diff --git a/mini_proj/test_nn.py b/mini_proj/test_nn.py index 987b6b5..b0b6727 100644 --- a/mini_proj/test_nn.py +++ b/mini_proj/test_nn.py @@ -53,7 +53,7 @@ def is_Wally(trained_model_path, image, from_file=False): if __name__ == '__main__': # Read image - image = cv2.imread("10.jpg") + image = cv2.imread("7.jpg") # Split image cuts = image_cut(image, 64, 64) for i in range(len(cuts)): @@ -63,11 +63,18 @@ if __name__ == '__main__': block = color.hsv2rgb(hsv) block = np.rollaxis(block, -1) if is_Wally("Waldo.h5", block): - # if True: # Border block GREEN = [0, 255, 0] cuts[i] = cv2.copyMakeBorder(cuts[i][1:61,1:61],2,2,2,2,cv2.BORDER_CONSTANT,value=GREEN) - # Stitch image TODO! + # Stitch image + width = int(image.shape[1]/64) # TODO: does not work if this is not actually an integer + i = 0 + layers = [] + while i < len(cuts): + filler = [ np.zeros((64,64,3)) for j in range(i+width - min(i+width, len(cuts))) ] + layers.append(np.concatenate(([cuts[j] for j in range(i, min(i+width, len(cuts)))] + filler),axis=1)) + i = i + width + image = np.concatenate(layers, axis=0) # Show image cv2.imwrite('output.png',image)