1964 lines
148 KiB
Plaintext
1964 lines
148 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Week 7: Tennis Data Exploration"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Using matplotlib backend: Qt5Agg\n",
|
||
"Populating the interactive namespace from numpy and matplotlib\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"%pylab\n",
|
||
"%matplotlib inline"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"import seaborn as sn\n",
|
||
"import numpy as np\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"from scipy import stats"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df = pd.read_csv(\"tennis.csv\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"RangeIndex: 1000 entries, 0 to 999\n",
|
||
"Data columns (total 11 columns):\n",
|
||
"ranking 1000 non-null int64\n",
|
||
"country 1000 non-null object\n",
|
||
"player 1000 non-null object\n",
|
||
"age 1000 non-null int64\n",
|
||
"points 1000 non-null int64\n",
|
||
"tournplayed 1000 non-null int64\n",
|
||
"born 1000 non-null int64\n",
|
||
"weight 462 non-null float64\n",
|
||
"height 704 non-null float64\n",
|
||
"hand 723 non-null object\n",
|
||
"gender 1000 non-null object\n",
|
||
"dtypes: float64(2), int64(5), object(4)\n",
|
||
"memory usage: 86.0+ KB\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"df.info()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>ranking</th>\n",
|
||
" <th>country</th>\n",
|
||
" <th>player</th>\n",
|
||
" <th>age</th>\n",
|
||
" <th>points</th>\n",
|
||
" <th>tournplayed</th>\n",
|
||
" <th>born</th>\n",
|
||
" <th>weight</th>\n",
|
||
" <th>height</th>\n",
|
||
" <th>hand</th>\n",
|
||
" <th>gender</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>1</td>\n",
|
||
" <td>ESP</td>\n",
|
||
" <td>Rafael Nadal</td>\n",
|
||
" <td>31</td>\n",
|
||
" <td>8770</td>\n",
|
||
" <td>14</td>\n",
|
||
" <td>1986</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>2</td>\n",
|
||
" <td>SUI</td>\n",
|
||
" <td>Roger Federer</td>\n",
|
||
" <td>36</td>\n",
|
||
" <td>8670</td>\n",
|
||
" <td>17</td>\n",
|
||
" <td>1981</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>3</td>\n",
|
||
" <td>CRO</td>\n",
|
||
" <td>Marin Cilic</td>\n",
|
||
" <td>29</td>\n",
|
||
" <td>4985</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>1988</td>\n",
|
||
" <td>89.0</td>\n",
|
||
" <td>198.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>4</td>\n",
|
||
" <td>GER</td>\n",
|
||
" <td>Alexander Zverev</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>4925</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>1997</td>\n",
|
||
" <td>86.0</td>\n",
|
||
" <td>198.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>5</td>\n",
|
||
" <td>BUL</td>\n",
|
||
" <td>Grigor Dimitrov</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>4635</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>1991</td>\n",
|
||
" <td>80.0</td>\n",
|
||
" <td>191.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" ranking country player age points tournplayed born weight \\\n",
|
||
"0 1 ESP Rafael Nadal 31 8770 14 1986 85.0 \n",
|
||
"1 2 SUI Roger Federer 36 8670 17 1981 85.0 \n",
|
||
"2 3 CRO Marin Cilic 29 4985 20 1988 89.0 \n",
|
||
"3 4 GER Alexander Zverev 20 4925 24 1997 86.0 \n",
|
||
"4 5 BUL Grigor Dimitrov 26 4635 22 1991 80.0 \n",
|
||
"\n",
|
||
" height hand gender \n",
|
||
"0 185.0 L M \n",
|
||
"1 185.0 R M \n",
|
||
"2 198.0 R M \n",
|
||
"3 198.0 R M \n",
|
||
"4 191.0 R M "
|
||
]
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<style type=\"text/css\" >\n",
|
||
" #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col0 {\n",
|
||
" background-color: #fde725;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col1 {\n",
|
||
" background-color: #2b748e;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col2 {\n",
|
||
" background-color: #440154;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col3 {\n",
|
||
" background-color: #440154;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col4 {\n",
|
||
" background-color: #26ad81;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col5 {\n",
|
||
" background-color: #450559;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col6 {\n",
|
||
" background-color: #48186a;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col0 {\n",
|
||
" background-color: #3e4c8a;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col1 {\n",
|
||
" background-color: #fde725;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col2 {\n",
|
||
" background-color: #228b8d;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col3 {\n",
|
||
" background-color: #3a538b;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col4 {\n",
|
||
" background-color: #440154;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col5 {\n",
|
||
" background-color: #404588;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col6 {\n",
|
||
" background-color: #470d60;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col0 {\n",
|
||
" background-color: #440154;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col1 {\n",
|
||
" background-color: #20a486;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col2 {\n",
|
||
" background-color: #fde725;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col3 {\n",
|
||
" background-color: #375a8c;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col4 {\n",
|
||
" background-color: #297a8e;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col5 {\n",
|
||
" background-color: #3c508b;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col6 {\n",
|
||
" background-color: #471164;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col0 {\n",
|
||
" background-color: #443a83;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col1 {\n",
|
||
" background-color: #20928c;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col2 {\n",
|
||
" background-color: #2a788e;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col3 {\n",
