Classical Machine Learning @article{MLReview, title={Supervised machine learning: A review of classification techniques}, author={Kotsiantis, Sotiris B and Zaharakis, I and Pintelas, P}, journal={Emerging artificial intelligence applications in computer engineering}, volume={160}, pages={3--24}, year={2007} } @techreport{knn, title={Discriminatory analysis-nonparametric discrimination: consistency properties}, author={Fix, Evelyn and Hodges Jr, Joseph L}, year={1951}, institution={California Univ Berkeley} } @article{svm, title={Support-vector networks}, author={Cortes, Corinna and Vapnik, Vladimir}, journal={Machine learning}, volume={20}, number={3}, pages={273--297}, year={1995}, publisher={Springer} } @inproceedings{svmnonlinear, title={A training algorithm for optimal margin classifiers}, author={Boser, Bernhard E and Guyon, Isabelle M and Vapnik, Vladimir N}, booktitle={Proceedings of the fifth annual workshop on Computational learning theory}, pages={144--152}, year={1992}, organization={ACM} } @article{naivebayes, title={Idiot's Bayes—not so stupid after all?}, author={Hand, David J and Yu, Keming}, journal={International statistical review}, volume={69}, number={3}, pages={385--398}, year={2001}, publisher={Wiley Online Library} } @article{randomforest, title={Classification and regression by randomForest}, author={Liaw, Andy and Wiener, Matthew and others}, journal={R news}, volume={2}, number={3}, pages={18--22}, year={2002} } Neural Networks @article{lenet, title={Gradient-based learning applied to document recognition}, author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick}, journal={Proceedings of the IEEE}, volume={86}, number={11}, pages={2278--2324}, year={1998}, publisher={IEEE} } @inproceedings{alexnet, title={Imagenet classification with deep convolutional neural networks}, author={Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E}, booktitle={Advances in neural information processing systems}, pages={1097--1105}, year={2012} } @inproceedings{lenetVSalexnet, title={On the Performance of GoogLeNet and AlexNet Applied to Sketches.}, author={Ballester, Pedro and de Ara{\'u}jo, Ricardo Matsumura}, booktitle={AAAI}, pages={1124--1128}, year={2016} } @article{deepNN, title = "A survey of deep neural network architectures and their applications", journal = "Neurocomputing", volume = "234", pages = "11 - 26", year = "2017", issn = "0925-2312", doi = "https://doi.org/10.1016/j.neucom.2016.12.038", url = "http://www.sciencedirect.com/science/article/pii/S0925231216315533", author = "Weibo Liu and Zidong Wang and Xiaohui Liu and Nianyin Zeng and Yurong Liu and Fuad E. Alsaadi", keywords = "Autoencoder, Convolutional neural network, Deep learning, Deep belief network, Restricted Boltzmann machine" } MISC @misc{openData, title={Open Database License (ODbL) v1.0}, url={https://opendatacommons.org/licenses/odbl/1.0/}, journal={Open Data Commons}, year={2018}, month={Feb} } @incollection{NIPS2012_4824, title = {ImageNet Classification with Deep Convolutional Neural Networks}, author = {Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E}, booktitle = {Advances in Neural Information Processing Systems 25}, editor = {F. Pereira and C. J. C. Burges and L. Bottou and K. Q. Weinberger}, pages = {1097--1105}, year = {2012}, publisher = {Curran Associates, Inc.}, url = {http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf} } @ARTICLE{726791, author={Y. Lecun and L. Bottou and Y. Bengio and P. Haffner}, journal={Proceedings of the IEEE}, title={Gradient-based learning applied to document recognition}, year={1998}, volume={86}, number={11}, pages={2278-2324}, keywords={backpropagation;convolution;multilayer perceptrons;optical character recognition;2D shape variability;GTN;back-propagation;cheque reading;complex decision surface synthesis;convolutional neural network character recognizers;document recognition;document recognition systems;field extraction;gradient based learning technique;gradient-based learning;graph transformer networks;handwritten character recognition;handwritten digit recognition task;high-dimensional patterns;language modeling;multilayer neural networks;multimodule systems;performance measure minimization;segmentation recognition;Character recognition;Feature extraction;Hidden Markov models;Machine learning;Multi-layer neural network;Neural networks;Optical character recognition software;Optical computing;Pattern recognition;Principal component analysis}, doi={10.1109/5.726791}, ISSN={0018-9219}, month={Nov},}