From 70fe2963600a535d3b5170add27e4551ccef6e1b Mon Sep 17 00:00:00 2001 From: Kelvin Davis <273degreeskelvin@gmail.com> Date: Wed, 23 May 2018 23:16:51 +1000 Subject: [PATCH] replaced np with K --- mini_proj/waldo_model.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/mini_proj/waldo_model.py b/mini_proj/waldo_model.py index 4241d80..929e1e9 100644 --- a/mini_proj/waldo_model.py +++ b/mini_proj/waldo_model.py @@ -48,21 +48,21 @@ def FCN(): ## Define the model structure model = Model(inputs=inputs, outputs=classif) # Optimizer recommended Adadelta values (lr=0.01) - model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy']) + model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy']) return model def precision(y_true, y_pred): - y_pred = np.round(y_pred) - num = np.sum(np.logical_and(y_true, y_pred)) - den = np.sum(y_pred) - return np.divide(num, den) + y_pred = K.round(y_pred) + num = K.sum(K.logical_and(y_true, y_pred)) + den = K.sum(y_pred) + return K.divide(num, den) def recall(y_true, y_pred): - y_pred = np.round(y_pred) - num = np.sum(np.logical_and(y_true, y_pred)) - den = np.sum(y_true) - return np.divide(num, den) + y_pred = K.round(y_pred) + num = K.sum(K.logical_and(y_true, y_pred)) + den = K.sum(y_true) + return K.divide(num, den) def f_measure(y_true, y_pred): p = precision(y_true, y_pred)