1
0

Add intro and references to the background section

This commit is contained in:
Jip J. Dekker 2018-05-25 11:31:55 +10:00
parent b8596e9575
commit ca966cb12e
No known key found for this signature in database
GPG Key ID: 9CB1B58997DD0D58
2 changed files with 79 additions and 3 deletions

View File

@ -0,0 +1,35 @@
@techreport{knn,
title={Discriminatory analysis-nonparametric discrimination: consistency properties},
author={Fix, Evelyn and Hodges Jr, Joseph L},
year={1951},
institution={California Univ Berkeley}
}
@article{svm,
title={Support-vector networks},
author={Cortes, Corinna and Vapnik, Vladimir},
journal={Machine learning},
volume={20},
number={3},
pages={273--297},
year={1995},
publisher={Springer}
}
@article{naivebayes,
title={Idiot's Bayes—not so stupid after all?},
author={Hand, David J and Yu, Keming},
journal={International statistical review},
volume={69},
number={3},
pages={385--398},
year={2001},
publisher={Wiley Online Library}
}
@article{randomforest,
title={Classification and regression by randomForest},
author={Liaw, Andy and Wiener, Matthew and others},
journal={R news},
volume={2},
number={3},
pages={18--22},
year={2002}
}

View File

@ -19,6 +19,9 @@
\usepackage{bookmark}
\usepackage{natbib}
\usepackage{xcolor}
\newcommand{\todo}[1]{\marginpar{{\textsf{TODO}}}{\textbf{\color{red}[#1]}}}
\begin{document}
\title{What is Waldo?}
\author{Kelvin Davis \and Jip J. Dekker\and Anthony Silvestere}
@ -46,8 +49,10 @@
\begin{figure}[ht]
\includegraphics[scale=0.35]{waldo}
\centering
\caption{A headshot of the character ``Waldo'', or ``Wally''. Pictures of
Waldo copyrighted by Martin Handford used under the fair-use policy.}
\caption{
A headshot of the character ``Waldo'', or ``Wally''. Pictures of Waldo
copyrighted by Martin Handford and are used under the fair-use policy.
}
\label{fig:waldo}
\end{figure}
@ -74,13 +79,49 @@
\section{Background} \label{sec:background}
The classification methods used can separated into two separate groups:
classical machine learning methods and neural network architectures. Many of
the classical machine learning algorithms have variations and improvements
for various purposes; however, for this report we will be using their only
their basic versions. In contrast, we will use different neural network
architectures, as this method is currently the most used for image
classification.
\subsection{Classical Machine Learning Methods}
\paragraph{Naive Bayes Classifier}
\cite{naivebayes}
\paragraph{$k$-Nearest Neighbors}
($k$-NN) \cite{knn}
\paragraph{Support Vector Machine}
\cite{svm}
\paragraph{Random Forest}
\cite{randomforest}
\subsection{Neural Network Architectures}
\todo{Did we only do the three in the end? (Alexnet?)}
\paragraph{Convolutional Neural Networks}
\paragraph{LeNet}
\paragraph{Fully Convolutional Neural Networks}
\section{Methods} \label{sec:methods}
\section{Results and Discussion} \label{sec:results}
\section{Conclusion} \label{sec:conclusion}
\bibliographystyle{humannat}
\bibliographystyle{alpha}
\bibliography{references}
\end{document}