Merge branch 'master' of https://github.com/Dekker1/ResearchMethods
This commit is contained in:
commit
6b3cddc2d1
226
.gitignore
vendored
226
.gitignore
vendored
@ -1,3 +1,225 @@
|
|||||||
wk7/.ipynb_checkpoints/
|
.ipynb_checkpoints/
|
||||||
wk8/.ipynb_checkpoints/
|
|
||||||
|
|
||||||
|
*~
|
||||||
|
## Core latex/pdflatex auxiliary files:
|
||||||
|
*.aux
|
||||||
|
*.lof
|
||||||
|
*.log
|
||||||
|
*.lot
|
||||||
|
*.fls
|
||||||
|
*.out
|
||||||
|
*.toc
|
||||||
|
*.fmt
|
||||||
|
*.fot
|
||||||
|
*.cb
|
||||||
|
*.cb2
|
||||||
|
|
||||||
|
## Intermediate documents:
|
||||||
|
*.dvi
|
||||||
|
*-converted-to.*
|
||||||
|
# these rules might exclude image files for figures etc.
|
||||||
|
# *.ps
|
||||||
|
# *.eps
|
||||||
|
# *.pdf
|
||||||
|
|
||||||
|
## Generated if empty string is given at "Please type another file name for output:"
|
||||||
|
wk7/week7.pdf
|
||||||
|
wk8/week8.pdf
|
||||||
|
wk9/week9.pdf
|
||||||
|
|
||||||
|
## Bibliography auxiliary files (bibtex/biblatex/biber):
|
||||||
|
*.bbl
|
||||||
|
*.bcf
|
||||||
|
*.blg
|
||||||
|
*-blx.aux
|
||||||
|
*-blx.bib
|
||||||
|
*.run.xml
|
||||||
|
|
||||||
|
## Build tool auxiliary files:
|
||||||
|
*.fdb_latexmk
|
||||||
|
*.synctex
|
||||||
|
*.synctex(busy)
|
||||||
|
*.synctex.gz
|
||||||
|
*.synctex.gz(busy)
|
||||||
|
*.pdfsync
|
||||||
|
|
||||||
|
## Auxiliary and intermediate files from other packages:
|
||||||
|
# algorithms
|
||||||
|
*.alg
|
||||||
|
*.loa
|
||||||
|
|
||||||
|
# achemso
|
||||||
|
acs-*.bib
|
||||||
|
|
||||||
|
# amsthm
|
||||||
|
*.thm
|
||||||
|
|
||||||
|
# beamer
|
||||||
|
*.nav
|
||||||
|
*.pre
|
||||||
|
*.snm
|
||||||
|
*.vrb
|
||||||
|
|
||||||
|
# changes
|
||||||
|
*.soc
|
||||||
|
|
||||||
|
# cprotect
|
||||||
|
*.cpt
|
||||||
|
|
||||||
|
# elsarticle (documentclass of Elsevier journals)
|
||||||
|
*.spl
|
||||||
|
|
||||||
|
# endnotes
|
||||||
|
*.ent
|
||||||
|
|
||||||
|
# fixme
|
||||||
|
*.lox
|
||||||
|
|
||||||
|
# feynmf/feynmp
|
||||||
|
*.mf
|
||||||
|
*.mp
|
||||||
|
*.t[1-9]
|
||||||
|
*.t[1-9][0-9]
|
||||||
|
*.tfm
|
||||||
|
|
||||||
|
#(r)(e)ledmac/(r)(e)ledpar
|
||||||
|
*.end
|
||||||
|
*.?end
|
||||||
|
*.[1-9]
|
||||||
|
*.[1-9][0-9]
|
||||||
|
*.[1-9][0-9][0-9]
|
||||||
|
*.[1-9]R
|
||||||
|
*.[1-9][0-9]R
|
||||||
|
*.[1-9][0-9][0-9]R
|
||||||
|
*.eledsec[1-9]
|
||||||
|
*.eledsec[1-9]R
|
||||||
|
*.eledsec[1-9][0-9]
|
||||||
|
*.eledsec[1-9][0-9]R
|
||||||
|
*.eledsec[1-9][0-9][0-9]
|
||||||
|
*.eledsec[1-9][0-9][0-9]R
|
||||||
|
|
||||||
|
# glossaries
|
||||||
|
*.acn
|
||||||
|
*.acr
|
||||||
|
