSjxSJPCm8suMys1sxIze9vMvm1mH//vuPu33f1ncdbV5BuVu69y93x3r2mF2G81syfr1X+Guz/2WetuYRyDgB8AI919nwaWn2xma1pQX4vWl9ZlZsUhkWelOpb2SolH4nGWuxcAg4FfATcCf2rtnaTxC3kQsMXdN6Y6EJE2wd01aWp0AlYAY+qVHQ3UAgeF3x8Ffh7mewLPAyXAVuBNog84T4RtdgFlwI+AYsCBK4FVwBsxZVmhvinAL4FpwA7g70CPsOxkYE1D8QKnA5VAVdjfnJj6vhHmM4BbgJXARuBxoFtYVhfHpSG2zcCPmzhO3cL2m0J9t4T6x4Q214Y4Hq23XZd6y8uAfkAu8DtgXZh+F8oaW/9o4J1w3NcD9wA5MftxYFgjsV8GLANKgeXAhaF8X+A1YEto/5+Bwob+N0JbbwKWhvUnxfyd8oAnQ3kJMB3o00gsdXWUAguAr9SL8y3grlDPMuC4UL46/A0vbe5vEpbdCjwZs27d3zv2/+5nYX+lwD+BnmHZqrBu3fE/NtWv0/Y26YxHWszdpwFrgBMbWPyDsKwX0Af4/6JN/GKiF+xZHl1K+3XMNp8DDgBOa2SXlwBXAH2BauDuOGJ8CfhfYGLY36ENrHZZmE4BhgL5RG/YsU4A9gNOBX5qZgc0ssv/R/RGNzS05xLgcnd/BTgDWBfiuKxenOX1lue7+zrgx8AxwGHAoUSJ5ZYm1q8Bvk+U+I8N8X63ueNkZl2IjucZHp3VHgfMrltMlPT7Ef19BhK9YTfkWuCc0PZ+wDbg3rDs0nBsBgJFwLeJkmdDlhL9X3UDbgOeNLO+MctHA3NDPeOBCcBRwDDgIuAeM8sP6zb4N2nicNR3QVi/N5AD3BDKTwo/C8Pxf6cFdQq61CZ7bx3Qo4HyKqIEMdjdq9z9TQ8fE5twq7uXu3tjb0ZPuPu88Kb7E+BrdZ0PPqMLgd+6+zJ3LwNuBsbVu+R3m7vvcvc5wByiJLCHEMs44GZ3L3X3FcBvgIs/Y2y3u/tGd99E9CbcaH3uPtPd33X36rD/PxC92cajFjjIzDq5+3p3nx/qXOLu/3L3ihDDb5uo89tEZ4Rr3L2CKEGdG45lFVGiGObuNSHWHY2046/uvs7da919IrCYKOnWWe7uj3h0D3AiUTK7PcT4T6Kz3GGt9Dd5xN0/DP+Xk4g+BEgrUOKRvdWf6FJafXcCS4B/mtkyM7spjrpWt2D5SiCb6JP9Z9Uv1BdbdxbRmVqd2F5oO4nOiurrGWKqX1f/Vo6tX2Mrm9kIM3vezD4ysx1EZ3vNHqOQzM8nShzrzewfZrZ/qLOPmU0ws7WhziebqHMw8GzogFICLCQ6C+tDdJn1ZWCCma0zs1+bWXYj7bjEzGbH1HNQvX1uiJnfFdpQvyyf1vmbxPO3l72gxCMtZmZHEb2A/1N/Wfh0+QN3HwqcDVxvZqfWLW6kyubOiAbGzA8i+gS9GSgHOsfElUl0iS/eetcRvWHG1l3Nnm9u8dgcYqpf19o4t28ozoZiW9fE+vcDHwDD3b0r0SVOi2vn7i+7+xeIzlQ/AP4YFv1v2NfBoc6LmqhzNdHlusKYKc/d14Yz39vcfSTRpbwvE1322oOZDQ77vgYocvdCYF687ainub/JHv87wKd6GzZBQ/p/Rko8Ejcz62pmXya6rv6ku7/fwDpfNrNhZmbAdqJPvbVh8Qai6+0tdZGZjTSzzsDtwFPhUsuHQJ6ZfSl8gr6F6AZ8nQ1AcWzX73r+AnzfzIaE+wJ194SqWxJciGUS8AszKwhvoNcTnSHEYwNQZGbd6sV2i5n1MrOewE9j6mto/QKizhdl4YzlO/HsOJzVjA33eiqIbpbX/b0Kwu/bzaw/8MMmqnqAqP2DQ729zGxsmD/FzA4OHwx2ECWE2gbq6EL0pr4pbHc50RlPi8XxN5kNnBS+N9aN6DJrvDaF+Pfmf1lQ4pH4PGdmpUSfan9MdK2/sZu0w4FXiN6w3gHuc/fXw7JfEr2ZlpjZDY1s35AniHrOfUTUQ+o6AHffTnQD/SGiT7LlRB0b6vw1/NxiZrMaqPfhUPcbRL25dhPdJN8b14b9LyM6Exwf6m+Wu39AlGiWhWPTD/g5MIPoRvr7wKxQ1tj6NxDdDC8lOmuYGGfcGURvyOuILp1+jk+S1m3AEUQfIP4BPNNEPb8HJhNdYi0F3iXqCADR2cRTRElnIfBvouNe/zgsILoP8w5Rcj2YqFfZ3mr0b+Lu/yI6RnOBmUQ9MePi7juBXwBvheN/zGeIsUOy5u/7ioiItB6d8YiISFIp8YiISFIp8YiISFIp8YiISFKl66CMn0nPnj29uLg41WGIiLQrM2fO3OzuvZpbT4mnAcXFxcyYMSPVYYiItCtmtrL5tXSpTUREkkyJR0REkkqJR0REkkqJR0REkkqJR0REkkqJR0REkkqJR0REkkqJR0REkkqJR0REkkojF0izxk9d1ew6F4welIRIRCQd6IxHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSSolHRESSKqGJx8xON7NFZrbEzG5qYHmumU0My6eaWXHMsptD+SIzO625Os3sz6F8npk9bGbZodzM7O6w/lwzOyKRbRYRkaYlLPGYWSZwL3AGMBL4upmNrLfalcA2dx8G3AXcEbYdCYwDDgROB+4zs8xm6vwzsD9wMNAJ+EYoPwMYHqargPtbv7UiIhKvRJ7xHA0scfdl7l4JTADG1ltnLPBYmH8KONXMLJRPcPcKd18OLAn1NVqnu7/gATANGBCzj8fDoneBQjPrm6hGi4hI0xKZePoDq2N+XxPKGlzH3auB7UBRE9s2W2e4xHYx8FIL4sDMrjKzGWY2Y9OmTXE0T0RE9kY6di64D3jD3d9syUbu/qC7j3L3Ub169UpQaCIikpXAutcCA2N+HxDKGlpnjZllAd2ALc1s22idZvY/QC/gWy2MQ0REkiSRZzzTgeFmNsTMcog6C0yut85k4NIwfy7wWrhHMxkYF3q9DSHqGDCtqTrN7BvAacDX3b223j4uCb3bjgG2u/v6RDRYRESal7AzHnevNrNrgJeBTOBhd59vZrcDM9x9MvAn4AkzWwJsJUokhPUmAQuAauBqd68BaKjOsMsHgJXAO1H/BJ5x99uBF4AziToo7AQuT1SbRUSkeRadYEisUaNG+YwZM1IdRpsxfuqqZte5YPSgJEQiIm2Zmc1091HNrZeOnQtERKQNU+IREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkUuIREZGkalHiMbMMM+uaqGBERCT9NZt4zGy8mXU1sy7APGCBmf0w8aGJiEg6iueMZ6S77wDOAV4EhgAXJzQqERFJW/EknmwzyyZKPJPdvQrwxIYlIiLpKp7E8wdgBdAFeMPMBgM7EhmUiIikr6zmVnD3u4G7Y4pWmtkpiQtJRETSWTydC/qY2Z/M7MXw+0jg0oRHJiIiaSmeS22PAi8D/cLvHwL/naiAREQkvcWTeHq6+ySgFsDdq4GahEYlIiJpK57EU25mRYSebGZ2DLA9oVGJiEjaiifxXA9MBvY1s7eAx4Fr46nczE43s0VmtsTMbmpgea6ZTQzLp5pZccyym0P5IjM7rbk6zeyaUOZm1jOm/GQz225ms8P003hiFxGRxIinV9ssM/scsB9gwKLwXZ4mmVkmcC/wBWANMN3MJrv7gpjVrgS2ufswMxsH3AGcHzowjAMOJLq39IqZjQjbNFbnW8DzwJQGwnnT3b/cXMwiIpJ4jSYeM/tqI4tGmBnu/kwzdR8NLHH3ZaG+CcBYIDbxjAVuDfNPAfeYmYXyCe5eASw3syWhPhqr093fC2XNhCUiIqnU1BnPWU0sc6C5xNMfWB3z+xpgdGPruHu1mW0HikL5u/W27R/mm6uzIcea2RxgHXCDu8+vv4KZXQVcBTBo0KA4qhQRkb3RaOJx98uTGUgCzQIGu3uZmZ0J/A0YXn8ld38QeBBg1KhRGhJIRCRBmr3HA2BmXyK635JXV+butzez2VpgYMzvA0JZQ+usMbMsoBuwpZltm6tzD2GA07r5F8zsPjPr6e6bm4lfREQSIJ6RCx4AzifqyWbAecDgOOqeDgw3syFmlkPUWWByvXUm88koCOcCr7m7h/JxodfbEKIzlGlx1lk//n3CfSPM7OjQ5i1xxC8iIgkQT3fq49z9EqLeZ7cBxwIjmtmm7oum1xCNerAQmOTu883sdjM7O6z2J6AodB64HrgpbDsfmETUEeEl4Gp3r2msTgAzu87M1hCdBc01s4fCPs4F5oV7PHcD40JyExGRFLDm3oPNbKq7jzazd4GvEp0tzHf3YckIMBVGjRrlM2bMSHUYbcb4qauaXeeC0eqQIdLRmdlMdx/V3Hrx3ON53swKgTuJbtQ78FDTm4iIiDQsni+Q/izMPm1mzwN57q4hc0REZK/E07ngPDMrCL/+EHjEzA5PbFgiIpKu4ulc8BN3LzWzE4AxRB0CHkhsWCIikq7iSTx1j0D4EvCgu/8DyElcSCIiks7iSTxrzewPRN/lecHMcuPcTkRE5FPiSSBfI/rezGnuXgL0ILrXIyIi0mLx9GrbScyAoO6+HlifyKBERCR96ZKZiIgklRKPiIgklRKPiIgkVVNPIC0lGh6nQe7eNSERiYhIWmvqQXAFAGb2M6LOBE8QPRbhQqBvUqITEZG0E8+ltrPd/T53L3X3He5+PzA20YGJiEh6iifxlJvZhWaWaWYZZnYhUJ7owEREJD3Fk3guIPoS6YYwnRfKREREWiyeL5CuQJfWRESklcTzWIQRZvaqmc0Lvx9iZrckPjQREUlH8Vxq+yNwM1AF4O5zgXGJDEpERNJXPImns7tPq1dWnYhgREQk/TV7jwfYbGb7Er5MambnokFCpZ7xU1c1ufyC0YOSFImItHXxJJ6rgQeB/c1sLbAcuCihUYmISNqKp1fbMmCMmXUBMty9NPFhiYhIuoqnV9v3zKwrsBO4y8xmmdkXEx+aiIiko3g6F1zh7juALwJFwMXArxIalYiIpK14Eo+Fn2cCj7v7/JgyERGRFokn8cw0s38SJZ6XzawAqE1sWCIikq7i6dV2JXAYsMzdd5pZEXB5YsMSEZF01dSD4PZ39w+Ikg7AUDNdYRMRkc+mqTOeHwDfBH7TwDIHPp+QiEREJK019QTSb4afpyQvHBERSXdNXWr7alMbuvszrR+OiIiku6YutZ3VxDIHlHhERKTFmrrUpp5rIiLS6uLpTo2ZfQk4EMirK3P32xMVlKSf5kavBo1gLdJRxDNW2wPA+cC1RCMWnAcMTnBcIiKSpuIZueA4d78E2ObutwHHAiPiqdzMTjezRWa2xMxuamB5rplNDMunmllxzLKbQ/kiMzutuTrN7JpQ5mbWM6bczOzusGyumR0RT+wiIpIY8SSeXeHnTjPrR/QI7L7NbWRmmcC9wBnASODrZjay3mpXEiW0YcBdwB1h25FEj9c+EDgduM/MMpup8y1gDLCy3j7OAIaH6Srg/jjaLCIiCRJP4nnezAqBO4FZwArgL3FsdzSwxN2XuXslMAEYW2+dscBjYf4p4FSLhkcYC0xw9wp3Xw4sCfU1Wqe7v+fuKxqIYyzR4Kbu7u8ChWbWbOIUEZHEiOdBcD8Ls0+b2fNAnrtvj6Pu/sDqmN/XAKMbW8fdq81sO9GjF/oD79bbtn+Yb67OeOLojx7fLSKSEs0mnnB560tAcd36Zoa7/zaxoSWXmV1FdCmOQYPUu0pEJFHi6U79HLAbeJ+WPQ5hLTAw5vcBoayhddaYWRbQDdjSzLbN1bk3ceDuDwIPAowaNcqbqVNERPZSPIlngLsfshd1TweGm9kQojf6ccAF9daZDFwKvAOcC7zm7m5mk4HxZvZboB9Rx4BpRN25m6uzvsnANWY2geiy3HZ312U2EZEUiadzwYtm9sWWVuzu1cA1wMvAQmCSu883s9vN7Oyw2p+AIjNbAlwP3BS2nQ9MAhYALwFXu3tNY3UCmNl1ZraG6Ixmrpk9FPbxArCMqIPCH4HvtrQtIiLSesy96atKZvYV4EmiJFVFdNbh7t418eGlxqhRo3zGjBmpDqPNiGfUgdagkQtE2jczm+nuo5pbL55Lbb8l+tLo+95clhIREWlGPJfaVgPzlHRERKQ1xHPGswyYYmYvAhV1henWnVpERJIjnsSzPEw5YRIREdlrTSae8OXRAne/IUnxiIhImmsy8bh7jZkdn6xgpH2qqqll6aYyFqzbwcKPSskw2H+frozsW8C+vfLJyoznVqKIdBTxXGqbHb7Q+VegvK7Q3fXoa2FLWQWPvL2CreWV5GZlMKJPAe7OnDUlTF+xlaIuOVx2XDFF+bmpDlVE2oh4Ek8e0TA2n48pc0CJp4Nbv30Xj761ghp3Lho9mBF9Pjm7qaqp5cMNpTz73loe+PdSLjm2mIE9Oqc4YhFpC+IZnfryZAQi7cuqLeU8+s4KcjIz+OYJQ+nTNW+P5dmZGRzYrxt9CvJ45O3lPPSfZXz9qEHs3zdtv3csInGK59HXA8zsWTPbGKanzWxAMoKTtmn7rioefWcFXXKy+NZJ+34q6cTqWZDLtz+3L70L8hg/bRUfbd+dvEBFpE2K567vI0QDbfYL03OhTDogd+fZ99ZQU+tcdlwx3bs038O+IC+bS44dTF52Jn+ZvorK6pYMci4i6SaexNPL3R9x9+owPQr0SnBc0kbNXLmNDzeUcdqB+7Sow0BBXjbnjRrAptIK/vH+ugRGKCJtXTyJZ4uZXWRmmWG6iKizgXQwJTsr+cf76yku6sIxQ4tavP3w3gWcNLwX01dsY+6akgREKCLtQTyJ5wrga8BHRI+LPhdQh4MOxt352+y11LrzX0f0J8Nsr+r5wsg+DOzeib/NXktZRXUrRyki7UGzicfdV7r72e7ey917u/s57p6ccfKlzVi6qZwPN5TxhQP6fKbv5GRmGP91xAAqq2t5ZeGGVoxQRNqLRrtTm9lPm9jO3f1nCYhH2iB355WFG+jWKXuvLrHV17trHscMLeKdpVsYPaQHfbt1aoUoRaS9aOqMp7yBCeBK4MYExyVtyOKNZazaupOT9+vVasPfnLp/HzrlZPL83PXoiRsiHUuj7yLu/pu6CXgQ6ER0b2cCMDRJ8UmKuTv/WrCB7p2zOXJw91art1NOJl8Y2Yflm8uZt25Hq9UrIm1fkx9fzayHmf0cmEt0We4Id7/R3TcmJTpJuVcXbmRtyS5O2a83WRmtO9jnUcU92KdrHi/OW091jb7bI9JRNPpOYmZ3AtOBUuBgd7/V3bclLTJJOXfnrlc+pEeXHA4f1HpnO3UyzDjj4H0o2VnF9BVbW71+EWmbmvoI+wOikQpuAdaZ2Y4wlZqZro10AG8u3sz8dTs4Zb9eZGbsXffp5gzrlU9xUWemfLiJ3VU1CdmHiLQtTd3jyXD3Tu5e4O5dY6YCd9dIjx3AI28tp2d+LocOKEzYPsyMMSP7ULq7miffXZmw/YhI26EndEmDlm0q4/VFm7hw9KCEP8htaM989u3VhfunLKVcXyoVSXtKPNKgx95eQXamceExg5Kyvy8c0Ict5ZU89s6KpOxPRFJHiUc+ZcfuKp6auYazDulH74LGH3nQmgYVdeHk/Xrx4BvLKN1dlZR9ikhqKPHIp0yavpryyhouP35IUvf7/TEjKNlZxRO61yOS1pR4ZA81tc5j76xg1ODuHDygW1L3fejAQj43ohcPvbmcnZW61yOSrpR4ZA///nAjq7fu4rLji1Oy/+tOHcbW8krGT9U4tCLpSolH9jB+6mp65ufwxZH7pGT/Rw7uwXH7FvGHN5bpez0iaUqJRz720fbdvPbBBs4bNZCcrNT9a1x36nA2lVYwYZrOekTSkRKPfGzSjNXUOow7amBK4zhmaBFHF/fggX8vo6JaZz0i6abR5/FIx1JT60yYtooTh/dkcFGXVIfDdacO56I/TeWvM9Zw0TGDW7XueO4fXTA6Od9fEumIdMYjALzx4SbWbd/N149uG2+4xw8r4ohBhdw/ZSmV1Rq5WiSdKPEIAOOnraJnfg5jDuiT6lCAaAy3740ZwdqSXTw1c02qwxGRVqTEI6FTwcaUdyqo76ThPTlsYCH3vr5EZz0iaaTtvMtIyjw1czU1tZ7yTgX1RWc9w1lbsounZ+msRyRdKPF0cLW1zsQZqzlu36I20amgvpNH9OLQAd249/UlVOkppSJpIaGJx8xON7NFZrbEzG5qYHmumU0My6eaWXHMsptD+SIzO625Os1sSKhjSagzJ5RfZmabzGx2mL6RyDa3N28v3cLqrbs4v42d7dQxM/57zAjWbNvFpBmrUx2OiLSChCUeM8sE7gXOAEYCXzezkfVWuxLY5u7DgLuAO8K2I4FxwIHA6cB9ZpbZTJ13AHeFuraFuutMdPfDwvRQAprbbk2YvorCztmcdmBqRiqIx8n79eLIwd25+9XF7KrU93pE2rtEnvEcDSxx92XuXglMAMbWW2cs8FiYfwo41cwslE9w9wp3Xw4sCfU1WGfY5vOhDkKd5ySwbWlha3kl/5y/ga8c3p+87MxUh9MoM+PG0/dnw44KPa9HJA0kMvH0B2KvjawJZQ2u4+7VwHagqIltGysvAkpCHQ3t67/MbK6ZPWVmDV5TMrOrzGyGmc3YtGlT/K1sx56ZtYbKmlrGHdU2vrvTlKOH9OCU/Xpx/5SlbN+l5/WItGcdoXPBc0Cxux8C/ItPzrD24O4Puvsodx/Vq1evpAaYCu7OxOmrOXxQIfvtU5DqcOJyw2n7sX1XFQ++sTTVoYjIZ5DIxLMWiD27GBDKGlzHzLKAbsCWJrZtrHwLUBjq2GNf7r7F3StC+UPAkZ+pVWli1qptLN5Y1ua6UDflwH7dOPvQfjz8nxVs3LE71eGIyF5KZOKZDgwPvc1yiDoLTK63zmTg0jB/LvCau3soHxd6vQ0BhgPTGqszbPN6qINQ598BzKxvzP7OBha2cjvbpT9PXUV+bhZfPqRfqkNpkR98cQTVtbXc+fKiVIciInspYYkn3G+5BniZ6M1+krvPN7PbzezssNqfgCIzWwJcD9wUtp0PTAIWAC8BV7t7TWN1hrpuBK4PdRWFugGuM7P5ZjYHuA64LFFtbi9Kdlby/Nz1nHN4P7rktq9xYgcXdeGKE4bw15lreG/VtlSHIyJ7IaHvOu7+AvBCvbKfxszvBs5rZNtfAL+Ip85Qvoyo11v98puBm1saezp7etZaKqtrueDo1h31OVmu/fxwnp21llsnz+fZ7x5PRoalOiQRaYGO0LlAYrg746eu5PBBhYzs1zXV4eyV/Nwsbj5zf+as2a4BREXaISWeDmbq8q0s3VTOBW3k8Qd765zD+nPk4O7c8dIH6l4t0s4o8XQw46euomte++tUUJ+ZcdvZB7JtZyW/elH9RUTaEyWeDmRLWQUvzlvPV48YQKectjtSQbwO6t+Nb540lL9MW82/P+wYX/oVSQdKPB3IxBmrqapxLkyjxzp/f8wIhvfO58an5uqSm0g7ocTTQVTV1PL42ys5YVhPhvdpHyMVxCMvO5PffO1QNpVVcPtzC1IdjojEQYmng3hx3kd8tGM3V5xQnOpQWt0hAwr57sn78vSsNbw8/6NUhyMizVDi6SAe/s9yhvTswskjeqc6lIS49vPDObh/N26YNIdlm8pSHY6INEGJpwOYtWobs1eXcNlxxWn7ZcucrAzuv+gIsrMy+NYTMymrqG5+IxFJCSWeDuDh/yynIC+Lc48ckOpQEmpA987c8/XDWbqpjB89NYdoCD8RaWuUeNLcupJdvDjvI8YdNbDdjcu2N44b1pObztifF97/iN+/ujjV4YhIA9L/naiDe/g/y3F3Ljm2ONWhJM03TxzKoo/K+N0ri+nWKZvLjx+S6pBEJIYSTxrbXFbBk1NXcs5h/RnYo3Oqw0kaM+OO/zqYsooqbntuAfm5WZw3qv08d0gk3elSWxp76M3lVFTXcvXnh6U6lKTLyszg7q8fzonDe3Lj03N5bs66VIckIoEST5raWl7J4++s4KxD+rFvr/xUh5MSuVmZ/OHiIzlycHeum/Aej729ItUhiQi61Ja2Hv7PcnZV1XBNBzzbidU5J4vHrxjNtX95j/+ZPJ8NO3bTv7ATZunZrVykPdAZTxravrOKR99ewZkH9WVEGg2Ps7c65WTywEVHcMHoQdw3ZSkTZ6ymsro21WGJdFg640lDD765lLKK6g5/thMrKzODX5xzEP0LO/F/Ly/io+27uWD0IHoX5KU6NJEOR2c8aWb11p388c3ljD2sHwf0bZ9PGE0UM+PqU4Zx+fFDKK+o5r7Xl/Leqm36oqlIkinxpJlfvfgBGQY3nr5/qkNps4Z5PVekAAAUZUlEQVT1zueazw+nb2Eef525hj9PXUXpbj1SQSRZlHjSyLvLtvCP99fznc8No19hp1SH06Z165TNN08cyukH7sOHG0r5/auLmbO6RGc/IkmgxJMmamqd259bQL9ueVx10tBUh9MuZJhx0oheXH