1
0

Added traditional classifiers:

svm, decision tree, gaussian naive bayes, random forest.
This commit is contained in:
Kelvin Davis 2018-05-22 18:14:48 +10:00
parent 630ee78a30
commit 76e3023750
2 changed files with 58 additions and 3 deletions

View File

@ -0,0 +1,50 @@
class ImageClassifier:
"""Class to create an ImageClassifier from a regular classifier with 5
methods that are common amongst classifiers.
"""
def __init__(self, clf, *args, **kwargs):
self.clf = clf(*args, **kwargs)
def fit(self, X, *args, **kwargs):
X = X.reshape((len(X), -1))
return self.clf.fit(X, *args, **kwargs)
def predict(self, X, *args, **kwargs):
X = X.reshape((len(X), -1))
return self.clf.predict(X, *args, **kwargs)
def score(self, X, *args, **kwargs):
X = X.reshape((len(X), -1))
return self.clf.score(X, *args, **kwargs)
def get_params(self, *args, **kwargs):
return self.clf.get_params(*args, **kwargs)
def set_params(self, **params):
return self.set_params(**params)
if __name__ == '__main__':
# Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, metrics
# The digits dataset
digits = datasets.load_digits()
n_samples = len(digits.images)
data = digits.images
# Create a classifier: a support vector classifier
classifier = ImageClassifier(svm.SVC, gamma=0.001)
# We learn the digits on the first half of the digits
classifier.fit(data[:n_samples // 2], digits.target[:n_samples // 2])
# Now predict the value of the digit on the second half:
expected = digits.target[n_samples // 2:]
predicted = classifier.predict(data[n_samples // 2:])
print("Classification report for classifier %s:\n%s\n"
% (classifier, metrics.classification_report(expected, predicted)))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))

View File

@ -1,6 +1,8 @@
import numpy as np
import sys
import time as t
from sklearn import svm, tree, naive_bayes, ensemble
from _image_classifier import ImageClassifier
'''
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Reshape, Merge, Permute
@ -43,7 +45,7 @@ def FCN():
# up4x = UpSampling2D(size=(4, 4))(conv4x)
# model = Model(input=inputs, output=up4x)
# # Optimizer uses recommended Adadelta values
# model.compile(optimizer=Adadelta(lr=0.01), loss='categorical_crossentropy', metrics=['accuracy'])
# model.compile(optimizer=Adadelta(lr=0.01), loss='categorical_crossentropy', metrics=['accuracy'])
return model
@ -55,9 +57,13 @@ lbl_test = np.load('Waldo_test_lbl.npy')
## Define model
model = FCN()
svm_iclf = ImageClassifier(svm.SVC)
tree_iclf = ImageClassifier(tree.DecisionTreeClassifier)
naive_bayes_iclf = ImageClassifier(naive_bayes.GaussianNBd)
ensemble_iclf = ImageClassifier(ensemble.RandomForestClassifier)
## Define training parameters
epochs = 40 # an epoch is one forward pass and back propogation of all training data
epochs = 40 # an epoch is one forward pass and back propogation of all training data
batch_size = 5
#lrate = 0.01
#decay = lrate/epochs
@ -125,4 +131,3 @@ pred_lbl = model.predict(im_test, verbose=1, batch_size=batch_size)
end = t.time()
print("Images generated in {} seconds".format(end - start))
np.save('Test/predicted_results.npy', pred_lbl)