|
||
" background-color: #fde725;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col4 {\n",
|
||
" background-color: #228d8d;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col5 {\n",
|
||
" background-color: #46085c;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col6 {\n",
|
||
" background-color: #440154;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col0 {\n",
|
||
" background-color: #1f958b;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col1 {\n",
|
||
" background-color: #440154;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col2 {\n",
|
||
" background-color: #3a548c;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col3 {\n",
|
||
" background-color: #3e4c8a;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col4 {\n",
|
||
" background-color: #fde725;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col5 {\n",
|
||
" background-color: #440154;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col6 {\n",
|
||
" background-color: #481d6f;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col0 {\n",
|
||
" background-color: #34618d;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col1 {\n",
|
||
" background-color: #1e9d89;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col2 {\n",
|
||
" background-color: #23888e;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col3 {\n",
|
||
" background-color: #443b84;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col4 {\n",
|
||
" background-color: #26828e;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col5 {\n",
|
||
" background-color: #fde725;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col6 {\n",
|
||
" background-color: #31b57b;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col0 {\n",
|
||
" background-color: #2c728e;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col1 {\n",
|
||
" background-color: #228d8d;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col2 {\n",
|
||
" background-color: #2d708e;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col3 {\n",
|
||
" background-color: #414487;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col4 {\n",
|
||
" background-color: #20938c;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col5 {\n",
|
||
" background-color: #38b977;\n",
|
||
" } #T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col6 {\n",
|
||
" background-color: #fde725;\n",
|
||
" }</style> \n",
|
||
"<table id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6\" > \n",
|
||
"<thead> <tr> \n",
|
||
" <th class=\"blank level0\" ></th> \n",
|
||
" <th class=\"col_heading level0 col0\" >ranking</th> \n",
|
||
" <th class=\"col_heading level0 col1\" >age</th> \n",
|
||
" <th class=\"col_heading level0 col2\" >points</th> \n",
|
||
" <th class=\"col_heading level0 col3\" >tournplayed</th> \n",
|
||
" <th class=\"col_heading level0 col4\" >born</th> \n",
|
||
" <th class=\"col_heading level0 col5\" >weight</th> \n",
|
||
" <th class=\"col_heading level0 col6\" >height</th> \n",
|
||
" </tr></thead> \n",
|
||
"<tbody> <tr> \n",
|
||
" <th id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6level0_row0\" class=\"row_heading level0 row0\" >ranking</th> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col0\" class=\"data row0 col0\" >1</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col1\" class=\"data row0 col1\" >-0.227788</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col2\" class=\"data row0 col2\" >-0.593329</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col3\" class=\"data row0 col3\" >-0.325373</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col4\" class=\"data row0 col4\" >0.236752</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col5\" class=\"data row0 col5\" >-0.105034</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row0_col6\" class=\"data row0 col6\" >0.0094234</td> \n",
|
||
" </tr> <tr> \n",
|
||
" <th id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6level0_row1\" class=\"row_heading level0 row1\" >age</th> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col0\" class=\"data row1 col0\" >-0.227788</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col1\" class=\"data row1 col1\" >1</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col2\" class=\"data row1 col2\" >0.16884</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col3\" class=\"data row1 col3\" >0.015939</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col4\" class=\"data row1 col4\" >-0.994193</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col5\" class=\"data row1 col5\" >0.111297</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row1_col6\" class=\"data row1 col6\" >-0.0215108</td> \n",
|
||
" </tr> <tr> \n",
|
||
" <th id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6level0_row2\" class=\"row_heading level0 row2\" >points</th> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col0\" class=\"data row2 col0\" >-0.593329</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col1\" class=\"data row2 col1\" >0.16884</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col2\" class=\"data row2 col2\" >1</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col3\" class=\"data row2 col3\" >0.043939</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col4\" class=\"data row2 col4\" >-0.176584</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col5\" class=\"data row2 col5\" >0.152671</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row2_col6\" class=\"data row2 col6\" >-0.00995652</td> \n",
|
||
" </tr> <tr> \n",
|
||
" <th id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6level0_row3\" class=\"row_heading level0 row3\" >tournplayed</th> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col0\" class=\"data row3 col0\" >-0.325373</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col1\" class=\"data row3 col1\" >0.015939</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col2\" class=\"data row3 col2\" >0.043939</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col3\" class=\"data row3 col3\" >1</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col4\" class=\"data row3 col4\" >-0.0219477</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col5\" class=\"data row3 col5\" >-0.0960524</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row3_col6\" class=\"data row3 col6\" >-0.0567095</td> \n",