3KMHp0yWHijNU88tYKNpVWpDo0kbSmxJMmJkxfxYL1O7jpzAPS4rHWydSnax7f/ty+nHVoP9aU7OTuVxdzx0sf6PKbSIIo8aSBVVt28r//WMgxQ3tw1iF9Ux1Ou5RhxrFDi/j+mBEcMqAb909Zyin/N4U/T11JdY26Xou0JiWedq6m1rl+0mwyzPi/8w7VFyM/o4K8bM4bNZC/X308Q3vm8+Nn53HG79/kpXkf6f6PSCtR4mnnHvj3Umas3MZtYw9kQPeOMxBooh06sJCJ3zqGBy46ghp3vv3kTM659y3eXLxJCUjkM9IXSNuxeWu3c9e/PuRLB/flK4f3T3U4n9n4qatSHcIezIzTD+rLmAP68Mx7a/n9K4u5+E/TOGJQIdeeOpyTR/Rq8gwznvZcMHpQa4bcqOZiSVYc7Ulb+vulG53xtFMbd+zmW0/MpCg/h1985SBdYkugrMwMvjZqIK/d8Dl+fs5BbNhRweWPTGfsvW/xj7nrdQ9IpIV0xtMOlVdUc8Vj09m2s5IJVx1DYeecVIfUIeRmZXLRMYP52qiBPPveGu6fspSrx89iYI9OXHn8EM4dNZD8DvCUV5HPSmc87UxVTS3f/fMsFq4v5d4LjuCQAYWpDqnDycnK4PyjBvHqD07mgYuOpHdBHrc+t4DRv3iFn/xtHos+Kk11iCJtmj6etSNVNbX86Km5/PvDTfzqqwdzyv69Ux1Sh5aZYZx+0D6cftA+zF5dwhPvrGTijNU88e5KDh1YyOAenTlkQDc65+hlJhJLr4h2YsfuKr775Cz+s2QzPzxtP8YdrZuabclhAws5bGAht3zpAJ6etYanZq5h8px1/OP99Qzrlc9B/btywD5d6axLcSJKPO3BupJdXPHodJZsLOPOcw/hvFEDUx2SNKJ7lxy+ceJQvnHiUP7v5UXMXl3CvHXbWTSrlAxby8AenRneu4DhvfPp313j6UnHpMTThrk7f5+9jtuem091jfPo5UdzwvCeqQ5L4tSvsBP9CjtxxkH7sK5kN/PXbWfxxjJeWbiBVxZuICcrg5fmfcSRg7tz6MBujOzbjT5dc9VDUdKeEk8btbZkF7c8+z6vL9rE4YMKufPcQxnWOz/VYcleMDP6d+9E/+6d+OKBUFZRzdKNZazYUs6W8krufm0xdd9J7d45m+G9Cyju2Zninl0Y2L0zfbvl0bewE73yc8nJUn8gaf+UeNqY5ZvLefCNZTw9aw2ZZvzPWSO55NhiMjP0KThd5OdmcejAQg4dWMgFowdRuruKDz4qZcG6HSxcv4Olm8p47YNNbC5b86ltC3Kz6JGfQ2HnHApysyjIy6JLbhadczLplJ1Jp5xMcrMyycvOIDcrk9ysDHKzM1i4fgdZmUZ2RgbZWRnkZGaQE37mZiuZSXIp8bQBpbureO2DjTw/dz2vLNxAdmYG5x45gO+evK+GwekACvKyOaq4B0cV99ijvKyimrXbdrF++y7Wb9/N5tIKtpRXsrW8kpJdVZTtrmLDjt2UVVSzq6qGnZU1VFbv3ZdZf/nCQgrysinsnE23TtHPHl1ywpRLz/wceuXn0qsgmrp1yk6rS4Luzs7KGraWV7J9VxXbdlYyd00JFdW17K6qoaK6luqaWqpqnZoap9YdB2at2kZWhpGZYWRnZpCXHX0A6JyTSUFeFl07ZdM1HNfuXXLo0TlHo8eT4MRjZqcDvwcygYfc/Vf1lucCjwNHAluA8919RVh2M3AlUANc5+4vN1WnmQ0BJgBFwEzgYnevbGofqbJ9VxVz15Tw3qoSZqzcxrtLt1BZU0vvgly+87l9uez4YnoX5KUyRGkD8nOz2G+fAvbbpyDubWpqncrwZrm7OkpEldW1/O29dVTV1FJVW0tVtVNZU0tVdS0V1TXsrq6luKgLpbur2L6ripJdVSzfXM7MlSVsLa+gtoGh6XIyMz5OQr0//plHz4IoQRXl51LUJYei/Bzyc7NSkqSqamrZVl75cbLeXFbB5rJKtpRVfDy/uayCLWWVbCmvYHdV00k7K8PIyjQyMzLItOgS6vqSXdS4U10THdOKcLyb0ik7k6L8HIryc+mVn0PPkNB75udSFH7vmR8l/MJO2WSk4dWOhCUeM8sE7gW+AKwBppvZZHdfELPalcA2dx9mZuOAO4DzzWwkMA44EOgHvGJmI8I2jdV5B3CXu08wswdC3fc3to9EtHnH7ipWb91J2e5qyiqq2bG7ii1llWwqq2DTjgpWbt3Jyi3lbC6r/HibYb3zufjYwZxx0D4cMah7Wv6TSfJkZhidcjI/9am6uR50jY05VlvrbN9Vxeayiuj/uPSTaWP4uWJLOdNWbKVkZ8PPL8rONLp1yvn4bKogL4v83GjqlBOdHeRlZZKTlUF2ZgbZmYaZkWGGGdS6U1vr1NQ6VXVv8FU1H5/l7aqsobSimtLdVZTurqZkZ5RAyyqqG4wnK8Po0SW8wRfkMqxX/seJoEfnnI/PTv6zeDN52dHlypysDDIaSJ4NHbfqmlp2VdVE7wG7qj8+gyrZWcnW8iq2lEVnrpvLKlizbRezV29vNMFnGBTWxdQ5h8JO2eEsKouCvGy65GaRn5tJ55zocmteuOSamxVdaq27nJqVGZ2R1SXPrIwMzKL/l8xwnJP54SCRZzxHA0vcfRmAmU0AxgKxiWcscGuYfwq4x6LWjwUmuHsFsNzMloT6aKhOM1sIfB64IKzzWKj3/sb24QkYYvjfizZx7V/e+1R5TmYGPfNzGNijM2MO6MPgoi4c3L8bhwzsRte87NYOQ6TVZGQY3bvk0L1LDsP7NH3mVVldy5byCjaXhjOJ8kq2llewtbyK7bsqP04IW8srWbVlJ6UV1eyurGFnVQ01Db3rNqPuklannEzyc7PompfNPl3z2K9PwSdv1l1yKAqXDHuGs4muefGdRSzeUNbimCAa268gM4OCvGz6dotvm5paZ9vOSraU1Z2ZVbA1nKltLY+O3badlazfvpsPN5ayY1eUaPfisDXKLHou1bdOGsqPTt+/9SpuQCITT39gdczva4DRja3j7tVmtp3oUll/4N1629YNv9xQnUVAibtXN7B+Y/vYHBuImV0FXBV+LTOzRXG3NA6LgXei2Z71950G0q1NPS9MUnsuTMZO4vj7JCmO1tQm/uda8bi1ifYA3PhLuHHvNx8cz0rqXBC4+4PAg4nej5nNcPdRid5PMqVbm9Seti/d2pRu7WlOIvtRrgViv2I/IJQ1uI6ZZQHdiDoANLZtY+VbgMJQR/19NbYPERFJgUQmnunAcDMbYmY5RJ0FJtdbZzJwaZg/F3gt3HuZDIwzs9zQW204MK2xOsM2r4c6CHX+vZl9iIhICiTsUlu4n3IN8DJR1+eH3X2+md0OzHD3ycCfgCdC54GtRImEsN4koo4I1cDV7l4D0FCdYZc3AhPM7OfAe6FuGttHCiX8cl4KpFub1J62L93alG7taZLpw7+IiCSTxsoQEZGkUuIREZGkUuJpBWZ2npnNN7NaMxtVb9nNZrbEzBaZ2Wkx5aeHsiVmdlNM+RAzmxrKJ4ZOFISOFhND+VQzK05W+xrTWBvaCjN72Mw2mtm8mLIeZvYvM1scfnYP5WZmd4e2zDWzI2K2uTSsv9jMLo0pP9LM3g/b3G0J/Oq3mQ00s9fNbEH4X/tee25P2F+emU0zszmhTbeF8ha/Blr6OktwuzLN7D0zez4d2pMQ7q7pM07AAcB+wBRgVEz5SGAOkAsMAZYSdYrIDPNDgZywzsiwzSRgXJh/APhOmP8u8ECYHwdMTHGbG21DW5mAk4AjgHkxZb8GbgrzNwF3hPkzgRcBA44BpobyHsCy8LN7mO8elk0L61rY9owEtqUvcESYLwA+DP9f7bI9YX8G5If5bGBq2H+LXgN78zpLcLuuB8YDz4ff23V7EjHpjKcVuPtCd29opIOPh/5x9+VA3dA/Hw8n5O6VRIObjg2fMD9PNLQPREP/nBNT12Nh/ing1ER/Im1Gg21IYTyf4u5vEPVkjBV7HOsf38c98i7R98L6AqcB/3L3re6+DfgXcHpY1tXd3/Xo3eLxmLoS0Zb17j4rzJcCC4lG5WiX7QntcHevG5cmO0xOy18DLXqdJbJNZjYA+BLwUPh9b17TbaY9iaLEk1gNDRvUv4nyuIf+AeqG/kmVxtrQ1vVx9/Vh/iOgT5hv6d+qf5ivX55w4ZLM4URnCO26PeGy1GxgI1ESXErLXwMtbWsi/Q74EVA3RPXevKbbUnsSQoknTmb2ipnNa2Bql584JPrETfQJu90ws3zgaeC/3X1H7LL22B53r3H3w4hGGzkaSOzolAlkZl8GNrr7zFTH0tZprLY4ufuYvdisqWGDmhz6J3wCamjonzXWNob+iWdIpLZog5n1dff14fLSxlDe1DBNJ9crnxLKBzSwfsKYWTZR0vmzuz8Tittte2K5e4mZvQ4cS8tfAy19nSXK8cDZZnYmkAd0JXp2WHttT+Kk+iZTOk18unPBgex5k3AZ0Q3CrDA/hE9uEh4Ytvkre96I/G6Yv5o9b0ROSnFbG21DW5qAYvbsXHAne96M/3WY/xJ73oyfFsp7AMuJbsR3D/M9wrL6N+PPTGA7jOi+y+/qlbfL9oT99QIKw3wn4E3gyy19DezN6ywJ/3cn80nngnbfnlY/PqkOIB0m4CtE11srgA3AyzHLfkx03XoRMb2EiHodfRiW/TimfGh4A1gS/mFzQ3le+H1JWD60DbS7wTa0lQn4C7AeqAp/nyuJrqG/SvSkildi3nSN6CGDS4H32fMDxBXhuC8BLo8pHwXMC9vcQxgJJEFtOYHoMtpcYHaYzmyv7Qn7O4RoeKu5Yb8/3dvXQEtfZ0n43zuZTxJPu29Pa08aMkdERJJKnQtERCSplHhERCSplHhERCSplHhERCSplHhERCSplHgkpcysxsxmh9GJ55jZD8ys3f1fmtlDZjayBeufbGbHxbHeOfHUa2a3mtkN8e6/kTqKLWYk7/bOzA4LX+aUNqbdvcAl7exy98Pc/UDgC8AZwP981krDN8GTxt2/4e4LWrDJyUCziYdoQMm4E5rs4TCi771IG6PEI22Gu28ErgKuCc+TyTSzO81senimzLfq1jWzG8OzY+aY2a9C2RQz+52ZzQC+Z2a9zOzpsP10Mzs+rHe0mb0TnpnytpntF8oPtOj5MLPD/oaH8otiyv9gZpn1Yw/7HhXmy8zsFyG2d82sT711i4FvA98PdZ4YzjZeC/t91cwGhTOis4E7w3r7mtk3Q1vmhLZ1buqYWvSsqHlh