report writing, new model file
This commit is contained in:
parent
f9c5ffefea
commit
5c5f0d0860
@ -79,7 +79,7 @@ def gen_data(w_path, n_w_path):
|
||||
imgs_lbl.append(0)
|
||||
|
||||
print('Completed: {0}/{1} non-Waldo images'.format(nw+1, total_nw))
|
||||
if nw > 50*w:
|
||||
if nw > 10*w:
|
||||
print("Non_Waldo files restricted")
|
||||
break
|
||||
else:
|
||||
|
Binary file not shown.
@ -3,6 +3,8 @@
|
||||
|
||||
\usepackage{graphicx} % Used to insert images into the paper
|
||||
\usepackage{float}
|
||||
\usepackage{caption}
|
||||
\interfootnotelinepenalty=10000 % Stops footnotes overflowing onto the newt page
|
||||
\usepackage[justification=centering]{caption} % Used for captions
|
||||
\captionsetup[figure]{font=small} % Makes captions small
|
||||
\newcommand\tab[1][0.5cm]{\hspace*{#1}} % Defines a new command to use 'tab' in text
|
||||
@ -99,16 +101,6 @@
|
||||
architectures, as this method is currently the most used for image
|
||||
classification.
|
||||
|
||||
\todo{
|
||||
\\A couple of papers that may be useful (if needed):
|
||||
- LeNet: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
|
||||
- AlexNet: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
|
||||
- General comparison of LeNet and AlexNet:
|
||||
"On the Performance of GoogLeNet and AlexNet Applied to Sketches", Pedro Ballester and Ricardo Matsumura Araujo
|
||||
- Deep NN Architecture:
|
||||
https://www-sciencedirect-com.ezproxy.lib.monash.edu.au/science/article/pii/S0925231216315533
|
||||
}
|
||||
|
||||
\subsection{Classical Machine Learning Methods}
|
||||
|
||||
The following paragraphs will give only brief descriptions of the different
|
||||
@ -173,7 +165,7 @@
|
||||
The Fully Convolutional Network (FCN) contains only one dense layer for the final binary classification step.
|
||||
The FCN instead consists of an extra convolutional layer, resulting in an increased ability for the network to abstract the input data relative to the other two configurations.
|
||||
\\
|
||||
\textbf{Insert image of LeNet from slides}
|
||||
\todo{Insert image of LeNet from slides if time}
|
||||
|
||||
\section{Method} \label{sec:method}
|
||||
\tab
|
||||
@ -217,8 +209,7 @@
|
||||
\subsection{Neural Network Testing}\label{nnTesting}
|
||||
\tab After training each network, a separate test set of images (and labels) was used to evaluate the models.
|
||||
The result of this testing was expressed primarily in the form of an accuracy (percentage).
|
||||
These results as well as the other methods presented in this paper are given in Figure \textbf{[insert ref to results here]} of the Results section.
|
||||
\textbf{***********}
|
||||
These results as well as the other methods presented in this paper are given in Table \ref{tab:results}.
|
||||
% Kelvin Start
|
||||
\subsection{Benchmarking}\label{benchmarking}
|
||||
|
||||
@ -270,6 +261,35 @@
|
||||
% Kelvin End
|
||||
|
||||
\section{Results} \label{sec:results}
|
||||
\tab The time taken to train each of the neural networks and traditional approaches was measured and recorded alongside their accuracy (evaluated using a separate test dataset) in Table \ref{tab:results}.
|
||||
|
||||
% Annealing image and caption
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\renewcommand{\arraystretch}{1.5} % Adds some space to the table
|
||||
\begin{tabular}{|c|c|c|}
|
||||
\hline
|
||||
\textbf{Method} & \textbf{Test Accuracy} & \textbf{Training Time (s)}\\
|
||||
\hline
|
||||
LeNet & 87.86\% & 65.67\\
|
||||
\hline
|
||||
CNN & 95.63\% & 119.31\\
|
||||
\hline
|
||||
FCN & 94.66\% & 113.94\\
|
||||
\hline
|
||||
Support Vector Machine & 83.50\% & 5.90\\
|
||||
\hline
|
||||
K Nearest Neighbours & 67.96\% & 0.22\\
|
||||
\hline
|
||||
Gaussian Naive Bayes & 85.44\% & 0.15\\
|
||||
\hline
|
||||
Random Forest & 92.23\% & 0.92\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\captionsetup{width=0.70\textwidth}
|
||||
\caption{Comparison of the accuracy and training time of each neural network and traditional machine learning technique}
|
||||
\label{tab:results}
|
||||
\end{table}
|
||||
|
||||
\section{Conclusion} \label{sec:conclusion}
|
||||
|
||||
|
@ -49,7 +49,7 @@ def CNN():
|
||||
## Define the model start and end
|
||||
model = Model(inputs=inputs, outputs=classif)
|
||||
# Optimizer recommended Adadelta values (lr=0.01)
|
||||
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy', f1])
|
||||
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
|
||||
|
||||
return model
|
||||
|
||||
@ -79,7 +79,7 @@ def FCN():
|
||||
## Define the model start and end
|
||||
model = Model(inputs=inputs, outputs=classif)
|
||||
# Optimizer recommended Adadelta values (lr=0.01)
|
||||
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy', f1])
|
||||
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
|
||||
|
||||
return model
|
||||
|
||||
@ -107,7 +107,7 @@ def LeNet():
|
||||
|
||||
## Define the model start and end
|
||||
model = Model(inputs=inputs, outputs=classif)
|
||||
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy', f1])
|
||||
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
|
||||
|
||||
return model
|
||||
|
||||
@ -115,7 +115,7 @@ def LeNet():
|
||||
AlexNet architecture
|
||||
'''
|
||||
def AlexNet():
|
||||
inputs = Input(shape=(3, 64, 64))
|
||||
#inputs = Input(shape=(3, 64, 64))
|
||||
|
||||
|
||||
return model
|
||||
|
Reference in New Issue
Block a user