|
||
" </tr> <tr> \n",
|
||
" <th id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6level0_row4\" class=\"row_heading level0 row4\" >born</th> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col0\" class=\"data row4 col0\" >0.236752</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col1\" class=\"data row4 col1\" >-0.994193</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col2\" class=\"data row4 col2\" >-0.176584</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col3\" class=\"data row4 col3\" >-0.0219477</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col4\" class=\"data row4 col4\" >1</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col5\" class=\"data row4 col5\" >-0.120376</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row4_col6\" class=\"data row4 col6\" >0.0264355</td> \n",
|
||
" </tr> <tr> \n",
|
||
" <th id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6level0_row5\" class=\"row_heading level0 row5\" >weight</th> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col0\" class=\"data row5 col0\" >-0.105034</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col1\" class=\"data row5 col1\" >0.111297</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col2\" class=\"data row5 col2\" >0.152671</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col3\" class=\"data row5 col3\" >-0.0960524</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col4\" class=\"data row5 col4\" >-0.120376</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col5\" class=\"data row5 col5\" >1</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row5_col6\" class=\"data row5 col6\" >0.635301</td> \n",
|
||
" </tr> <tr> \n",
|
||
" <th id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6level0_row6\" class=\"row_heading level0 row6\" >height</th> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col0\" class=\"data row6 col0\" >0.0094234</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col1\" class=\"data row6 col1\" >-0.0215108</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col2\" class=\"data row6 col2\" >-0.00995652</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col3\" class=\"data row6 col3\" >-0.0567095</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col4\" class=\"data row6 col4\" >0.0264355</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col5\" class=\"data row6 col5\" >0.635301</td> \n",
|
||
" <td id=\"T_b0258f1c_4ad1_11e8_82d6_780cb8866ae6row6_col6\" class=\"data row6 col6\" >1</td> \n",
|
||
" </tr></tbody> \n",
|
||
"</table> "
|
||
],
|
||
"text/plain": [
|
||
"<pandas.io.formats.style.Styler at 0x7fa01f4cfcc0>"
|
||
]
|
||
},
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df.corr().style.background_gradient(cmap='viridis')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Average rank of RH: 219.67185069984447\n",
|
||
"Average rank of LH: 192.2405063291139\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(\"Average rank of RH:\", df.loc[df[\"hand\"] == \"R\"][\"ranking\"].mean())\n",
|
||
"print(\"Average rank of LH:\", df.loc[df[\"hand\"] == \"L\"][\"ranking\"].mean())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Average rank of RH: 595.3157076205288\n",
|
||
"Average rank of LH: 642.2278481012659\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(\"Average rank of RH:\", df.loc[df[\"hand\"] == \"R\"][\"points\"].mean())\n",
|
||
"print(\"Average rank of LH:\", df.loc[df[\"hand\"] == \"L\"][\"points\"].mean())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"dfM = df.loc[df[\"gender\"] == \"M\"]\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>ranking</th>\n",
|
||
" <th>country</th>\n",
|
||
" <th>player</th>\n",
|
||
" <th>age</th>\n",
|
||
" <th>points</th>\n",
|
||
" <th>tournplayed</th>\n",
|
||
" <th>born</th>\n",
|
||
" <th>weight</th>\n",
|
||
" <th>height</th>\n",
|
||
" <th>hand</th>\n",
|
||
" <th>gender</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>1</td>\n",
|
||
" <td>ESP</td>\n",
|
||
" <td>Rafael Nadal</td>\n",
|
||
" <td>31</td>\n",
|
||
" <td>8770</td>\n",
|
||
" <td>14</td>\n",
|
||
" <td>1986</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>2</td>\n",
|
||
" <td>SUI</td>\n",
|
||
" <td>Roger Federer</td>\n",
|
||
" <td>36</td>\n",
|
||
" <td>8670</td>\n",
|
||
" <td>17</td>\n",
|
||
" <td>1981</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>3</td>\n",
|
||
" <td>CRO</td>\n",
|
||
" <td>Marin Cilic</td>\n",
|
||
" <td>29</td>\n",
|
||
" <td>4985</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>1988</td>\n",
|
||
" <td>89.0</td>\n",
|
||
" <td>198.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>4</td>\n",
|
||
" <td>GER</td>\n",
|
||
" <td>Alexander Zverev</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>4925</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>1997</td>\n",
|
||
" <td>86.0</td>\n",
|
||
" <td>198.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>5</td>\n",
|
||
" <td>BUL</td>\n",
|
||
" <td>Grigor Dimitrov</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>4635</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>1991</td>\n",
|
||
" <td>80.0</td>\n",
|
||
" <td>191.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>5</th>\n",
|
||
" <td>6</td>\n",
|
||
" <td>ARG</td>\n",
|
||
" <td>Juan Martin del Potro</td>\n",
|
||
" <td>29</td>\n",
|
||
" <td>4470</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>1988</td>\n",
|
||
" <td>97.0</td>\n",
|
||
" <td>198.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>6</th>\n",
|
||
" <td>7</td>\n",
|