*.glg
|
||||||
|
*.glo
|
||||||
|
*.gls
|
||||||
|
*.glsdefs
|
||||||
|
|
||||||
|
# gnuplottex
|
||||||
|
*-gnuplottex-*
|
||||||
|
|
||||||
|
# gregoriotex
|
||||||
|
*.gaux
|
||||||
|
*.gtex
|
||||||
|
|
||||||
|
# hyperref
|
||||||
|
*.brf
|
||||||
|
|
||||||
|
# knitr
|
||||||
|
*-concordance.tex
|
||||||
|
# TODO Comment the next line if you want to keep your tikz graphics files
|
||||||
|
*.tikz
|
||||||
|
*-tikzDictionary
|
||||||
|
|
||||||
|
# listings
|
||||||
|
*.lol
|
||||||
|
|
||||||
|
# makeidx
|
||||||
|
*.idx
|
||||||
|
*.ilg
|
||||||
|
*.ind
|
||||||
|
*.ist
|
||||||
|
|
||||||
|
# minitoc
|
||||||
|
*.maf
|
||||||
|
*.mlf
|
||||||
|
*.mlt
|
||||||
|
*.mtc[0-9]*
|
||||||
|
*.slf[0-9]*
|
||||||
|
*.slt[0-9]*
|
||||||
|
*.stc[0-9]*
|
||||||
|
|
||||||
|
# minted
|
||||||
|
_minted*
|
||||||
|
*.pyg
|
||||||
|
|
||||||
|
# morewrites
|
||||||
|
*.mw
|
||||||
|
|
||||||
|
# nomencl
|
||||||
|
*.nlo
|
||||||
|
|
||||||
|
# pax
|
||||||
|
*.pax
|
||||||
|
|
||||||
|
# pdfpcnotes
|
||||||
|
*.pdfpc
|
||||||
|
|
||||||
|
# sagetex
|
||||||
|
*.sagetex.sage
|
||||||
|
*.sagetex.py
|
||||||
|
*.sagetex.scmd
|
||||||
|
|
||||||
|
# scrwfile
|
||||||
|
*.wrt
|
||||||
|
|
||||||
|
# sympy
|
||||||
|
*.sout
|
||||||
|
*.sympy
|
||||||
|
sympy-plots-for-*.tex/
|
||||||
|
|
||||||
|
# pdfcomment
|
||||||
|
*.upa
|
||||||
|
*.upb
|
||||||
|
|
||||||
|
# pythontex
|
||||||
|
*.pytxcode
|
||||||
|
pythontex-files-*/
|
||||||
|
|
||||||
|
# thmtools
|
||||||
|
*.loe
|
||||||
|
|
||||||
|
# TikZ & PGF
|
||||||
|
*.dpth
|
||||||
|
*.md5
|
||||||
|
*.auxlock
|
||||||
|
|
||||||
|
# todonotes
|
||||||
|
*.tdo
|
||||||
|
|
||||||
|
# easy-todo
|
||||||
|
*.lod
|
||||||
|
|
||||||
|
# xindy
|
||||||
|
*.xdy
|
||||||
|
|
||||||
|
# xypic precompiled matrices
|
||||||
|
*.xyc
|
||||||
|
|
||||||
|
# endfloat
|
||||||
|
*.ttt
|
||||||
|
*.fff
|
||||||
|
|
||||||
|
# Latexian
|
||||||
|
TSWLatexianTemp*
|
||||||
|
|
||||||
|
## Editors:
|
||||||
|
# WinEdt
|
||||||
|
*.bak
|
||||||
|
*.sav
|
||||||
|
|
||||||
|
# Texpad
|
||||||
|
.texpadtmp
|
||||||
|
|
||||||
|
# Kile
|
||||||
|
*.backup
|
||||||
|
|
||||||
|
# KBibTeX
|
||||||
|
*~[0-9]*
|
||||||
|
|
||||||
|
# auto folder when using emacs and auctex
|
||||||
|
/auto/*
|
||||||
|
|
||||||
|
# expex forward references with \gathertags
|
||||||
|
*-tags.tex
|
||||||
|
31
wk7/week7.tex
Normal file
31
wk7/week7.tex
Normal file
@ -0,0 +1,31 @@
|
|||||||
|
\documentclass[a4paper]{article}
|
||||||
|
% To compile PDF run: latexmk -pdf {filename}.tex
|
||||||
|
% Math package
|
||||||
|
\usepackage{amsmath}
