1
0
This commit is contained in:
Silver-T 2018-05-04 14:20:45 +10:00
commit 6b3cddc2d1
9 changed files with 1077 additions and 221 deletions

226
.gitignore vendored
View File

@ -1,3 +1,225 @@
wk7/.ipynb_checkpoints/
wk8/.ipynb_checkpoints/
.ipynb_checkpoints/
*~
## Core latex/pdflatex auxiliary files:
*.aux
*.lof
*.log
*.lot
*.fls
*.out
*.toc
*.fmt
*.fot
*.cb
*.cb2
## Intermediate documents:
*.dvi
*-converted-to.*
# these rules might exclude image files for figures etc.
# *.ps
# *.eps
# *.pdf
## Generated if empty string is given at "Please type another file name for output:"
wk7/week7.pdf
wk8/week8.pdf
wk9/week9.pdf
## Bibliography auxiliary files (bibtex/biblatex/biber):
*.bbl
*.bcf
*.blg
*-blx.aux
*-blx.bib
*.run.xml
## Build tool auxiliary files:
*.fdb_latexmk
*.synctex
*.synctex(busy)
*.synctex.gz
*.synctex.gz(busy)
*.pdfsync
## Auxiliary and intermediate files from other packages:
# algorithms
*.alg
*.loa
# achemso
acs-*.bib
# amsthm
*.thm
# beamer
*.nav
*.pre
*.snm
*.vrb
# changes
*.soc
# cprotect
*.cpt
# elsarticle (documentclass of Elsevier journals)
*.spl
# endnotes
*.ent
# fixme
*.lox
# feynmf/feynmp
*.mf
*.mp
*.t[1-9]
*.t[1-9][0-9]
*.tfm
#(r)(e)ledmac/(r)(e)ledpar
*.end
*.?end
*.[1-9]
*.[1-9][0-9]
*.[1-9][0-9][0-9]
*.[1-9]R
*.[1-9][0-9]R
*.[1-9][0-9][0-9]R
*.eledsec[1-9]
*.eledsec[1-9]R
*.eledsec[1-9][0-9]
*.eledsec[1-9][0-9]R
*.eledsec[1-9][0-9][0-9]
*.eledsec[1-9][0-9][0-9]R
# glossaries
*.acn
*.acr
*.glg
*.glo
*.gls
*.glsdefs
# gnuplottex
*-gnuplottex-*
# gregoriotex
*.gaux
*.gtex
# hyperref
*.brf
# knitr
*-concordance.tex
# TODO Comment the next line if you want to keep your tikz graphics files
*.tikz
*-tikzDictionary
# listings
*.lol
# makeidx
*.idx
*.ilg
*.ind
*.ist
# minitoc
*.maf
*.mlf
*.mlt
*.mtc[0-9]*
*.slf[0-9]*
*.slt[0-9]*
*.stc[0-9]*
# minted
_minted*
*.pyg
# morewrites
*.mw
# nomencl
*.nlo
# pax
*.pax
# pdfpcnotes
*.pdfpc
# sagetex
*.sagetex.sage
*.sagetex.py
*.sagetex.scmd
# scrwfile
*.wrt
# sympy
*.sout
*.sympy
sympy-plots-for-*.tex/
# pdfcomment
*.upa
*.upb
# pythontex
*.pytxcode
pythontex-files-*/
# thmtools
*.loe
# TikZ & PGF
*.dpth
*.md5
*.auxlock
# todonotes
*.tdo
# easy-todo
*.lod
# xindy
*.xdy
# xypic precompiled matrices
*.xyc
# endfloat
*.ttt
*.fff
# Latexian
TSWLatexianTemp*
## Editors:
# WinEdt
*.bak
*.sav
# Texpad
.texpadtmp
# Kile
*.backup
# KBibTeX
*~[0-9]*
# auto folder when using emacs and auctex
/auto/*
# expex forward references with \gathertags
*-tags.tex

31
wk7/week7.tex Normal file
View File

@ -0,0 +1,31 @@
\documentclass[a4paper]{article}
% To compile PDF run: latexmk -pdf {filename}.tex
% Math package
\usepackage{amsmath}
%enable \cref{...} and \Cref{...} instead of \ref: Type of reference included in the link
\usepackage[capitalise,nameinlink]{cleveref}
% Enable that parameters of \cref{}, \ref{}, \cite{}, ... are linked so that a reader can click on the number an jump to the target in the document
\usepackage{hyperref}
% UTF-8 encoding
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc} %support umlauts in the input
% Easier compilation
\usepackage{bookmark}
\begin{document}
\title{Week 7 - Evidence and experiments}
\author{
Jai Bheeman \and Kelvin Davis \and Jip J. Dekker \and Nelson Frew \and Tony
Silvestere
}
\maketitle
\section{Introduction} \label{sec:introduction}
\section{Method} \label{sec:method}
\section{Results} \label{sec:results}
\section{Discussion} \label{sec:discussion}
\end{document}