||
" <td>AUT</td>\n",
|
||
" <td>Dominic Thiem</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>3665</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1993</td>\n",
|
||
" <td>82.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>7</th>\n",
|
||
" <td>8</td>\n",
|
||
" <td>RSA</td>\n",
|
||
" <td>Kevin Anderson</td>\n",
|
||
" <td>31</td>\n",
|
||
" <td>3390</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>1986</td>\n",
|
||
" <td>93.0</td>\n",
|
||
" <td>203.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>8</th>\n",
|
||
" <td>9</td>\n",
|
||
" <td>USA</td>\n",
|
||
" <td>John Isner</td>\n",
|
||
" <td>32</td>\n",
|
||
" <td>3125</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1985</td>\n",
|
||
" <td>108.0</td>\n",
|
||
" <td>208.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>9</th>\n",
|
||
" <td>10</td>\n",
|
||
" <td>BEL</td>\n",
|
||
" <td>David Goffin</td>\n",
|
||
" <td>27</td>\n",
|
||
" <td>3110</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>1990</td>\n",
|
||
" <td>68.0</td>\n",
|
||
" <td>180.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>10</th>\n",
|
||
" <td>11</td>\n",
|
||
" <td>FRA</td>\n",
|
||
" <td>Lucas Pouille</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>2410</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>1994</td>\n",
|
||
" <td>81.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>11</th>\n",
|
||
" <td>12</td>\n",
|
||
" <td>ESP</td>\n",
|
||
" <td>Pablo Carreno Busta</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>2395</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1991</td>\n",
|
||
" <td>78.0</td>\n",
|
||
" <td>188.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>12</th>\n",
|
||
" <td>13</td>\n",
|
||
" <td>SRB</td>\n",
|
||
" <td>Novak Djokovic</td>\n",
|
||
" <td>30</td>\n",
|
||
" <td>2310</td>\n",
|
||
" <td>15</td>\n",
|
||
" <td>1987</td>\n",
|
||
" <td>77.0</td>\n",
|
||
" <td>188.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>13</th>\n",
|
||
" <td>14</td>\n",
|
||
" <td>USA</td>\n",
|
||
" <td>Sam Querrey</td>\n",
|
||
" <td>30</td>\n",
|
||
" <td>2220</td>\n",
|
||
" <td>23</td>\n",
|
||
" <td>1987</td>\n",
|
||
" <td>95.0</td>\n",
|
||
" <td>198.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>14</th>\n",
|
||
" <td>15</td>\n",
|
||
" <td>ARG</td>\n",
|
||
" <td>Diego Schwartzman</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>2220</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>1992</td>\n",
|
||
" <td>64.0</td>\n",
|
||
" <td>170.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>15</th>\n",
|
||
" <td>16</td>\n",
|
||
" <td>ESP</td>\n",
|
||
" <td>Roberto Bautista Agut</td>\n",
|
||
" <td>30</td>\n",
|
||
" <td>2175</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1988</td>\n",
|
||
" <td>76.0</td>\n",
|
||
" <td>183.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>16</th>\n",
|
||
" <td>17</td>\n",
|
||
" <td>USA</td>\n",
|
||
" <td>Jack Sock</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>2155</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>1992</td>\n",
|
||
" <td>84.0</td>\n",
|
||
" <td>191.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>17</th>\n",
|
||
" <td>18</td>\n",
|
||
" <td>CZE</td>\n",
|
||
" <td>Tomas Berdych</td>\n",
|
||
" <td>32</td>\n",
|
||
" <td>2140</td>\n",
|
||
" <td>19</td>\n",
|
||
" <td>1985</td>\n",
|
||
" <td>91.0</td>\n",
|
||
" <td>196.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>18</th>\n",
|
||
" <td>19</td>\n",
|
||
" <td>KOR</td>\n",
|
||
" <td>Hyeon Chung</td>\n",
|
||
" <td>21</td>\n",
|
||
" <td>1897</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>1996</td>\n",
|
||
" <td>87.0</td>\n",
|
||
" <td>188.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>19</th>\n",
|
||
" <td>20</td>\n",
|
||
" <td>ITA</td>\n",
|
||
" <td>Fabio Fognini</td>\n",
|
||
" <td>30</td>\n",
|
||
" <td>1840</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>1987</td>\n",
|
||
" <td>74.0</td>\n",
|
||
" <td>178.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>20</th>\n",
|
||
" <td>21</td>\n",
|
||
" <td>SUI</td>\n",
|
||
" <td>Stan Wawrinka</td>\n",
|
||
" <td>33</td>\n",
|
||
" <td>1785</td>\n",
|
||
" <td>14</td>\n",
|
||
" <td>1985</td>\n",
|
||
" <td>81.0</td>\n",
|
||
" <td>183.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>21</th>\n",
|
||
" <td>22</td>\n",
|
||
" <td>CAN</td>\n",
|
||
" <td>Milos Raonic</td>\n",
|
||
" <td>27</td>\n",
|
||
" <td>1765</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>1990</td>\n",
|
||
" <td>98.0</td>\n",
|
||
" <td>196.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>22</th>\n",
|
||
" <td>23</td>\n",
|
||
" <td>GBR</td>\n",
|
||
" <td>Kyle Edmund</td>\n",
|
||
" <td>23</td>\n",
|
||
" <td>1757</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1995</td>\n",
|
||
" <td>83.0</td>\n",
|
||
" <td>188.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>23</th>\n",
|
||
" <td>24</td>\n",
|
||
" <td>ESP</td>\n",
|
||
" <td>Albert Ramos-Vinolas</td>\n",
|
||
" <td>30</td>\n",
|
||
" <td>1745</td>\n",
|
||
" <td>29</td>\n",
|
||
" <td>1988</td>\n",
|
||
" <td>80.0</td>\n",
|
||
" <td>188.0</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>24</th>\n",
|
||
" <td>25</td>\n",
|
||
" <td>AUS</td>\n",
|
||
" <td>Nick Kyrgios</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>1720</td>\n",
|
||
" <td>19</td>\n",
|
||
" <td>1995</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>193.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>25</th>\n",
|
||
" <td>26</td>\n",
|
||
" <td>FRA</td>\n",
|
||
" <td>Adrian Mannarino</td>\n",
|
||
" <td>29</td>\n",
|
||
" <td>1655</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>1988</td>\n",
|
||
" <td>70.0</td>\n",
|
||
" <td>180.0</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>26</th>\n",
|
||
" <td>27</td>\n",
|
||
" <td>SRB</td>\n",
|
||