|
||||||
|
%enable \cref{...} and \Cref{...} instead of \ref: Type of reference included in the link
|
||||||
|
\usepackage[capitalise,nameinlink]{cleveref}
|
||||||
|
% Enable that parameters of \cref{}, \ref{}, \cite{}, ... are linked so that a reader can click on the number an jump to the target in the document
|
||||||
|
\usepackage{hyperref}
|
||||||
|
% UTF-8 encoding
|
||||||
|
\usepackage[T1]{fontenc}
|
||||||
|
\usepackage[utf8]{inputenc} %support umlauts in the input
|
||||||
|
% Easier compilation
|
||||||
|
\usepackage{bookmark}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\title{Week 7 - Evidence and experiments}
|
||||||
|
\author{
|
||||||
|
Jai Bheeman \and Kelvin Davis \and Jip J. Dekker \and Nelson Frew \and Tony
|
||||||
|
Silvestere
|
||||||
|
}
|
||||||
|
\maketitle
|
||||||
|
|
||||||
|
\section{Introduction} \label{sec:introduction}
|
||||||
|
|
||||||
|
\section{Method} \label{sec:method}
|
||||||
|
|
||||||
|
\section{Results} \label{sec:results}
|
||||||
|
|
||||||
|
\section{Discussion} \label{sec:discussion}
|
||||||
|
|
||||||
|
\end{document}
|
644
wk7/wk7.ipynb
644
wk7/wk7.ipynb
File diff suppressed because one or more lines are too long
32
wk8/week8.tex
Normal file
32
wk8/week8.tex
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
\documentclass[a4paper]{article}
|
||||||
|
% To compile PDF run: latexmk -pdf {filename}.tex
|
||||||
|
|
||||||
|
% Math package
|
||||||
|
\usepackage{amsmath}
|
||||||
|
%enable \cref{...} and \Cref{...} instead of \ref: Type of reference included in the link
|
||||||
|
\usepackage[capitalise,nameinlink]{cleveref}
|
||||||
|
% Enable that parameters of \cref{}, \ref{}, \cite{}, ... are linked so that a reader can click on the number an jump to the target in the document
|
||||||
|
\usepackage{hyperref}
|
||||||
|
% UTF-8 encoding
|
||||||
|
\usepackage[T1]{fontenc}
|
||||||
|
\usepackage[utf8]{inputenc} %support umlauts in the input
|
||||||
|
% Easier compilation
|
||||||
|
\usepackage{bookmark}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\title{Week 8 - Quantitative data analysis}
|
||||||
|
\author{
|
||||||
|
Jai Bheeman \and Kelvin Davis \and Jip J. Dekker \and Nelson Frew \and Tony
|
||||||
|
Silvestere
|
||||||
|
}
|
||||||
|
\maketitle
|
||||||
|
|
||||||
|
\section{Introduction} \label{sec:introduction}
|
||||||
|
|
||||||
|
\section{Method} \label{sec:method}
|
||||||
|
|
||||||
|
\section{Results} \label{sec:results}
|
||||||
|
|
||||||
|
\section{Discussion} \label{sec:discussion}
|
||||||
|
|
||||||
|
\end{document}
|
Binary file not shown.
