148 lines
5.5 KiB
BibTeX
148 lines
5.5 KiB
BibTeX
Classical Machine Learning
|
|
@article{MLReview,
|
|
title={Supervised machine learning: A review of classification techniques},
|
|
author={Kotsiantis, Sotiris B and Zaharakis, I and Pintelas, P},
|
|
journal={Emerging artificial intelligence applications in computer engineering},
|
|
volume={160},
|
|
pages={3--24},
|
|
year={2007}
|
|
}
|
|
@techreport{knn,
|
|
title={Discriminatory analysis-nonparametric discrimination: consistency properties},
|
|
author={Fix, Evelyn and Hodges Jr, Joseph L},
|
|
year={1951},
|
|
institution={California Univ Berkeley}
|
|
}
|
|
@article{svm,
|
|
title={Support-vector networks},
|
|
author={Cortes, Corinna and Vapnik, Vladimir},
|
|
journal={Machine learning},
|
|
volume={20},
|
|
number={3},
|
|
pages={273--297},
|
|
year={1995},
|
|
publisher={Springer}
|
|
}
|
|
@inproceedings{svmnonlinear,
|
|
title={A training algorithm for optimal margin classifiers},
|
|
author={Boser, Bernhard E and Guyon, Isabelle M and Vapnik, Vladimir N},
|
|
booktitle={Proceedings of the fifth annual workshop on Computational learning theory},
|
|
pages={144--152},
|
|
year={1992},
|
|
organization={ACM}
|
|
}
|
|
@article{naivebayes,
|
|
title={Idiot's Bayes—not so stupid after all?},
|
|
author={Hand, David J and Yu, Keming},
|
|
journal={International statistical review},
|
|
volume={69},
|
|
number={3},
|
|
pages={385--398},
|
|
year={2001},
|
|
publisher={Wiley Online Library}
|
|
}
|
|
@article{randomforest,
|
|
title={Classification and regression by randomForest},
|
|
author={Liaw, Andy and Wiener, Matthew and others},
|
|
journal={R news},
|
|
volume={2},
|
|
number={3},
|
|
pages={18--22},
|
|
year={2002}
|
|
}
|
|
|
|
Neural Networks
|
|
@article{lenet,
|
|
title={Gradient-based learning applied to document recognition},
|
|
author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
|
|
journal={Proceedings of the IEEE},
|
|
volume={86},
|
|
number={11},
|
|
pages={2278--2324},
|
|
year={1998},
|
|
publisher={IEEE}
|
|
}
|
|
@inproceedings{alexnet,
|
|
title={Imagenet classification with deep convolutional neural networks},
|
|
author={Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E},
|
|
booktitle={Advances in neural information processing systems},
|
|
pages={1097--1105},
|
|
year={2012}
|
|
}
|
|
@inproceedings{lenetVSalexnet,
|
|
title={On the Performance of GoogLeNet and AlexNet Applied to Sketches.},
|
|
author={Ballester, Pedro and de Ara{\'u}jo, Ricardo Matsumura},
|
|
booktitle={AAAI},
|
|
pages={1124--1128},
|
|
year={2016}
|
|
}
|
|
@article{deepNN,
|
|
title = "A survey of deep neural network architectures and their applications",
|
|
journal = "Neurocomputing",
|
|
volume = "234",
|
|
pages = "11 - 26",
|
|
year = "2017",
|
|
issn = "0925-2312",
|
|
doi = "https://doi.org/10.1016/j.neucom.2016.12.038",
|
|
url = "http://www.sciencedirect.com/science/article/pii/S0925231216315533",
|
|
author = "Weibo Liu and Zidong Wang and Xiaohui Liu and Nianyin Zeng and Yurong Liu and Fuad E. Alsaadi",
|
|
keywords = "Autoencoder, Convolutional neural network, Deep learning, Deep belief network, Restricted Boltzmann machine"
|
|
}
|
|
|
|
MISC
|
|
@misc{openData,
|
|
title={Open Database License (ODbL) v1.0},
|
|
url={https://opendatacommons.org/licenses/odbl/1.0/},
|
|
journal={Open Data Commons},
|
|
year={2018},
|
|
month={Feb}
|
|
}
|
|
@incollection{NIPS2012_4824,
|
|
title = {ImageNet Classification with Deep Convolutional Neural Networks},
|
|
author = {Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E},
|
|
booktitle = {Advances in Neural Information Processing Systems 25},
|
|
editor = {F. Pereira and C. J. C. Burges and L. Bottou and K. Q. Weinberger},
|
|
pages = {1097--1105},
|
|
year = {2012},
|
|
publisher = {Curran Associates, Inc.},
|
|
url = {http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf}
|
|
}
|
|
@ARTICLE{726791,
|
|
author={Y. Lecun and L. Bottou and Y. Bengio and P. Haffner},
|
|
journal={Proceedings of the IEEE},
|
|
title={Gradient-based learning applied to document recognition},
|
|
year={1998},
|
|
volume={86},
|
|
number={11},
|
|
pages={2278-2324},
|
|
keywords={backpropagation;convolution;multilayer perceptrons;optical character recognition;2D shape variability;GTN;back-propagation;cheque reading;complex decision surface synthesis;convolutional neural network character recognizers;document recognition;document recognition systems;field extraction;gradient based learning technique;gradient-based learning;graph transformer networks;handwritten character recognition;handwritten digit recognition task;high-dimensional patterns;language modeling;multilayer neural networks;multimodule systems;performance measure minimization;segmentation recognition;Character recognition;Feature extraction;Hidden Markov models;Machine learning;Multi-layer neural network;Neural networks;Optical character recognition software;Optical computing;Pattern recognition;Principal component analysis},
|
|
doi={10.1109/5.726791},
|
|
ISSN={0018-9219},
|
|
month={Nov},}
|
|
@book{numpy,
|
|
title={A guide to NumPy},
|
|
author={Oliphant, Travis E},
|
|
volume={1},
|
|
year={2006},
|
|
publisher={Trelgol Publishing USA}
|
|
}
|
|
@article{scikit-learn,
|
|
title={Scikit-learn: Machine Learning in {P}ython},
|
|
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
|
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
|
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
|
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
|
journal={Journal of Machine Learning Research},
|
|
volume={12},
|
|
pages={2825--2830},
|
|
year={2011}
|
|
}
|
|
@misc{bilogur_2017,
|
|
title={Where's Waldo | Kaggle},
|
|
url={https://www.kaggle.com/residentmario/wheres-waldo},
|
|
journal={Countries of the World | Kaggle},
|
|
publisher={Aleksey Bilogur},
|
|
author={Bilogur, Aleksey},
|
|
year={2017},
|
|
month={Oct}
|
|
} |