File diff suppressed because one or more lines are too long

32
wk8/week8.tex Normal file
View File

@ -0,0 +1,32 @@
\documentclass[a4paper]{article}
% To compile PDF run: latexmk -pdf {filename}.tex
% Math package
\usepackage{amsmath}
%enable \cref{...} and \Cref{...} instead of \ref: Type of reference included in the link
\usepackage[capitalise,nameinlink]{cleveref}
% Enable that parameters of \cref{}, \ref{}, \cite{}, ... are linked so that a reader can click on the number an jump to the target in the document
\usepackage{hyperref}
% UTF-8 encoding
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc} %support umlauts in the input
% Easier compilation
\usepackage{bookmark}
\begin{document}
\title{Week 8 - Quantitative data analysis}
\author{
Jai Bheeman \and Kelvin Davis \and Jip J. Dekker \and Nelson Frew \and Tony
Silvestere
}
\maketitle
\section{Introduction} \label{sec:introduction}
\section{Method} \label{sec:method}
\section{Results} \label{sec:results}
\section{Discussion} \label{sec:discussion}
\end{document}

BIN
wk9/pearson.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

BIN
wk9/spearman.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

113
wk9/week9.tex Normal file
View File

@ -0,0 +1,113 @@
\documentclass[a4paper]{article}
% To compile PDF run: latexmk -pdf {filename}.tex
% Math package
\usepackage{amsmath}
%enable \cref{...} and \Cref{...} instead of \ref: Type of reference included in the link
\usepackage[capitalise,nameinlink]{cleveref}
% Enable that parameters of \cref{}, \ref{}, \cite{}, ... are linked so that a reader can click on the number an jump to the target in the document
\usepackage{hyperref}
% UTF-8 encoding
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc} %support umlauts in the input
% Easier compilation
\usepackage{bookmark}
\usepackage{graphicx}
\begin{document}
\title{Week 9 - Correlation and Regression}
\author{
Jai Bheeman \and Kelvin Davis \and Jip J. Dekker \and Nelson Frew \and Tony
Silvestere
}
\maketitle
\section{Introduction} \label{sec:introduction}
We present a report on the relationship between the heights and weights of the
top tennis players as catalogued in provided data. We use statistical analysis
techniques to numerically describe the characteristics of the data, to see how
trends are exhibited within the data set. We conclude the report with a brief
discussion of the implications of the analysis and provide insights on
potential correlations that may exist.
\section{Method} \label{sec:method}
Provided with a set of 132 unique records of the top 200 male tennis players,
we sought to investigate the relationship between the height of particular
individuals with their respective weights. We conducted basic statistical
correlation analyses of the two variables with both Pearson's and Spearman's
correlation coefficients to achieve this. Further, to understand the
correlations more deeply, we carried out these correlation tests on the full
population of cleaned data (removed duplicates etc), alongside several random
samples and samples of ranking ranges within the top 200. To this end, we made
use of Microsoft Excel tools and functions of the Python library SciPy.
We specifically have made use of these separate statistical analysis tools in the
interest of sanity checking our findings. To do this, we simply replicated the
correlation tests within other software environments.
\section{Results} \label{sec:results}
We performed separate statistical analyses on 10 different samples of the
population, as well as the population itself. This included 11 separate
subsets of the rankings:
\begin{itemize}
\item The top 20 entries
\item The middle 20 entries
\item The bottom 20 entries
\item The top 50 entries
\item The bottom 50 entries
\item 5 randomly chosen sets of 20 entries
\end{itemize}
\vspace{1em}
Table \ref{tab:excel_results} shows the the results for the conducted tests.
\begin{table}[ht]
\centering
\label{tab:excel_results}
\begin{tabular}{|l|r|r|}
\hline
\textbf{Test Set} & \textbf{Pearson's Coefficient} & \textbf{Spearman's Coefficient} \\
\hline
\textbf{Full Population} & 0.77953 & 0.73925 \\
\textbf{Top 20} & 0.80743 & 0.80345 \\
\textbf{Middle 20} & 0.54134 & 0.36565 \\
\textbf{Bottom 20} & 0.84046 & 0.88172 \\
\textbf{Top 50} & 0.80072 & 0.78979 \\
\textbf{Bottom 50} & 0.84237 & 0.81355 \\
\textbf{Random Set \#1} & 0.84243 & 0.80237 \\
\textbf{Random Set \#2} & 0.56564 & 0.58714 \\
\textbf{Random Set \#3} & 0.59223 & 0.63662 \\
\textbf{Random Set \#4} & 0.65091 & 0.58471 \\
\textbf{Random Set \#5} & 0.86203 & 0.77832
\\ \hline
\end{tabular}
\caption{Table showing the correlation coefficients between height and
weight using different test sets. All data is rounded to 5 decimal
places}
\end{table}
\begin{figure}[ht]
\centering
\label{fig:scipy}
\includegraphics[width=0.6\textwidth]{pearson.png}
\includegraphics[width=0.6\textwidth]{spearman.png}
\caption{The Pearsion (top) and Spearman (bottom) correlations coefficients
of the data set as computed by the Pandas Python library}
\end{figure}
\section{Discussion} \label{sec:discussion}
The results generally indicate that there is a fairly strong positive
correlation between the weight and weight of an individual tennis player,
within the top 200 male players. The population maintains a strong positive
correlation with both Pearson's and Spearman's correlation coefficients,
indicating that a relationship may exist. Our population samples show
promising consistency with this, with 6 seperate samples having values above
0.6 with both techniques. The sample taken from the middle 20 players,
however, shows a relatively weaker correlation compared with the top 20 and
middle 20, which provides some insight into the distribution of the strongest
correlated heights and weights amongst the rankings. All five random samples
of 20 taken from the population indicate however that there does appear to be
a consistent trend through the population, which corresponds accurately with
the coefficients on the general population.
\end{document}