BIN
wk9/pearson.png
Normal file
BIN
wk9/pearson.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 90 KiB |
BIN
wk9/spearman.png
Normal file
BIN
wk9/spearman.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 88 KiB |
113
wk9/week9.tex
Normal file
113
wk9/week9.tex
Normal file
@ -0,0 +1,113 @@
|
|||||||
|
\documentclass[a4paper]{article}
|
||||||
|
% To compile PDF run: latexmk -pdf {filename}.tex
|
||||||
|
|
||||||
|
% Math package
|
||||||
|
\usepackage{amsmath}
|
||||||
|
%enable \cref{...} and \Cref{...} instead of \ref: Type of reference included in the link
|
||||||
|
\usepackage[capitalise,nameinlink]{cleveref}
|
||||||
|
% Enable that parameters of \cref{}, \ref{}, \cite{}, ... are linked so that a reader can click on the number an jump to the target in the document
|
||||||
|
\usepackage{hyperref}
|
||||||
|
% UTF-8 encoding
|
||||||
|
\usepackage[T1]{fontenc}
|
||||||
|
\usepackage[utf8]{inputenc} %support umlauts in the input
|
||||||
|
% Easier compilation
|
||||||
|
\usepackage{bookmark}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\title{Week 9 - Correlation and Regression}
|
||||||
|
\author{
|
||||||
|
Jai Bheeman \and Kelvin Davis \and Jip J. Dekker \and Nelson Frew \and Tony
|
||||||
|
Silvestere
|
||||||
|
}
|
||||||
|
\maketitle
|
||||||
|
|
||||||
|
\section{Introduction} \label{sec:introduction}
|
||||||
|
We present a report on the relationship between the heights and weights of the
|
||||||
|
top tennis players as catalogued in provided data. We use statistical analysis
|
||||||
|
techniques to numerically describe the characteristics of the data, to see how
|
||||||
|
trends are exhibited within the data set. We conclude the report with a brief
|
||||||
|
discussion of the implications of the analysis and provide insights on
|
||||||
|
potential correlations that may exist.
|
||||||
|
|
||||||
|
\section{Method} \label{sec:method}
|
||||||
|
Provided with a set of 132 unique records of the top 200 male tennis players,
|
||||||
|
we sought to investigate the relationship between the height of particular
|
||||||
|
individuals with their respective weights. We conducted basic statistical
|
||||||
|
correlation analyses of the two variables with both Pearson's and Spearman's
|
||||||
|
correlation coefficients to achieve this. Further, to understand the
|
||||||
|
correlations more deeply, we carried out these correlation tests on the full
|
||||||
|
population of cleaned data (removed duplicates etc), alongside several random
|
||||||
|
samples and samples of ranking ranges within the top 200. To this end, we made
|
||||||
|
use of Microsoft Excel tools and functions of the Python library SciPy.
|
||||||
|
|
||||||
|
We specifically have made use of these separate statistical analysis tools in the
|
||||||
|
interest of sanity checking our findings. To do this, we simply replicated the
|
||||||
|
correlation tests within other software environments.
|
||||||
|
|
||||||
|
\section{Results} \label{sec:results}
|
||||||
|
We performed separate statistical analyses on 10 different samples of the
|
||||||
|
population, as well as the population itself. This included 11 separate
|
||||||
|
subsets of the rankings:
|
||||||
|
\begin{itemize}
|
||||||
|
\item The top 20 entries
|
||||||
|
\item The middle 20 entries
|
||||||
|
\item The bottom 20 entries
|
||||||
|
\item The top 50 entries
|
||||||
|
\item The bottom 50 entries
|
||||||
|
\item 5 randomly chosen sets of 20 entries
|
||||||
|
\end{itemize}
|
||||||
|
\vspace{1em}
|
||||||
|
Table \ref{tab:excel_results} shows the the results for the conducted tests.