" <td>Filip Krajinovic</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>1616</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1992</td>\n",
|
||
" <td>75.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>27</th>\n",
|
||
" <td>28</td>\n",
|
||
" <td>LUX</td>\n",
|
||
" <td>Gilles Muller</td>\n",
|
||
" <td>34</td>\n",
|
||
" <td>1465</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>1983</td>\n",
|
||
" <td>89.0</td>\n",
|
||
" <td>193.0</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>28</th>\n",
|
||
" <td>29</td>\n",
|
||
" <td>GBR</td>\n",
|
||
" <td>Andy Murray</td>\n",
|
||
" <td>30</td>\n",
|
||
" <td>1450</td>\n",
|
||
" <td>14</td>\n",
|
||
" <td>1987</td>\n",
|
||
" <td>84.0</td>\n",
|
||
" <td>191.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>29</th>\n",
|
||
" <td>30</td>\n",
|
||
" <td>ESP</td>\n",
|
||
" <td>Feliciano Lopez</td>\n",
|
||
" <td>36</td>\n",
|
||
" <td>1420</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>1981</td>\n",
|
||
" <td>88.0</td>\n",
|
||
" <td>188.0</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>...</th>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>470</th>\n",
|
||
" <td>471</td>\n",
|
||
" <td>HUN</td>\n",
|
||
" <td>Zsombor Piros</td>\n",
|
||
" <td>18</td>\n",
|
||
" <td>76</td>\n",
|
||
" <td>17</td>\n",
|
||
" <td>1999</td>\n",
|
||
" <td>65.0</td>\n",
|
||
" <td>178.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>471</th>\n",
|
||
" <td>472</td>\n",
|
||
" <td>AUT</td>\n",
|
||
" <td>David Pichler</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>76</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1996</td>\n",
|
||
" <td>70.0</td>\n",
|
||
" <td>178.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>472</th>\n",
|
||
" <td>473</td>\n",
|
||
" <td>ITA</td>\n",
|
||
" <td>Pietro Rondoni</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>76</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>1993</td>\n",
|
||
" <td>78.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>473</th>\n",
|
||
" <td>474</td>\n",
|
||
" <td>IRL</td>\n",
|
||
" <td>James McGee</td>\n",
|
||
" <td>30</td>\n",
|
||
" <td>75</td>\n",
|
||
" <td>8</td>\n",
|
||
" <td>1987</td>\n",
|
||
" <td>80.0</td>\n",
|
||
" <td>183.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>474</th>\n",
|
||
" <td>475</td>\n",
|
||
" <td>GBR</td>\n",
|
||
" <td>Tom Farquharson</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>75</td>\n",
|
||
" <td>13</td>\n",
|
||
" <td>1992</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>475</th>\n",
|
||
" <td>476</td>\n",
|
||
" <td>FRA</td>\n",
|
||
" <td>Laurent Lokoli</td>\n",
|
||
" <td>23</td>\n",
|
||
" <td>75</td>\n",
|
||
" <td>17</td>\n",
|
||
" <td>1994</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>476</th>\n",
|
||
" <td>477</td>\n",
|
||
" <td>USA</td>\n",
|
||
" <td>Ryan Shane</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>74</td>\n",
|
||
" <td>16</td>\n",
|
||
" <td>1994</td>\n",
|
||
" <td>89.0</td>\n",
|
||
" <td>193.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>477</th>\n",
|
||
" <td>478</td>\n",
|
||
" <td>GBR</td>\n",
|
||
" <td>Lloyd Glasspool</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>74</td>\n",
|
||
" <td>17</td>\n",
|
||
" <td>1993</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>191.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>478</th>\n",
|
||
" <td>479</td>\n",
|
||
" <td>ISR</td>\n",
|
||
" <td>Igor Smilansky</td>\n",
|
||
" <td>23</td>\n",
|
||
" <td>74</td>\n",
|
||
" <td>23</td>\n",
|
||
" <td>1995</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>188.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>479</th>\n",
|
||
" <td>480</td>\n",
|
||
" <td>ZIM</td>\n",
|
||
" <td>Benjamin Lock</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>74</td>\n",
|
||
" <td>31</td>\n",
|
||
" <td>1993</td>\n",
|
||
" <td>86.0</td>\n",
|
||
" <td>201.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>480</th>\n",
|
||
" <td>481</td>\n",
|
||
" <td>FRA</td>\n",
|
||
" <td>Gianni Mina</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>73</td>\n",
|
||
" <td>18</td>\n",
|
||
" <td>1992</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>188.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>481</th>\n",
|
||
" <td>482</td>\n",
|
||
" <td>BEL</td>\n",
|
||
" <td>Clement Geens</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>73</td>\n",
|
||
" <td>23</td>\n",
|
||
" <td>1996</td>\n",
|
||
" <td>68.0</td>\n",
|
||
" <td>180.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>482</th>\n",
|
||
" <td>483</td>\n",
|
||
" <td>AUT</td>\n",
|
||
" <td>Pascal Brunner</td>\n",
|
||
" <td>28</td>\n",
|
||
" <td>72</td>\n",
|
||
" <td>18</td>\n",
|
||
" <td>1989</td>\n",
|
||
" <td>75.0</td>\n",
|
||
" <td>180.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>483</th>\n",
|
||
" <td>484</td>\n",
|
||
" <td>GER</td>\n",
|
||
" <td>Julian Lenz</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>71</td>\n",
|
||
" <td>17</td>\n",
|
||
" <td>1993</td>\n",
|
||
" <td>82.0</td>\n",
|
||
" <td>188.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>484</th>\n",
|
||
" <td>485</td>\n",
|
||
" <td>NED</td>\n",
|
||
" <td>Botic Van de Zandschulp</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>71</td>\n",
|
||
" <td>17</td>\n",
|
||
" <td>1995</td>\n",
|
||
" <td>83.0</td>\n",
|
||
" <td>188.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>485</th>\n",
|
||
" <td>486</td>\n",
|
||
" <td>GER</td>\n",
|
||
" <td>Peter Torebko</td>\n",
|
||
" <td>30</td>\n",
|
||
" <td>70</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>1988</td>\n",
|
||
" <td>84.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>486</th>\n",
|
||
" <td>487</td>\n",
|
||
" <td>IRL</td>\n",
|
||
" <td>Sam Barry</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>70</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>1992</td>\n",
|
||
" <td>83.0</td>\n",
|
||
" <td>191.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>487</th>\n",