252
wk9/wk9.ipynb Normal file
View File

@ -0,0 +1,252 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using matplotlib backend: MacOSX\n",
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"source": [
"%pylab\n",
"%matplotlib inline\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from scipy import stats\n",
"from matplotlib import colors\n",
"\n",
"data = pd.read_csv(\"Tennis players 2017-09.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
" #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col0 {\n",
" background-color: #fc7f00;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col1 {\n",
" background-color: #ffd20c;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col2 {\n",
" background-color: #ffe619;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col3 {\n",
" background-color: #f1f44d;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col0 {\n",
" background-color: #ffd20c;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col1 {\n",
" background-color: #fc7f00;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col2 {\n",
" background-color: #e4ff7a;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col3 {\n",
" background-color: #e8fc6c;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col0 {\n",
" background-color: #ffe619;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col1 {\n",
" background-color: #e4ff7a;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col2 {\n",
" background-color: #fc7f00;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col3 {\n",
" background-color: #fe9800;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col0 {\n",
" background-color: #f1f44d;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col1 {\n",
" background-color: #e8fc6c;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col2 {\n",
" background-color: #fe9800;\n",
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col3 {\n",
" background-color: #fc7f00;\n",
" }</style> \n",
"<table id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2\" > \n",
"<thead> <tr> \n",
" <th class=\"blank level0\" ></th> \n",
" <th class=\"col_heading level0 col0\" >DOB</th> \n",
" <th class=\"col_heading level0 col1\" >RANK</th> \n",
" <th class=\"col_heading level0 col2\" >HEIGHT</th> \n",
" <th class=\"col_heading level0 col3\" >Weight</th> \n",
" </tr></thead> \n",
"<tbody> <tr> \n",
" <th id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2level0_row0\" class=\"row_heading level0 row0\" >DOB</th> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col0\" class=\"data row0 col0\" >1</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col1\" class=\"data row0 col1\" >0.277766</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col2\" class=\"data row0 col2\" >0.139684</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col3\" class=\"data row0 col3\" >-0.030479</td> \n",
" </tr> <tr> \n",
" <th id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2level0_row1\" class=\"row_heading level0 row1\" >RANK</th> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col0\" class=\"data row1 col0\" >0.277766</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col1\" class=\"data row1 col1\" >1</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col2\" class=\"data row1 col2\" >-0.16755</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col3\" class=\"data row1 col3\" >-0.121946</td> \n",
" </tr> <tr> \n",
" <th id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2level0_row2\" class=\"row_heading level0 row2\" >HEIGHT</th> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col0\" class=\"data row2 col0\" >0.139684</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col1\" class=\"data row2 col1\" >-0.16755</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col2\" class=\"data row2 col2\" >1</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col3\" class=\"data row2 col3\" >0.779526</td> \n",
" </tr> <tr> \n",
" <th id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2level0_row3\" class=\"row_heading level0 row3\" >Weight</th> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col0\" class=\"data row3 col0\" >-0.030479</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col1\" class=\"data row3 col1\" >-0.121946</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col2\" class=\"data row3 col2\" >0.779526</td> \n",
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col3\" class=\"data row3 col3\" >1</td> \n",
" </tr></tbody> \n",
"</table> "
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x1a197d7b38>"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def background_gradient(s, m, M, cmap='Wistia', low=0, high=0):\n",
" rng = M - m\n",
" norm = colors.Normalize(m - (rng * low),\n",
" M + (rng * high))\n",
" normed = norm(s.values)\n",