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\centering
|
||||||
|
\label{tab:excel_results}
|
||||||
|
\begin{tabular}{|l|r|r|}
|
||||||
|
\hline
|
||||||
|
\textbf{Test Set} & \textbf{Pearson's Coefficient} & \textbf{Spearman's Coefficient} \\
|
||||||
|
\hline
|
||||||
|
\textbf{Full Population} & 0.77953 & 0.73925 \\
|
||||||
|
\textbf{Top 20} & 0.80743 & 0.80345 \\
|
||||||
|
\textbf{Middle 20} & 0.54134 & 0.36565 \\
|
||||||
|
\textbf{Bottom 20} & 0.84046 & 0.88172 \\
|
||||||
|
\textbf{Top 50} & 0.80072 & 0.78979 \\
|
||||||
|
\textbf{Bottom 50} & 0.84237 & 0.81355 \\
|
||||||
|
\textbf{Random Set \#1} & 0.84243 & 0.80237 \\
|
||||||
|
\textbf{Random Set \#2} & 0.56564 & 0.58714 \\
|
||||||
|
\textbf{Random Set \#3} & 0.59223 & 0.63662 \\
|
||||||
|
\textbf{Random Set \#4} & 0.65091 & 0.58471 \\
|
||||||
|
\textbf{Random Set \#5} & 0.86203 & 0.77832
|
||||||
|
\\ \hline
|
||||||
|
\end{tabular}
|
||||||
|
\caption{Table showing the correlation coefficients between height and
|
||||||
|
weight using different test sets. All data is rounded to 5 decimal
|
||||||
|
places}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\centering
|
||||||
|
\label{fig:scipy}
|
||||||
|
\includegraphics[width=0.6\textwidth]{pearson.png}
|
||||||
|
\includegraphics[width=0.6\textwidth]{spearman.png}
|
||||||
|
\caption{The Pearsion (top) and Spearman (bottom) correlations coefficients
|
||||||
|
of the data set as computed by the Pandas Python library}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\section{Discussion} \label{sec:discussion}
|
||||||
|
The results generally indicate that there is a fairly strong positive
|
||||||
|
correlation between the weight and weight of an individual tennis player,
|
||||||
|
within the top 200 male players. The population maintains a strong positive
|
||||||
|
correlation with both Pearson's and Spearman's correlation coefficients,
|
||||||
|
indicating that a relationship may exist. Our population samples show
|
||||||
|
promising consistency with this, with 6 seperate samples having values above
|
||||||
|
0.6 with both techniques. The sample taken from the middle 20 players,
|
||||||
|
however, shows a relatively weaker correlation compared with the top 20 and
|
||||||
|
middle 20, which provides some insight into the distribution of the strongest
|
||||||
|
correlated heights and weights amongst the rankings. All five random samples
|
||||||
|
of 20 taken from the population indicate however that there does appear to be
|
||||||
|
a consistent trend through the population, which corresponds accurately with
|
||||||
|
the coefficients on the general population.
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
252
wk9/wk9.ipynb
Normal file
252
wk9/wk9.ipynb
Normal file
@ -0,0 +1,252 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Using matplotlib backend: MacOSX\n",
|
||||||
|
"Populating the interactive namespace from numpy and matplotlib\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"%pylab\n",
|
||||||
|
"%matplotlib inline\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"import matplotlib.pyplot as plt\n",
|
||||||
|
"from scipy import stats\n",
|
||||||
|
"from matplotlib import colors\n",
|
||||||
|
"\n",
|
||||||
|
"data = pd.read_csv(\"Tennis players 2017-09.csv\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<style type=\"text/css\" >\n",
|
||||||
|
" #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col0 {\n",
|
||||||
|
" background-color: #fc7f00;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col1 {\n",
|
||||||
|
" background-color: #ffd20c;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col2 {\n",
|
||||||
|
" background-color: #ffe619;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col3 {\n",
|
||||||
|
" background-color: #f1f44d;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col0 {\n",
|
||||||
|
" background-color: #ffd20c;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col1 {\n",
|
||||||
|
" background-color: #fc7f00;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col2 {\n",
|
||||||
|
" background-color: #e4ff7a;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col3 {\n",
|
||||||
|
" background-color: #e8fc6c;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col0 {\n",
|
||||||
|
" background-color: #ffe619;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col1 {\n",
|
||||||
|
" background-color: #e4ff7a;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col2 {\n",
|
||||||
|
" background-color: #fc7f00;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col3 {\n",
|
||||||
|