|
||
" <td>488</td>\n",
|
||
" <td>USA</td>\n",
|
||
" <td>Ulises Blanch</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>70</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>1998</td>\n",
|
||
" <td>78.0</td>\n",
|
||
" <td>191.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>488</th>\n",
|
||
" <td>489</td>\n",
|
||
" <td>JPN</td>\n",
|
||
" <td>Kento Takeuchi</td>\n",
|
||
" <td>30</td>\n",
|
||
" <td>70</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>1987</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>489</th>\n",
|
||
" <td>490</td>\n",
|
||
" <td>USA</td>\n",
|
||
" <td>Ronnie Schneider</td>\n",
|
||
" <td>23</td>\n",
|
||
" <td>70</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1994</td>\n",
|
||
" <td>70.0</td>\n",
|
||
" <td>175.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>490</th>\n",
|
||
" <td>491</td>\n",
|
||
" <td>FRA</td>\n",
|
||
" <td>Jonathan Kanar</td>\n",
|
||
" <td>23</td>\n",
|
||
" <td>70</td>\n",
|
||
" <td>29</td>\n",
|
||
" <td>1994</td>\n",
|
||
" <td>72.0</td>\n",
|
||
" <td>180.0</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>491</th>\n",
|
||
" <td>492</td>\n",
|
||
" <td>ITA</td>\n",
|
||
" <td>Edoardo Eremin</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>69</td>\n",
|
||
" <td>13</td>\n",
|
||
" <td>1993</td>\n",
|
||
" <td>95.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>492</th>\n",
|
||
" <td>493</td>\n",
|
||
" <td>AUS</td>\n",
|
||
" <td>Blake Ellis</td>\n",
|
||
" <td>19</td>\n",
|
||
" <td>69</td>\n",
|
||
" <td>16</td>\n",
|
||
" <td>1999</td>\n",
|
||
" <td>75.0</td>\n",
|
||
" <td>191.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>493</th>\n",
|
||
" <td>494</td>\n",
|
||
" <td>JPN</td>\n",
|
||
" <td>Shuichi Sekiguchi</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>69</td>\n",
|
||
" <td>19</td>\n",
|
||
" <td>1991</td>\n",
|
||
" <td>66.0</td>\n",
|
||
" <td>168.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>494</th>\n",
|
||
" <td>495</td>\n",
|
||
" <td>ESP</td>\n",
|
||
" <td>Andres Artunedo Martinavarro</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>69</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>1993</td>\n",
|
||
" <td>75.0</td>\n",
|
||
" <td>183.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>495</th>\n",
|
||
" <td>496</td>\n",
|
||
" <td>NED</td>\n",
|
||
" <td>Jelle Sels</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>69</td>\n",
|
||
" <td>23</td>\n",
|
||
" <td>1995</td>\n",
|
||
" <td>83.0</td>\n",
|
||
" <td>188.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>496</th>\n",
|
||
" <td>497</td>\n",
|
||
" <td>USA</td>\n",
|
||
" <td>Sekou Bangoura</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>69</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>1991</td>\n",
|
||
" <td>77.0</td>\n",
|
||
" <td>183.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>497</th>\n",
|
||
" <td>498</td>\n",
|
||
" <td>GER</td>\n",
|
||
" <td>Elmar Ejupovic</td>\n",
|
||
" <td>25</td>\n",
|
||
" <td>69</td>\n",
|
||
" <td>28</td>\n",
|
||
" <td>1993</td>\n",
|
||
" <td>90.0</td>\n",
|
||
" <td>193.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>498</th>\n",
|
||
" <td>499</td>\n",
|
||
" <td>NED</td>\n",
|
||
" <td>Gijs Brouwer</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>68</td>\n",
|
||
" <td>21</td>\n",
|
||
" <td>1996</td>\n",
|
||
" <td>72.0</td>\n",
|
||
" <td>191.0</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>499</th>\n",
|
||
" <td>500</td>\n",
|
||
" <td>BRA</td>\n",
|
||
" <td>Joao Menezes</td>\n",
|
||
" <td>21</td>\n",
|
||
" <td>68</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>1996</td>\n",
|
||
" <td>80.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>500 rows × 11 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" ranking country player age points tournplayed \\\n",
|
||
"0 1 ESP Rafael Nadal 31 8770 14 \n",
|
||
"1 2 SUI Roger Federer 36 8670 17 \n",
|
||
"2 3 CRO Marin Cilic 29 4985 20 \n",
|
||
"3 4 GER Alexander Zverev 20 4925 24 \n",
|
||
"4 5 BUL Grigor Dimitrov 26 4635 22 \n",
|
||
"5 6 ARG Juan Martin del Potro 29 4470 20 \n",
|
||
"6 7 AUT Dominic Thiem 24 3665 25 \n",
|
||
"7 8 RSA Kevin Anderson 31 3390 22 \n",
|
||
"8 9 USA John Isner 32 3125 25 \n",
|
||
"9 10 BEL David Goffin 27 3110 24 \n",
|
||
"10 11 FRA Lucas Pouille 24 2410 24 \n",
|
||
"11 12 ESP Pablo Carreno Busta 26 2395 25 \n",
|
||
"12 13 SRB Novak Djokovic 30 2310 15 \n",
|
||
"13 14 USA Sam Querrey 30 2220 23 \n",
|
||
"14 15 ARG Diego Schwartzman 25 2220 26 \n",
|
||
"15 16 ESP Roberto Bautista Agut 30 2175 25 \n",
|
||
"16 17 USA Jack Sock 25 2155 22 \n",
|
||
"17 18 CZE Tomas Berdych 32 2140 19 \n",
|
||
"18 19 KOR Hyeon Chung 21 1897 22 \n",
|
||
"19 20 ITA Fabio Fognini 30 1840 24 \n",
|
||
"20 21 SUI Stan Wawrinka 33 1785 14 \n",
|
||
"21 22 CAN Milos Raonic 27 1765 20 \n",
|
||
"22 23 GBR Kyle Edmund 23 1757 25 \n",
|
||
"23 24 ESP Albert Ramos-Vinolas 30 1745 29 \n",
|
||
"24 25 AUS Nick Kyrgios 22 1720 19 \n",
|
||
"25 26 FRA Adrian Mannarino 29 1655 26 \n",
|
||
"26 27 SRB Filip Krajinovic 26 1616 25 \n",
|
||
"27 28 LUX Gilles Muller 34 1465 22 \n",
|
||
"28 29 GBR Andy Murray 30 1450 14 \n",
|
||
"29 30 ESP Feliciano Lopez 36 1420 24 \n",
|
||
".. ... ... ... ... ... ... \n",
|
||
"470 471 HUN Zsombor Piros 18 76 17 \n",
|
||
"471 472 AUT David Pichler 22 76 25 \n",
|
||
"472 473 ITA Pietro Rondoni 24 76 26 \n",
|
||
"473 474 IRL James McGee 30 75 8 \n",
|
||
"474 475 GBR Tom Farquharson 26 75 13 \n",
|
||
"475 476 FRA Laurent Lokoli 23 75 17 \n",
|
||
"476 477 USA Ryan Shane 24 74 16 \n",
|
||
"477 478 GBR Lloyd Glasspool 24 74 17 \n",
|
||
"478 479 ISR Igor Smilansky 23 74 23 \n",
|
||
"479 480 ZIM Benjamin Lock 25 74 31 \n",
|
||
"480 481 FRA Gianni Mina 26 73 18 \n",
|
||
"481 482 BEL Clement Geens 22 73 23 \n",
|
||
"482 483 AUT Pascal Brunner 28 72 18 \n",
|
||
"483 484 GER Julian Lenz 25 71 17 \n",