" c = [colors.rgb2hex(x) for x in plt.cm.get_cmap(cmap)(normed)]\n",
" return ['background-color: %s' % color for color in c]\n",
"\n",
"data = data[[\"SEX\", \"DOB\", \"RANK\", \"HANDED\", \"Country\", \"HEIGHT\", \"Weight\"]]\n",
"data.drop_duplicates\n",
"\n",
"pearson = data.corr()\n",
"pearson.style.apply(background_gradient,\n",
" cmap='Wistia',\n",
" m=pearson.min().min(),\n",
" M=pearson.max().max()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
" #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col0 {\n",
" background-color: #fc7f00;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col1 {\n",
" background-color: #ffd20c;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col2 {\n",
" background-color: #fee91d;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col3 {\n",
" background-color: #f4f242;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col0 {\n",
" background-color: #ffd20c;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col1 {\n",
" background-color: #fc7f00;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col2 {\n",
" background-color: #e4ff7a;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col3 {\n",
" background-color: #eafa63;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col0 {\n",
" background-color: #fee91d;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col1 {\n",
" background-color: #e4ff7a;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col2 {\n",
" background-color: #fc7f00;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col3 {\n",
" background-color: #ff9d00;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col0 {\n",
" background-color: #f4f242;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col1 {\n",
" background-color: #eafa63;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col2 {\n",
" background-color: #ff9d00;\n",
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col3 {\n",
" background-color: #fc7f00;\n",
" }</style> \n",
"<table id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2\" > \n",
"<thead> <tr> \n",
" <th class=\"blank level0\" ></th> \n",
" <th class=\"col_heading level0 col0\" >DOB</th> \n",
" <th class=\"col_heading level0 col1\" >RANK</th> \n",
" <th class=\"col_heading level0 col2\" >HEIGHT</th> \n",
" <th class=\"col_heading level0 col3\" >Weight</th> \n",
" </tr></thead> \n",
"<tbody> <tr> \n",
" <th id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2level0_row0\" class=\"row_heading level0 row0\" >DOB</th> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col0\" class=\"data row0 col0\" >1</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col1\" class=\"data row0 col1\" >0.280386</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col2\" class=\"data row0 col2\" >0.122412</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col3\" class=\"data row0 col3\" >0.00769861</td> \n",
" </tr> <tr> \n",
" <th id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2level0_row1\" class=\"row_heading level0 row1\" >RANK</th> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col0\" class=\"data row1 col0\" >0.280386</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col1\" class=\"data row1 col1\" >1</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col2\" class=\"data row1 col2\" >-0.160006</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col3\" class=\"data row1 col3\" >-0.0908714</td> \n",
" </tr> <tr> \n",
" <th id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2level0_row2\" class=\"row_heading level0 row2\" >HEIGHT</th> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col0\" class=\"data row2 col0\" >0.122412</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col1\" class=\"data row2 col1\" >-0.160006</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col2\" class=\"data row2 col2\" >1</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col3\" class=\"data row2 col3\" >0.739246</td> \n",
" </tr> <tr> \n",
" <th id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2level0_row3\" class=\"row_heading level0 row3\" >Weight</th> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col0\" class=\"data row3 col0\" >0.00769861</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col1\" class=\"data row3 col1\" >-0.0908714</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col2\" class=\"data row3 col2\" >0.739246</td> \n",
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col3\" class=\"data row3 col3\" >1</td> \n",
" </tr></tbody> \n",
"</table> "
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x111a3b198>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spearman = data.corr(method=\"spearman\")\n",
"spearman.style.apply(background_gradient,\n",
" cmap='Wistia',\n",
" m=spearman.min().min(),\n",
" M=spearman.max().max()\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}