" background-color: #fe9800;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col0 {\n",
|
||||||
|
" background-color: #f1f44d;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col1 {\n",
|
||||||
|
" background-color: #e8fc6c;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col2 {\n",
|
||||||
|
" background-color: #fe9800;\n",
|
||||||
|
" } #T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col3 {\n",
|
||||||
|
" background-color: #fc7f00;\n",
|
||||||
|
" }</style> \n",
|
||||||
|
"<table id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2\" > \n",
|
||||||
|
"<thead> <tr> \n",
|
||||||
|
" <th class=\"blank level0\" ></th> \n",
|
||||||
|
" <th class=\"col_heading level0 col0\" >DOB</th> \n",
|
||||||
|
" <th class=\"col_heading level0 col1\" >RANK</th> \n",
|
||||||
|
" <th class=\"col_heading level0 col2\" >HEIGHT</th> \n",
|
||||||
|
" <th class=\"col_heading level0 col3\" >Weight</th> \n",
|
||||||
|
" </tr></thead> \n",
|
||||||
|
"<tbody> <tr> \n",
|
||||||
|
" <th id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2level0_row0\" class=\"row_heading level0 row0\" >DOB</th> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col0\" class=\"data row0 col0\" >1</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col1\" class=\"data row0 col1\" >0.277766</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col2\" class=\"data row0 col2\" >0.139684</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row0_col3\" class=\"data row0 col3\" >-0.030479</td> \n",
|
||||||
|
" </tr> <tr> \n",
|
||||||
|
" <th id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2level0_row1\" class=\"row_heading level0 row1\" >RANK</th> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col0\" class=\"data row1 col0\" >0.277766</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col1\" class=\"data row1 col1\" >1</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col2\" class=\"data row1 col2\" >-0.16755</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row1_col3\" class=\"data row1 col3\" >-0.121946</td> \n",
|
||||||
|
" </tr> <tr> \n",
|
||||||
|
" <th id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2level0_row2\" class=\"row_heading level0 row2\" >HEIGHT</th> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col0\" class=\"data row2 col0\" >0.139684</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col1\" class=\"data row2 col1\" >-0.16755</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col2\" class=\"data row2 col2\" >1</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row2_col3\" class=\"data row2 col3\" >0.779526</td> \n",
|
||||||
|
" </tr> <tr> \n",
|
||||||
|
" <th id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2level0_row3\" class=\"row_heading level0 row3\" >Weight</th> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col0\" class=\"data row3 col0\" >-0.030479</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col1\" class=\"data row3 col1\" >-0.121946</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col2\" class=\"data row3 col2\" >0.779526</td> \n",
|
||||||
|
" <td id=\"T_7277b07a_4f3e_11e8_b8a3_787b8ab7acb2row3_col3\" class=\"data row3 col3\" >1</td> \n",
|
||||||
|
" </tr></tbody> \n",
|
||||||
|
"</table> "
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
"<pandas.io.formats.style.Styler at 0x1a197d7b38>"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"def background_gradient(s, m, M, cmap='Wistia', low=0, high=0):\n",
|
||||||
|
" rng = M - m\n",
|
||||||
|
" norm = colors.Normalize(m - (rng * low),\n",
|
||||||
|
" M + (rng * high))\n",
|
||||||
|
" normed = norm(s.values)\n",
|
||||||
|
" c = [colors.rgb2hex(x) for x in plt.cm.get_cmap(cmap)(normed)]\n",
|
||||||
|
" return ['background-color: %s' % color for color in c]\n",
|
||||||
|
"\n",
|
||||||
|
"data = data[[\"SEX\", \"DOB\", \"RANK\", \"HANDED\", \"Country\", \"HEIGHT\", \"Weight\"]]\n",
|
||||||
|
"data.drop_duplicates\n",
|
||||||
|
"\n",
|
||||||
|
"pearson = data.corr()\n",
|
||||||
|
"pearson.style.apply(background_gradient,\n",
|
||||||
|
" cmap='Wistia',\n",
|
||||||
|
" m=pearson.min().min(),\n",
|
||||||
|
" M=pearson.max().max()\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<style type=\"text/css\" >\n",
|
||||||
|
" #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col0 {\n",
|
||||||
|
" background-color: #fc7f00;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col1 {\n",
|
||||||
|
" background-color: #ffd20c;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col2 {\n",
|
||||||
|
" background-color: #fee91d;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col3 {\n",
