Added traditional classifiers:
svm, decision tree, gaussian naive bayes, random forest.
This commit is contained in:
parent
630ee78a30
commit
76e3023750
50
mini_proj/_image_classifier.py
Normal file
50
mini_proj/_image_classifier.py
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
class ImageClassifier:
|
||||||
|
"""Class to create an ImageClassifier from a regular classifier with 5
|
||||||
|
methods that are common amongst classifiers.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, clf, *args, **kwargs):
|
||||||
|
self.clf = clf(*args, **kwargs)
|
||||||
|
|
||||||
|
def fit(self, X, *args, **kwargs):
|
||||||
|
X = X.reshape((len(X), -1))
|
||||||
|
return self.clf.fit(X, *args, **kwargs)
|
||||||
|
|
||||||
|
def predict(self, X, *args, **kwargs):
|
||||||
|
X = X.reshape((len(X), -1))
|
||||||
|
return self.clf.predict(X, *args, **kwargs)
|
||||||
|
|
||||||
|
def score(self, X, *args, **kwargs):
|
||||||
|
X = X.reshape((len(X), -1))
|
||||||
|
return self.clf.score(X, *args, **kwargs)
|
||||||
|
|
||||||
|
def get_params(self, *args, **kwargs):
|
||||||
|
return self.clf.get_params(*args, **kwargs)
|
||||||
|
|
||||||
|
def set_params(self, **params):
|
||||||
|
return self.set_params(**params)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
# Import datasets, classifiers and performance metrics
|
||||||
|
from sklearn import datasets, svm, metrics
|
||||||
|
|
||||||
|
# The digits dataset
|
||||||
|
digits = datasets.load_digits()
|
||||||
|
|
||||||
|
n_samples = len(digits.images)
|
||||||
|
data = digits.images
|
||||||
|
|
||||||
|
# Create a classifier: a support vector classifier
|
||||||
|
classifier = ImageClassifier(svm.SVC, gamma=0.001)
|
||||||
|
|
||||||
|
# We learn the digits on the first half of the digits
|
||||||
|
classifier.fit(data[:n_samples // 2], digits.target[:n_samples // 2])
|
||||||
|
|
||||||
|
# Now predict the value of the digit on the second half:
|
||||||
|
expected = digits.target[n_samples // 2:]
|
||||||
|
predicted = classifier.predict(data[n_samples // 2:])
|
||||||
|
|
||||||
|
print("Classification report for classifier %s:\n%s\n"
|
||||||
|
% (classifier, metrics.classification_report(expected, predicted)))
|
||||||
|
print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))
|
@ -1,6 +1,8 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import sys
|
import sys
|
||||||
import time as t
|
import time as t
|
||||||
|
from sklearn import svm, tree, naive_bayes, ensemble
|
||||||
|
from _image_classifier import ImageClassifier
|
||||||
'''
|
'''
|
||||||
from keras.models import Sequential
|
from keras.models import Sequential
|
||||||
from keras.layers import Dense, Dropout, Activation, Flatten, Reshape, Merge, Permute
|
from keras.layers import Dense, Dropout, Activation, Flatten, Reshape, Merge, Permute
|
||||||
@ -55,6 +57,10 @@ lbl_test = np.load('Waldo_test_lbl.npy')
|
|||||||
|
|
||||||
## Define model
|
## Define model
|
||||||
model = FCN()
|
model = FCN()
|
||||||
|
svm_iclf = ImageClassifier(svm.SVC)
|
||||||
|
tree_iclf = ImageClassifier(tree.DecisionTreeClassifier)
|
||||||
|
naive_bayes_iclf = ImageClassifier(naive_bayes.GaussianNBd)
|
||||||
|
ensemble_iclf = ImageClassifier(ensemble.RandomForestClassifier)
|
||||||
|
|
||||||
## Define training parameters
|
## Define training parameters
|
||||||
epochs = 40 # an epoch is one forward pass and back propogation of all training data
|
epochs = 40 # an epoch is one forward pass and back propogation of all training data
|
||||||
@ -125,4 +131,3 @@ pred_lbl = model.predict(im_test, verbose=1, batch_size=batch_size)
|
|||||||
end = t.time()
|
end = t.time()
|
||||||
print("Images generated in {} seconds".format(end - start))
|
print("Images generated in {} seconds".format(end - start))
|
||||||
np.save('Test/predicted_results.npy', pred_lbl)
|
np.save('Test/predicted_results.npy', pred_lbl)
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user