|
||
"484 485 NED Botic Van de Zandschulp 22 71 17 \n",
|
||
"485 486 GER Peter Torebko 30 70 20 \n",
|
||
"486 487 IRL Sam Barry 26 70 20 \n",
|
||
"487 488 USA Ulises Blanch 20 70 22 \n",
|
||
"488 489 JPN Kento Takeuchi 30 70 24 \n",
|
||
"489 490 USA Ronnie Schneider 23 70 25 \n",
|
||
"490 491 FRA Jonathan Kanar 23 70 29 \n",
|
||
"491 492 ITA Edoardo Eremin 24 69 13 \n",
|
||
"492 493 AUS Blake Ellis 19 69 16 \n",
|
||
"493 494 JPN Shuichi Sekiguchi 26 69 19 \n",
|
||
"494 495 ESP Andres Artunedo Martinavarro 24 69 20 \n",
|
||
"495 496 NED Jelle Sels 22 69 23 \n",
|
||
"496 497 USA Sekou Bangoura 26 69 25 \n",
|
||
"497 498 GER Elmar Ejupovic 25 69 28 \n",
|
||
"498 499 NED Gijs Brouwer 22 68 21 \n",
|
||
"499 500 BRA Joao Menezes 21 68 22 \n",
|
||
"\n",
|
||
" born weight height hand gender \n",
|
||
"0 1986 85.0 185.0 L M \n",
|
||
"1 1981 85.0 185.0 R M \n",
|
||
"2 1988 89.0 198.0 R M \n",
|
||
"3 1997 86.0 198.0 R M \n",
|
||
"4 1991 80.0 191.0 R M \n",
|
||
"5 1988 97.0 198.0 R M \n",
|
||
"6 1993 82.0 185.0 R M \n",
|
||
"7 1986 93.0 203.0 R M \n",
|
||
"8 1985 108.0 208.0 R M \n",
|
||
"9 1990 68.0 180.0 R M \n",
|
||
"10 1994 81.0 185.0 R M \n",
|
||
"11 1991 78.0 188.0 R M \n",
|
||
"12 1987 77.0 188.0 R M \n",
|
||
"13 1987 95.0 198.0 R M \n",
|
||
"14 1992 64.0 170.0 R M \n",
|
||
"15 1988 76.0 183.0 R M \n",
|
||
"16 1992 84.0 191.0 R M \n",
|
||
"17 1985 91.0 196.0 R M \n",
|
||
"18 1996 87.0 188.0 R M \n",
|
||
"19 1987 74.0 178.0 R M \n",
|
||
"20 1985 81.0 183.0 R M \n",
|
||
"21 1990 98.0 196.0 R M \n",
|
||
"22 1995 83.0 188.0 R M \n",
|
||
"23 1988 80.0 188.0 L M \n",
|
||
"24 1995 85.0 193.0 R M \n",
|
||
"25 1988 70.0 180.0 L M \n",
|
||
"26 1992 75.0 185.0 R M \n",
|
||
"27 1983 89.0 193.0 L M \n",
|
||
"28 1987 84.0 191.0 R M \n",
|
||
"29 1981 88.0 188.0 L M \n",
|
||
".. ... ... ... ... ... \n",
|
||
"470 1999 65.0 178.0 R M \n",
|
||
"471 1996 70.0 178.0 R M \n",
|
||
"472 1993 78.0 185.0 R M \n",
|
||
"473 1987 80.0 183.0 R M \n",
|
||
"474 1992 NaN NaN NaN M \n",
|
||
"475 1994 NaN NaN R M \n",
|
||
"476 1994 89.0 193.0 R M \n",
|
||
"477 1993 85.0 191.0 R M \n",
|
||
"478 1995 85.0 188.0 R M \n",
|
||
"479 1993 86.0 201.0 R M \n",
|
||
"480 1992 85.0 188.0 R M \n",
|
||
"481 1996 68.0 180.0 R M \n",
|
||
"482 1989 75.0 180.0 R M \n",
|
||
"483 1993 82.0 188.0 R M \n",
|
||
"484 1995 83.0 188.0 R M \n",
|
||
"485 1988 84.0 185.0 R M \n",
|
||
"486 1992 83.0 191.0 R M \n",
|
||
"487 1998 78.0 191.0 R M \n",
|
||
"488 1987 NaN NaN NaN M \n",
|
||
"489 1994 70.0 175.0 R M \n",
|
||
"490 1994 72.0 180.0 L M \n",
|
||
"491 1993 95.0 185.0 R M \n",
|
||
"492 1999 75.0 191.0 R M \n",
|
||
"493 1991 66.0 168.0 R M \n",
|
||
"494 1993 75.0 183.0 R M \n",
|
||
"495 1995 83.0 188.0 R M \n",
|
||
"496 1991 77.0 183.0 R M \n",
|
||
"497 1993 90.0 193.0 R M \n",
|
||
"498 1996 72.0 191.0 L M \n",
|
||
"499 1996 80.0 185.0 R M \n",
|
||
"\n",
|
||
"[500 rows x 11 columns]"
|
||
]
|
||
},
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"dfM"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>ranking</th>\n",
|
||
" <th>country</th>\n",
|
||
" <th>player</th>\n",
|
||
" <th>age</th>\n",
|
||
" <th>points</th>\n",
|
||
" <th>tournplayed</th>\n",
|
||
" <th>born</th>\n",
|
||
" <th>weight</th>\n",
|
||
" <th>height</th>\n",
|
||
" <th>hand</th>\n",
|
||
" <th>gender</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>1</td>\n",
|
||
" <td>ESP</td>\n",
|
||
" <td>Rafael Nadal</td>\n",
|
||
" <td>31</td>\n",
|
||
" <td>8770</td>\n",
|
||
" <td>14</td>\n",
|
||
" <td>1986</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>L</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>2</td>\n",
|
||
" <td>SUI</td>\n",
|
||
" <td>Roger Federer</td>\n",
|
||
" <td>36</td>\n",
|
||
" <td>8670</td>\n",
|
||
" <td>17</td>\n",
|
||
" <td>1981</td>\n",
|
||
" <td>85.0</td>\n",
|
||
" <td>185.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>3</td>\n",
|
||
" <td>CRO</td>\n",
|
||
" <td>Marin Cilic</td>\n",
|
||
" <td>29</td>\n",
|
||
" <td>4985</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>1988</td>\n",
|
||
" <td>89.0</td>\n",
|
||
" <td>198.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>4</td>\n",
|
||
" <td>GER</td>\n",
|
||
" <td>Alexander Zverev</td>\n",
|
||
" <td>20</td>\n",
|
||
" <td>4925</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>1997</td>\n",
|
||
" <td>86.0</td>\n",
|
||
" <td>198.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>5</td>\n",
|
||
" <td>BUL</td>\n",
|
||
" <td>Grigor Dimitrov</td>\n",
|
||
" <td>26</td>\n",
|
||
" <td>4635</td>\n",
|
||
" <td>22</td>\n",
|
||
" <td>1991</td>\n",
|
||
" <td>80.0</td>\n",
|
||
" <td>191.0</td>\n",
|
||
" <td>R</td>\n",
|
||
" <td>M</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" ranking country player age points tournplayed born weight \\\n",
|
||
"0 1 ESP Rafael Nadal 31 8770 14 1986 85.0 \n",
|
||
"1 2 SUI Roger Federer 36 8670 17 1981 85.0 \n",
|
||
"2 3 CRO Marin Cilic 29 4985 20 1988 89.0 \n",
|
||
"3 4 GER Alexander Zverev 20 4925 24 1997 86.0 \n",
|
||
"4 5 BUL Grigor Dimitrov 26 4635 22 1991 80.0 \n",
|
||
"\n",
|
||
" height hand gender \n",
|
||
"0 185.0 L M \n",
|
||
"1 185.0 R M \n",
|
||
"2 198.0 R M \n",
|
||
"3 198.0 R M \n",
|
||
"4 191.0 R M "
|
||
]
|
||
},
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"[<matplotlib.lines.Line2D at 0x7fa016ec3f60>,\n",
|
||
" <matplotlib.lines.Line2D at 0x7fa016ec3e10>,\n",
|
||
" <matplotlib.lines.Line2D at 0x7fa016ee3390>]"
|
||
]
|
||
},
