1
0
This commit is contained in:
Silver-T 2018-05-23 22:58:19 +10:00
commit 4b11d0c3e6

View File

@ -53,6 +53,22 @@ def FCN():
return model
def precision(y_true, y_pred):
y_pred = np.round(y_pred)
num = np.sum(np.logical_and(y_true, y_pred))
den = np.sum(y_pred)
return np.divide(num, den)
def recall(y_true, y_pred):
y_pred = np.round(y_pred)
num = np.sum(np.logical_and(y_true, y_pred))
den = np.sum(y_true)
return np.divide(num, den)
def f_measure(y_true, y_pred):
p = precision(y_true, y_pred)
r = recall(y_true, y_pred)
return 2 * p * r / (p + r)
## Open data
im_train = np.load('Waldo_train_data.npy')
@ -131,4 +147,3 @@ accuracy = accuracy_score(lbl_test, pred_lbl)
print("Accuracy: " + str(accuracy))
print("Images generated in {} seconds".format(end - start))
np.save('predicted_results.npy', pred_lbl)