benchmarks y'all
This commit is contained in:
parent
d57c73be04
commit
8e367726a2
@ -3,3 +3,6 @@ svm,7.871559143066406,0.8446601941747572
|
||||
tree,0.25446152687072754,0.7087378640776699
|
||||
naive_bayes,0.12949371337890625,0.8252427184466019
|
||||
forest,0.2792677879333496,0.9514563106796117
|
||||
lenet,58.12968325614929,0.8980582524271845
|
||||
cnn,113.81168508529663,0.9563106796116505
|
||||
fcn,117.69003772735596,0.9466019417475728
|
|
BIN
mini_proj/report/LeNet.jpg
Normal file
BIN
mini_proj/report/LeNet.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 38 KiB |
@ -167,7 +167,13 @@
|
||||
The Fully Convolutional Network (FCN) contains only one dense layer for the final binary classification step.
|
||||
The FCN instead consists of an extra convolutional layer, resulting in an increased ability for the network to abstract the input data relative to the other two configurations.
|
||||
\\
|
||||
\todo{Insert image of LeNet from slides if time}
|
||||
\begin{figure}[H]
|
||||
\includegraphics[scale=0.50]{LeNet}
|
||||
\centering
|
||||
\captionsetup{width=0.90\textwidth}
|
||||
\caption{Representation of the LeNet Neural Network model architecture including convolutional layers and pooling (subsampling) layers\cite{726791}}
|
||||
\label{fig:LeNet}
|
||||
\end{figure}
|
||||
|
||||
\section{Method} \label{sec:method}
|
||||
|
||||
|
Reference in New Issue
Block a user