Add intro and references to the background section
This commit is contained in:
parent
b8596e9575
commit
ca966cb12e
@ -0,0 +1,35 @@
|
||||
@techreport{knn,
|
||||
title={Discriminatory analysis-nonparametric discrimination: consistency properties},
|
||||
author={Fix, Evelyn and Hodges Jr, Joseph L},
|
||||
year={1951},
|
||||
institution={California Univ Berkeley}
|
||||
}
|
||||
@article{svm,
|
||||
title={Support-vector networks},
|
||||
author={Cortes, Corinna and Vapnik, Vladimir},
|
||||
journal={Machine learning},
|
||||
volume={20},
|
||||
number={3},
|
||||
pages={273--297},
|
||||
year={1995},
|
||||
publisher={Springer}
|
||||
}
|
||||
@article{naivebayes,
|
||||
title={Idiot's Bayes—not so stupid after all?},
|
||||
author={Hand, David J and Yu, Keming},
|
||||
journal={International statistical review},
|
||||
volume={69},
|
||||
number={3},
|
||||
pages={385--398},
|
||||
year={2001},
|
||||
publisher={Wiley Online Library}
|
||||
}
|
||||
@article{randomforest,
|
||||
title={Classification and regression by randomForest},
|
||||
author={Liaw, Andy and Wiener, Matthew and others},
|
||||
journal={R news},
|
||||
volume={2},
|
||||
number={3},
|
||||
pages={18--22},
|
||||
year={2002}
|
||||
}
|
@ -19,6 +19,9 @@
|
||||
\usepackage{bookmark}
|
||||
\usepackage{natbib}
|
||||
|
||||
\usepackage{xcolor}
|
||||
\newcommand{\todo}[1]{\marginpar{{\textsf{TODO}}}{\textbf{\color{red}[#1]}}}
|
||||
|
||||
\begin{document}
|
||||
\title{What is Waldo?}
|
||||
\author{Kelvin Davis \and Jip J. Dekker\and Anthony Silvestere}
|
||||
@ -46,8 +49,10 @@
|
||||
\begin{figure}[ht]
|
||||
\includegraphics[scale=0.35]{waldo}
|
||||
\centering
|
||||
\caption{A headshot of the character ``Waldo'', or ``Wally''. Pictures of
|
||||
Waldo copyrighted by Martin Handford used under the fair-use policy.}
|
||||
\caption{
|
||||
A headshot of the character ``Waldo'', or ``Wally''. Pictures of Waldo
|
||||
copyrighted by Martin Handford and are used under the fair-use policy.
|
||||
}
|
||||
\label{fig:waldo}
|
||||
\end{figure}
|
||||
|
||||
@ -74,13 +79,49 @@
|
||||
|
||||
\section{Background} \label{sec:background}
|
||||
|
||||
The classification methods used can separated into two separate groups:
|
||||
classical machine learning methods and neural network architectures. Many of
|
||||
the classical machine learning algorithms have variations and improvements
|
||||
for various purposes; however, for this report we will be using their only
|
||||
their basic versions. In contrast, we will use different neural network
|
||||
architectures, as this method is currently the most used for image
|
||||
classification.
|
||||
|
||||
\subsection{Classical Machine Learning Methods}
|
||||
|
||||
\paragraph{Naive Bayes Classifier}
|
||||
|
||||
\cite{naivebayes}
|
||||
|
||||
\paragraph{$k$-Nearest Neighbors}
|
||||
|
||||
($k$-NN) \cite{knn}
|
||||
|
||||
\paragraph{Support Vector Machine}
|
||||
|
||||
\cite{svm}
|
||||
|
||||
\paragraph{Random Forest}
|
||||
|
||||
\cite{randomforest}
|
||||
|
||||
\subsection{Neural Network Architectures}
|
||||
\todo{Did we only do the three in the end? (Alexnet?)}
|
||||
|
||||
\paragraph{Convolutional Neural Networks}
|
||||
|
||||
\paragraph{LeNet}
|
||||
|
||||
\paragraph{Fully Convolutional Neural Networks}
|
||||
|
||||
|
||||
\section{Methods} \label{sec:methods}
|
||||
|
||||
\section{Results and Discussion} \label{sec:results}
|
||||
|
||||
\section{Conclusion} \label{sec:conclusion}
|
||||
|
||||
\bibliographystyle{humannat}
|
||||
\bibliographystyle{alpha}
|
||||
\bibliography{references}
|
||||
|
||||
\end{document}
|
||||
|
Reference in New Issue
Block a user