|
||||||
|
" background-color: #f4f242;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col0 {\n",
|
||||||
|
" background-color: #ffd20c;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col1 {\n",
|
||||||
|
" background-color: #fc7f00;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col2 {\n",
|
||||||
|
" background-color: #e4ff7a;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col3 {\n",
|
||||||
|
" background-color: #eafa63;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col0 {\n",
|
||||||
|
" background-color: #fee91d;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col1 {\n",
|
||||||
|
" background-color: #e4ff7a;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col2 {\n",
|
||||||
|
" background-color: #fc7f00;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col3 {\n",
|
||||||
|
" background-color: #ff9d00;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col0 {\n",
|
||||||
|
" background-color: #f4f242;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col1 {\n",
|
||||||
|
" background-color: #eafa63;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col2 {\n",
|
||||||
|
" background-color: #ff9d00;\n",
|
||||||
|
" } #T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col3 {\n",
|
||||||
|
" background-color: #fc7f00;\n",
|
||||||
|
" }</style> \n",
|
||||||
|
"<table id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2\" > \n",
|
||||||
|
"<thead> <tr> \n",
|
||||||
|
" <th class=\"blank level0\" ></th> \n",
|
||||||
|
" <th class=\"col_heading level0 col0\" >DOB</th> \n",
|
||||||
|
" <th class=\"col_heading level0 col1\" >RANK</th> \n",
|
||||||
|
" <th class=\"col_heading level0 col2\" >HEIGHT</th> \n",
|
||||||
|
" <th class=\"col_heading level0 col3\" >Weight</th> \n",
|
||||||
|
" </tr></thead> \n",
|
||||||
|
"<tbody> <tr> \n",
|
||||||
|
" <th id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2level0_row0\" class=\"row_heading level0 row0\" >DOB</th> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col0\" class=\"data row0 col0\" >1</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col1\" class=\"data row0 col1\" >0.280386</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col2\" class=\"data row0 col2\" >0.122412</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row0_col3\" class=\"data row0 col3\" >0.00769861</td> \n",
|
||||||
|
" </tr> <tr> \n",
|
||||||
|
" <th id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2level0_row1\" class=\"row_heading level0 row1\" >RANK</th> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col0\" class=\"data row1 col0\" >0.280386</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col1\" class=\"data row1 col1\" >1</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col2\" class=\"data row1 col2\" >-0.160006</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row1_col3\" class=\"data row1 col3\" >-0.0908714</td> \n",
|
||||||
|
" </tr> <tr> \n",
|
||||||
|
" <th id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2level0_row2\" class=\"row_heading level0 row2\" >HEIGHT</th> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col0\" class=\"data row2 col0\" >0.122412</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col1\" class=\"data row2 col1\" >-0.160006</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col2\" class=\"data row2 col2\" >1</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row2_col3\" class=\"data row2 col3\" >0.739246</td> \n",
|
||||||
|
" </tr> <tr> \n",
|
||||||
|
" <th id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2level0_row3\" class=\"row_heading level0 row3\" >Weight</th> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col0\" class=\"data row3 col0\" >0.00769861</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col1\" class=\"data row3 col1\" >-0.0908714</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col2\" class=\"data row3 col2\" >0.739246</td> \n",
|
||||||
|
" <td id=\"T_727bef98_4f3e_11e8_a315_787b8ab7acb2row3_col3\" class=\"data row3 col3\" >1</td> \n",
|
||||||
|
" </tr></tbody> \n",
|
||||||
|
"</table> "
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
"<pandas.io.formats.style.Styler at 0x111a3b198>"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"spearman = data.corr(method=\"spearman\")\n",
|
||||||
|
"spearman.style.apply(background_gradient,\n",
|
||||||
|
" cmap='Wistia',\n",
|
||||||
|
" m=spearman.min().min(),\n",
|
||||||
|
" M=spearman.max().max()\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.6.4"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
Reference in New Issue
Block a user