1
0
This repository has been archived on 2025-03-06. You can view files and clone it, but cannot push or open issues or pull requests.
2018-05-25 18:01:57 +10:00

145 lines
5.4 KiB
BibTeX

Classical Machine Learning
@article{MLReview,
title={Supervised machine learning: A review of classification techniques},
author={Kotsiantis, Sotiris B and Zaharakis, I and Pintelas, P},
journal={Emerging artificial intelligence applications in computer engineering},
volume={160},
pages={3--24},
year={2007}
}
@techreport{knn,
title={Discriminatory analysis-nonparametric discrimination: consistency properties},
author={Fix, Evelyn and Hodges Jr, Joseph L},
year={1951},
institution={California Univ Berkeley}
}
@article{svm,
title={Support-vector networks},
author={Cortes, Corinna and Vapnik, Vladimir},
journal={Machine learning},
volume={20},
number={3},
pages={273--297},
year={1995},
publisher={Springer}
}
@inproceedings{svmnonlinear,
title={A training algorithm for optimal margin classifiers},
author={Boser, Bernhard E and Guyon, Isabelle M and Vapnik, Vladimir N},
booktitle={Proceedings of the fifth annual workshop on Computational learning theory},
pages={144--152},
year={1992},
organization={ACM}
}
@article{naivebayes,
title={Idiot's Bayes—not so stupid after all?},
author={Hand, David J and Yu, Keming},
journal={International statistical review},
volume={69},
number={3},
pages={385--398},
year={2001},
publisher={Wiley Online Library}
}
@article{randomforest,
title={Classification and regression by randomForest},
author={Liaw, Andy and Wiener, Matthew and others},
journal={R news},
volume={2},
number={3},
pages={18--22},
year={2002}
}
Neural Networks
@article{lenet,
title={Gradient-based learning applied to document recognition},
author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
journal={Proceedings of the IEEE},
volume={86},
number={11},
pages={2278--2324},
year={1998},
publisher={IEEE}
}
@inproceedings{alexnet,
title={Imagenet classification with deep convolutional neural networks},
author={Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E},
booktitle={Advances in neural information processing systems},
pages={1097--1105},
year={2012}
}
@inproceedings{lenetVSalexnet,
title={On the Performance of GoogLeNet and AlexNet Applied to Sketches.},
author={Ballester, Pedro and de Ara{\'u}jo, Ricardo Matsumura},
booktitle={AAAI},
pages={1124--1128},
year={2016}
}
@article{deepNN,
title = "A survey of deep neural network architectures and their applications",
journal = "Neurocomputing",
volume = "234",
pages = "11 - 26",
year = "2017",
issn = "0925-2312",
doi = "https://doi.org/10.1016/j.neucom.2016.12.038",
url = "http://www.sciencedirect.com/science/article/pii/S0925231216315533",
author = "Weibo Liu and Zidong Wang and Xiaohui Liu and Nianyin Zeng and Yurong Liu and Fuad E. Alsaadi",
keywords = "Autoencoder, Convolutional neural network, Deep learning, Deep belief network, Restricted Boltzmann machine"
}
MISC
@misc{openData,
title={Open Database License (ODbL) v1.0},
url={https://opendatacommons.org/licenses/odbl/1.0/},
journal={Open Data Commons},
year={2018},
month={Feb}
}
@incollection{NIPS2012_4824,
title = {ImageNet Classification with Deep Convolutional Neural Networks},
author = {Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E},
booktitle = {Advances in Neural Information Processing Systems 25},
editor = {F. Pereira and C. J. C. Burges and L. Bottou and K. Q. Weinberger},
pages = {1097--1105},
year = {2012},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf}
}
@ARTICLE{726791,
author={Y. Lecun and L. Bottou and Y. Bengio and P. Haffner},
journal={Proceedings of the IEEE},
title={Gradient-based learning applied to document recognition},
year={1998},
volume={86},
number={11},
pages={2278-2324},
keywords={backpropagation;convolution;multilayer perceptrons;optical character recognition;2D shape variability;GTN;back-propagation;cheque reading;complex decision surface synthesis;convolutional neural network character recognizers;document recognition;document recognition systems;field extraction;gradient based learning technique;gradient-based learning;graph transformer networks;handwritten character recognition;handwritten digit recognition task;high-dimensional patterns;language modeling;multilayer neural networks;multimodule systems;performance measure minimization;segmentation recognition;Character recognition;Feature extraction;Hidden Markov models;Machine learning;Multi-layer neural network;Neural networks;Optical character recognition software;Optical computing;Pattern recognition;Principal component analysis},
doi={10.1109/5.726791},
ISSN={0018-9219},
month={Nov},}
@book{numpy,
title={A guide to NumPy},
author={Oliphant, Travis E},
volume={1},
year={2006},
publisher={Trelgol Publishing USA}
}
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
@misc{kaggle,
title = {Kaggle: The Home of Data Science \& Machine Learning},
howpublished = {\url{https://www.kaggle.com/}},
note = {Accessed: 2018-05-25}
}