{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Week 7: Tennis Data Exploration" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Using matplotlib backend: MacOSX\n", "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab\n", "%matplotlib inline\n", "import pandas as pd\n", "import seaborn as sn\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy import stats\n", "\n", "data = pd.read_csv(\"tennis.csv\")" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", "
\n", " | ranking | \n", "age | \n", "points | \n", "tournplayed | \n", "born | \n", "weight | \n", "height | \n", "
---|---|---|---|---|---|---|---|
ranking | \n", "1 | \n", "-0.165935 | \n", "-0.586707 | \n", "-0.244073 | \n", "0.17403 | \n", "-0.0826093 | \n", "0.0196139 | \n", "
age | \n", "-0.165935 | \n", "1 | \n", "0.121731 | \n", "-0.140033 | \n", "-0.994296 | \n", "0.157223 | \n", "-0.0282972 | \n", "
points | \n", "-0.586707 | \n", "0.121731 | \n", "1 | \n", "-0.004905 | \n", "-0.129971 | \n", "0.159385 | \n", "-0.0153843 | \n", "
tournplayed | \n", "-0.244073 | \n", "-0.140033 | \n", "-0.004905 | \n", "1 | \n", "0.13293 | \n", "-0.139194 | \n", "-0.0712482 | \n", "
born | \n", "0.17403 | \n", "-0.994296 | \n", "-0.129971 | \n", "0.13293 | \n", "1 | \n", "-0.163677 | \n", "0.0333731 | \n", "
weight | \n", "-0.0826093 | \n", "0.157223 | \n", "0.159385 | \n", "-0.139194 | \n", "-0.163677 | \n", "1 | \n", "0.757689 | \n", "
height | \n", "0.0196139 | \n", "-0.0282972 | \n", "-0.0153843 | \n", "-0.0712482 | \n", "0.0333731 | \n", "0.757689 | \n", "1 | \n", "