From 558fcf084b38f130e211e7b44e402dae395a3d27 Mon Sep 17 00:00:00 2001 From: "Jip J. Dekker" Date: Fri, 25 May 2018 13:23:21 +1000 Subject: [PATCH] Add description for SVM --- mini_proj/report/references.bib | 18 +++++++++++++----- mini_proj/report/waldo.tex | 10 +++++++++- 2 files changed, 22 insertions(+), 6 deletions(-) diff --git a/mini_proj/report/references.bib b/mini_proj/report/references.bib index a6ad907..a8b643e 100644 --- a/mini_proj/report/references.bib +++ b/mini_proj/report/references.bib @@ -1,8 +1,8 @@ -@misc{openData, - title={Open Database License (ODbL) v1.0}, - url={https://opendatacommons.org/licenses/odbl/1.0/}, - journal={Open Data Commons}, - year={2018}, +@misc{openData, + title={Open Database License (ODbL) v1.0}, + url={https://opendatacommons.org/licenses/odbl/1.0/}, + journal={Open Data Commons}, + year={2018}, month={Feb} } @techreport{knn, @@ -21,6 +21,14 @@ year={1995}, publisher={Springer} } +@inproceedings{svmnonlinear, + title={A training algorithm for optimal margin classifiers}, + author={Boser, Bernhard E and Guyon, Isabelle M and Vapnik, Vladimir N}, + booktitle={Proceedings of the fifth annual workshop on Computational learning theory}, + pages={144--152}, + year={1992}, + organization={ACM} +} @article{naivebayes, title={Idiot's Bayes—not so stupid after all?}, author={Hand, David J and Yu, Keming}, diff --git a/mini_proj/report/waldo.tex b/mini_proj/report/waldo.tex index 6f0f623..6ea06d2 100644 --- a/mini_proj/report/waldo.tex +++ b/mini_proj/report/waldo.tex @@ -142,7 +142,15 @@ \paragraph{Support Vector Machine} - \cite{svm} + (SVM) \cite{svm} has been very successful in many classification tasks. The + method is based on finding boundaries between the different classes. The + boundaries are defined as functions on the features of the instances. The + boundaries are optimized to have the most amount of space between the + boundaries and the training instances on both sides. Originally the + boundaries where linear functions, but more recent development allows for + the training of non-linear boundaries~\cite{svmnonlinear}. Once the training + has defined the boundaries new instances are classified according to on + which side of the boundary they belong. \paragraph{Random Forest}