/Tfq9m9mb5rZrDB9KgE2duzNrK+ZvRHimWdmJzaw7U/DdvPM7MEw4nLdMbrLzGaY2UIzO8rMnrHouUA/j9n+evtkLMT/jok59rlKN5jZrTH13hH+Rh+G45kD3A6cH2I9v6njJEmW6m+waurYE1DWQFkJ0SjLVwG3hLJcYAbRcCFnAG8DncOyum/rTwHui6lnPHBCmB8ELAzzXYGsMD8GeDrM/z/gwjCfQzSMywHAc0B2KL8PuKSBmKcQRgcgGmHgrDD/67o21Fv/VuCGmN+fAy4N81cAfwvzjwLnxqxXFDP/c+DahuqLWed9oH+YrxuepjOQF+aHAzPCfDFheKEmjv0PCN+YJxrGpaCBffaImX8i5lhM4ZPnBX0PWEf0nKFcopElioAjQ8xdgHxgPtFI3B/HFra/Abg1pt7fhPkzgVfC/GXAPan+H9f06UmDhEpb9kXgEDM7N/zejeiNcgzwiLvvBHD32GfuTIyZHwOMtE8eW9TVotGduwGPhTMaJ3oODMA7wI8teqbKM+6+2MxOJXoznB7q6cQnA3E2phJ4PszPJLqE2Jxjga+G+SeIElZDDgpnB4VEb8wvN1PvW8CjZjYJqBtYNBu4x8wOA2qAEQ1s19ixnw48bNGApX9z99kNbHuKmf2IKMH1IEoez4Vlk8PP94H5Hh7pYGbLiAbAPAF41t3LQ/kzwIkx2zWmrm0ziZKUtGFKPNKmmNlQojfDjUTjjV3r7i/XW+e0hrYNymPmM4Bj3H13ve3vAV5396+Ey15TANx9vJlNJRpg84VwecmAx9z95hY0o8rDR+7QltZ8nT0KnOPuc8zsMvYcafpT3P3bZjaaqE0zzexI4FqiMQUPJTpGuxvYtMFjD2BmJ4X6HjWz37r74zHL8ojOCke5++pwOSwvZvOK8LM2Zr7u96aOUzV73hrIq7e8rq7WPt6SALrHI22GmfUiGr33nvDG/TLwnfDpGjMbYWZdiB4Ydnnd/Q0z69FIlf8kepOtq/+wMNuNT4aTvyxm+VBgmbvfDfydaBDLV4Fzzax33b7MbHArNLeU6BHWdd4mGqEY4EKikZobWq8AWB+OyYXN7cTM9nX3qe7+U2AT0VlFN2C9u9cCFxNdMquvwWMf2r7B3f9I9JTNI+ptV5cQNoezy3NpmTeBc8ysc/hbfyWUbQB6m1mRmeUSjWLdnPrHTtoIJR5JtU7h5u98otGV/wncFpY9BCwAZoUby38gujfzEtGllxkWPb2ysW7E1wGjws3xBUQ39CG6jPVLM3uPPT8dfw2YF+o8iOjR0QuAW4B/mtlcoqTXtxXa/RzwlbrOBUQJ8vKwj4uJ7oFA9HjjH1rUEWJf4CdETx59C/ggjv3caVEnjHlEyW0O0RnJpWY2h+jBa+UNbNfgsSc6w5oTjt35RM+b+Zi7lwB/JBpt+mWiS3Nx8+jx3o8SjdY8FXjI3d9z9yqizgLTiP4G8bT9daJLrepc0MZodGoREUkqnfGIiEhSKfGIiEhSKfGIiEhSKfGIiEhSKfGIiEhSKfGIiEhSKfGIiEhS/f+XL+rd4usTEAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The mean decrease in the total amount of sales on Day 62 is: 3581.75\n", - "The median decrease in the total amount of sales on Day 62 is: 805.46\n" - ] - } - ], - "source": [ - "sales_dist = sns.distplot(data[\"sales_dec_62\"], kde = True)\n", - "sales_dist.set(xlabel='Decrease in total sales amount', ylabel='Normalised sales', title='Distribution of total sales amount')\n", - "plt.show()\n", + "In Figure 2 values were approximated for each variable on Day 62, using Equation 1, and plotted against the minimum and maximum values of the respective variables. This allows us to visually assess whether the reconstructed value for Day 62 lies outside the range of recorded values for the reference period, and presents uncharacteristic behaviour. A decrease is evident in each of the variables after the event has occured (on Day 62) within a distance of approximately 2 km, and appears to stabilise thereafter. This provides support to the authors'1 hypothesis that consumer spending is affected by socially disruptive events, and also provides evidence to the notion of spatial scaling of this effect (based on the event location). It is important to note that the approximation used in this technique is subject to a level of error due to the ideal calculation of the mean/median of the reference data as the midpoint between the minimum and maximum values provided.