From e0e869183a73222bb73193fdf41637cb74f5860e Mon Sep 17 00:00:00 2001 From: Silver-T Date: Wed, 2 May 2018 13:08:30 +1000 Subject: [PATCH] Chipping away at week 8 --- wk7/wk7.ipynb | 2 +- wk8/wk8.ipynb | 490 +++++++++++++++++++++++++++++++++++++++++++++++++- 2 files changed, 488 insertions(+), 4 deletions(-) diff --git a/wk7/wk7.ipynb b/wk7/wk7.ipynb index 81f9806..c94124c 100644 --- a/wk7/wk7.ipynb +++ b/wk7/wk7.ipynb @@ -583,7 +583,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.5.2" } }, "nbformat": 4, diff --git a/wk8/wk8.ipynb b/wk8/wk8.ipynb index ee766c0..68a5eae 100644 --- a/wk8/wk8.ipynb +++ b/wk8/wk8.ipynb @@ -9,10 +9,494 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using matplotlib backend: TkAgg\n", + "Populating the interactive namespace from numpy and matplotlib\n" + ] + } + ], + "source": [ + "%pylab\n", + "%matplotlib inline\n", + "import pandas as pd\n", + "from pandas import ExcelWriter\n", + "from pandas import ExcelFile\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy import stats" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We start the analysis by importing the data. Note, we are only importing the data provided in Table 1 of the Appendix of Dong et al.1 as we are only analysing data from the references days and Day 62.\n", + "\n", + "**\\*\\* Double Check this with Murray \\*\\***\n", + "\n", + "\\*\\* Now we need to read the excel file in a nice way given that the spreadsheet has double headings in some places" + ] + }, + { + "cell_type": "code", + "execution_count": 11, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "data = pd.read_excel('Dong_etal_2018_data.xlsx', sheetname='A1')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.5/dist-packages/matplotlib/colors.py:494: RuntimeWarning: invalid value encountered in less\n", + " cbook._putmask(xa, xa < 0.0, -1)\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Distance from event center (km)\n", + " \n", + " \n", + " \n", + " \n", + " Unnamed: 1\n", + " \n", + " \n", + " \n", + " \n", + " Unnamed: 5\n", + " \n", + " \n", + " \n", + " \n", + " Unnamed: 9\n", + " \n", + " \n", + " \n", + " \n", + " Unnamed: 13\n", + " \n", + " \n", + "
\n", + " Distance from event center (km)\n", + " \n", + " \n", + " \n", + " \n", + " 1\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + "
\n", + " Unnamed: 1\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + "
\n", + " Unnamed: 5\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + "
\n", + " Unnamed: 9\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + "
\n", + " Unnamed: 13\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + " \n", + " \n", + " nan\n", + " \n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.corr().style.background_gradient(cmap='Wistia')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "****\\*\\*\\*\\* We gon' need to get rid of some of them headins' \\*\\*\\*\\* ****" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### References\n", + "1. Dong, X., Meyer, J., Shmueli, E., Bozkaya, B., & Pentland, A. (2018). Methods for quantifying effects of social unrest using credit card transaction data. EPJ Data Science, 7(1), 8. https://doi.org/10.1140/epjds/s13688-018-0136-x" + ] } ], "metadata": { @@ -31,7 +515,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.5.2" } }, "nbformat": 4,