\n", "\n", - "print(\"The mean decrease in the total amount of sales on Day 62 is: %.2f\" % data[\"sales_dec_62\"].mean())\n", - "print(\"The median decrease in the total amount of sales on Day 62 is: %.2f\" % data[\"sales_dec_62\"].median())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Computing the mean changes to consumers' behaviour:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**** \\*\\*\\*\\* Need to change a bunch of this \\*\\*\\*\\* ****" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "T score: 9.767587, P score: 0.000000\n" - ] - } - ], - "source": [ - "cust_increase = cust_data.loc[cust_data[\"Decrease on Day 62\"] >= cust_change_mean][\"Decrease on Day 62\"]\n", - "cust_decrease = cust_data.loc[cust_data[\"Decrease on Day 62\"] < cust_change_mean][\"Decrease on Day 62\"]\n", - "t, p = stats.ttest_ind(cust_increase, cust_decrease)\n", - "p = p/2 # Because 1 tailed T-Test\n", - "print(\"T score: %f, P score: %f\" % (t, p))" + "Extrapolating data from a graph in Dong et al.1 provided time series data (divided into three radius') to analyse. This data was collected by visually estimating the values from the graph which will inherently introduce a source of error. However, by computing the z-score as described in Equation 2, the table provided in Figure 3 was constructed. Each of the z-score values in the table are negative, indicating a decrease in both the number of customers and median spending on Day 62. The much larger magnitude of z-scores for the <2km distance ring for both variables is in agreement with earlier discussion, strengthening the hypothesis of the spatial correlation of consumer spending.\n", + "\n", + "Each of the above tests have agreed on the spatial and temporal correlation of consumer spending and socially disruptive events. With the limited data available, we can therefore concur with the hypothesis of Dong et al. that consumer spending decreases in the area around disruptive social behaviour, after finding the temporal correlation on Day 62, as well as the spatially decreasing effect further from the event. However, the original study lacks robustness (with only credit card data from two events in the same geographic area), and generalisability (only one type of disruptive behaviour was studied)." ] }, {