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEKCAYAAAAFJbKyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xt4XPV95/H3Vzdr5Jt8BwuwDXFNAJOYiFvdSwJJTEhSHJq0ySYpm6WhfTZs0iXrxk6yC7kV8tAmaZ+22dIkLWku3EKEG9hQB0PbXDDIkcEYcDAYjAUBA5axLdnW5bt/zJGR5DPj+Y3nzJyZ+byeZx5pfnNG8zs60vme8/3dzN0REREpVEOlKyAiItVFgUNERIIocIiISBAFDhERCaLAISIiQRQ4REQkiAKHiIgEUeAQEZEgChwiIhKkqdIVSMLs2bN94cKFla6GiEhV2bhx40vuPudo29Vk4Fi4cCHd3d2VroaISFUxs2cK2U6pKhERCaLAISIiQRQ4REQkiAKHiIgEUeAQEZEgNdmrSkSK19XTy/V3b+W5vgHmt2dYtWIJK5d1VLpakiIKHCJyWFdPL2tu38zA4DAAvX0DrLl9M4CChxymVJWIHHb93VsPB41RA4PDXH/31grVSNJIdxwicthzfQNB5bVC6bkwuuMQkcPmt2eCymvBaHqut28A57X0XFdPb6WrlloKHCJy2KoVS8g0N44ryzQ3smrFkgrVKHlKz4VTqkpEDhtNz9RT2qZe03PHQoFDRMZZuayjpgPFRPPbM/TGBIlaTs8dK6WqRKSu1WN67ljpjkNE6lo9pueOlQKHiNS9ekvPHSulqkREJIgCh4iIBFHgEBGRIAocIiISRI3jInloDiORIylwiOSgKcZF4iWaqjKz/2lmW8zsETP7vpm1mtkiM9tgZk+Y2c1m1hJtOyl6vi16feGYn7MmKt9qZiuSrLPIKM1hJBIvscBhZh3Ax4FOdz8DaATeD3wZ+Kq7LwZ2A5dHb7kc2O3urwO+Gm2HmZ0Wve904CLg781s/DBPkQRoDiOReEk3jjcBGTNrAtqA54ELgNui128EVkbfXxI9J3r9QjOzqPwmdz/o7tuBbcA5CddbpC6nGBcpRGKBw917gb8EdpANGHuAjUCfuw9Fm+0ERpPFHcCz0XuHou1njS2PeY9IYjSHkUi8JFNVM8jeLSwC5gOTgXfEbOqjb8nxWq7yiZ93hZl1m1n3rl27iqu0yBgrl3Vw7aVL6WjPYEBHe4ZrL12qhnGpe0n2qnorsN3ddwGY2e3AbwLtZtYU3VWcADwXbb8TOBHYGaW2pgOvjCkfNfY9h7n7DcANAJ2dnUcEFpFiaA4jkSMl2caxAzjPzNqitooLgUeBe4H3RttcBtwRfb82ek70+np396j8/VGvq0XAYuCBBOstIiJ5JHbH4e4bzOw24JfAENBD9o7gTuAmM/tiVPbN6C3fBP7FzLaRvdN4f/RztpjZLWSDzhDwMXcf30dSRETKxrIX9bWls7PTu7u7K10NEZGqYmYb3b3zaNtprioREQmiwCEiIkEUOEREJIgCh4iIBFHgEBGRIAocIiISRIFDRESCKHCIiEgQBQ4REQmiwCEiIkEUOEREJIgCh4iIBFHgEBGRIAocIiISRIFDRESCKHCIiEgQBQ4REQmiwCEiIkEUOEREJEhTpSsgUmu6enq5/u6tPNc3wPz2DKtWLGHlso5KV0ukZBQ4REqoq6eXNbdvZmBwGIDevgHW3L4ZQMFDaoZSVSIldP3dWw8HjVEDg8Ncf/fWCtVIpPQUOERK6Lm+gaBykWqkwCFSQvPbM0HlItVIgUOkhFatWEKmuXFcWaa5kVUrllSoRiKlp8ZxkRIabQBXryqpZQocIiW2clmHAoXUNKWqREQkiAKHiIgEUeAQEZEgChwiIhJEgUNERIIocIiISBAFDhERCaLAISIiQRQ4REQkSKKBw8zazew2M3vczB4zs/PNbKaZrTOzJ6KvM6Jtzcz+xsy2mdnDZnbWmJ9zWbT9E2Z2WZJ1lurS1dPL8uvWs2j1nSy/bj1dPb2VrpJIzUv6juOvgR+7+6nAG4DHgNXAPe6+GLgneg7wDmBx9LgC+DqAmc0ErgbOBc4Brh4NNlLfRhdN6u0bwHlt0SQFD5FkJRY4zGwa8DvANwHc/ZC79wGXADdGm90IrIy+vwT4tmfdD7Sb2fHACmCdu7/i7ruBdcBFSdVbqocWTRKpjCTvOE4GdgH/ZGY9ZvYNM5sMzHP35wGir3Oj7TuAZ8e8f2dUlqtc6pwWTRKpjCQDRxNwFvB1d18G7Oe1tFQciynzPOXj32x2hZl1m1n3rl27iqmvVBktmiRSGUkGjp3ATnffED2/jWwgeSFKQRF9fXHM9ieOef8JwHN5ysdx9xvcvdPdO+fMmVPSHZF00qJJIpWRWOBw918Dz5rZ6H/xhcCjwFpgtGfUZcAd0fdrgT+KeledB+yJUll3A283sxlRo/jbozKpcyuXdXDtpUvpaM9gQEd7hmsvXaq1MEQSlvRCTv8D+K6ZtQBPAR8hG6xuMbPLgR3A+6Jt7wIuBrYB/dG2uPsrZvYF4MFou8+7+ysJ11uqhBZNEik/cz+iuaDqdXZ2end3d6WrISJSVcxso7t3Hm07jRwXEZEgWnNcUqWrp5fr797Kc30DzG/PsGrFEqWiRFJGgUNSY3Qk+OigvtGR4ICCh0iKKFUlqaGR4CLVQYFDUkMjwUWqgwKHpIZGgotUBwUOSQ2NBBepDmocl9QYbQBXryqRdFPgqGNp7PqqkeAi6afAUafU9VVEiqU2jjqlrq8iUiwFjjqlrq8iUiwFjjqlrq8iUiwFjjqlrq8iUiw1jtcpdX0VkWIpcNQxdX2tTmnsRi31RYFDpIqoG7WkgQJHHdOVa/XJ141ax07KJThwmFkDMMXdX02gPlImunKtTupGLWlQUK8qM/uemU0zs8nAo8BWM1uVbNUkSRoAWJ3UjVrSoNDuuKdFdxgrgbuAk4APJ1YrSZyuXKuTulFLGhSaqmo2s2aygeNv3X3QzBKsliRtfnuG3pggoSvX8dLWDqRu1JIGhQaOfwCeBh4C/sPMFgB7kqqUJG/ViiXj2jhAV64TpbUdSN2opdIKTVX9q7t3uPvF7u7ADuC/JVgvSdjKZR1ce+lSOtozGNDRnuHaS5fqhDSG2oFE4hV6x/ED4KzRJ+7uZnYT8KZEaiVlUQtXrkmmkuJSefnKRepF3sBhZqcCpwPTzezSMS9NA1qTrJjI0SSdSmo0Y9g9tlyknh3tjmMJ8C6gHXj3mPK9wEeTqpRIIZIeDBcXNPKVi9SLvIHD3e8A7jCz8939F2Wqk0hBku5S3JGj51lHhXuepa2nl9SfQts4tpnZp4GFY9/j7mogl4pJuktxGnuepbWnl9SXQntV3QFMB34C3DnmIVIxSQ+GS2PPM/X0kjQo9I6jzd0/lWhNRAKVYzBc2nqeacS/pEGhgeNHZnaxu9+VaG1EAqXtxJ40jfhPh3pvZyo0VfUJssFjwMxeNbO9ZqbZcUXKTHNVVd5oO1Nv3wDOa+1MXT29la5a2RQUONx9qrs3uHvG3adFz6clXTkRGS+N7S71Ru1MBQwAdPfHzeysuNfd/ZfJVEtEcqm39FzaqJ3p6G0cVwFXAH8V85oDF5S8RiIiKaZ2pqMPALwi+vqW8lRHRCTd0ji+p9wKXQGw2cw+bma3RY8ro/U5Cnlvo5n1mNmPoueLzGyDmT1hZjebWUtUPil6vi16feGYn7EmKt9qZivCd1NEpDTUzlR4d9yvA83A30fPPxyV/XEB7/0E8BjZiREBvgx81d1vMrP/C1we/azLgd3u/joze3+03R+a2WnA+8lOtjgf+ImZ/Ya7D0/8IBGRcqj3dqZCu+Oe7e6Xufv66PER4OyjvcnMTgDeCXwjem5k20Vuiza5keyqggCXRM+JXr8w2v4S4CZ3P+ju24FtwDkF1ltknK6eXpZft55Fq+9k+XXr66oLpUipFBo4hs3slNEnZnYyUMgV/9eAPwdGouezgD53H4qe7wRGw3YH8CxA9PqeaPvD5THvESmY+t+LlEahgWMVcK+Z3Wdm9wHrgU/me4OZvQt40d03ji2O2dSP8lq+94z9vCvMrNvMunft2pWvalKn1P9epDQKDRw/I7vu+Ej0+AfgaNOsLwd+z8yeBm4im6L6GtBuZqNtKycAz0Xf7wROBIhenw68MrY85j2HufsN7t7p7p1z5swpcLeknqj/vUhpFBo4vg0sAr4QPRYB/5LvDe6+xt1PcPeFZBu317v7B4F7gfdGm11GduZdgLXRc6LX10frm68F3h/1uloELAYeKLDeIofl6mdfT/3vRUqh0MCxxN3/2N3vjR5XAL9R5Gd+CrjKzLaRbcP4ZlT+TWBWVH4VsBrA3bcAtwCPAj8GPqYeVVIMzfMkUhqFdsftMbPz3P1+ADM7l2z6qiDufh9wX/T9U8T0inL3A8D7crz/S8CXCv08qR8hs5SWYxp2kXpgXsD6yWb2GNn1x3dERSeRHZsxAri7n5lYDYvQ2dnp3d3dla6GJGzianiQvYOot8FYIqViZhvdvfNo2xV6x3HRMdZHpOTy9ZJS4BBJTkGBw92fSboiIqHUS0qkMgptHBdJHfWSEqkMBQ6pWuolJVIZhbZxiKSOekklo97X05ajU+CQqlbvs5SW2sSeaqPzeQH6PcthSlWJyGGaz0sKoTsOkQpLU2pIPdWkELrjEKmgtE31rp5qUggFDpEKSltqSD3VpBBKVYlUUNpSQ8X0VEtTqk3KQ4FDpMRCTqTz2zP0xgSJSqaGQnqqqRdWfVKqSqSEQtssqj01lLZUm5SHAodICYWeSFcu6+DaS5fS0Z7BgI72TFXN7pu2VJuUh1JVIiVUzIk0dBBjaJtCkm0QaUy1SfJ0xyFSQkl3Zw1NhSXd3bfaU21SHAUOkRJK+kQamgpLug2i2lNtUhylqkRKKOmJF0NTYeVog9B8YfVHgUOkxJI8kYa2KagNQpKgVJVIFQlNhakNQpKgOw5JFY1Czi80FaY1SyQJ5u6VrkPJdXZ2end3d6WrIYEmjkKG7NWxGltFysPMNrp759G2U6pKUkOjkEWqg1JVdSxtaSGNQhapDgocdSqNk9PVaw+gtAVwkaNRqqpOpTEtlMYeQF09vSy/bj2LVt/J8uvWl3yBpbQt5CRSCN1x1KlypYVCrqbT1gOoHHdl+QK47jokrRQ46lQ50kLFnHiTnvAvRDlO6mrXkWqkVFWdKkdaKOl0WNJpnrjAmq+8GMVMiph0+kzkaBQ46lSxk9OFnLSSvppOOjA1mgWVFyM0gBcTLBVopNSUqqpjxaSFQlJPSafDkg5MwzkGx+YqL0Zou05o+iyNveek+ilwSMFCT1qrViyJHQleqnTY9EwzfQODseW5hLSJdOQIfB0l7h4cEsBDg6Ua3yUJSlVJwUJPWkmv1ZArY5SrvKunl1W3PjQuzbPq1oeqaj3w0DaRcrTTSP3RHYcUrJjUU5JTjPf1H3m3ka/8mrVbGBwZn2YaHHGuWbslto4rl3XQ/cwrfH/Dswy702jG77+psmtPhN7FGRCXWCtdK40GMNYj3XHUsdBG07RdgYdefceltfKVd/X08oONvYfbNIbd+cHG3oo2LofexeVqjSlVK40GMNanxAKHmZ1oZvea2WNmtsXMPhGVzzSzdWb2RPR1RlRuZvY3ZrbNzB42s7PG/KzLou2fMLPLkqpzPSnmHz5ty4SmbZnWclm5rIOfrb6A7de9k5+tvqCiV/dp/R1JspJMVQ0Bn3T3X5rZVGCjma0D/itwj7tfZ2argdXAp4B3AIujx7nA14FzzWwmcDXQSfZCaaOZrXX33QnWveYV22iapmVCQ3skzWhrZndMGmtGW3xjei0Mzgvd51C18DuScIkFDnd/Hng++n6vmT0GdACXAG+ONrsRuI9s4LgE+LZnFwi538zazez4aNt17v4KQBR8LgK+n1Td60Gt/MOHBLKr3306q257iMHh1xI1zY3G1e8+PXb7YnptpU3oPoeq14kp611ZGsfNbCGwDNgAzIuCCu7+vJnNjTbrAJ4d87adUVmucjkGxf7Dp60hNMm5sEJ7bZVLmub/SrrLtaRT4oHDzKYAPwD+zN1ftdz/dXEveJ7yiZ9zBXAFwEknnVRcZetIMf/waRtMlvRcWKG9tsqhHPN/hUjbxJRSHokGDjNrJhs0vuvut0fFL5jZ8dHdxvHAi1H5TuDEMW8/AXguKn/zhPL7Jn6Wu98A3ADZpWNLuBs1qZh/+LQNJku6PmlMwxSzz0nfJaap3UvKI7HAYdlbi28Cj7n7V8a8tBa4DLgu+nrHmPIrzewmso3je6LgcjfwF6O9r4C3A2uSqnc9Cf2HL0e7SMhJLun6FJuGSfJEHbrP5bhLLGZ/05bylDBJ3nEsBz4MbDazTVHZp8kGjFvM7HJgB/C+6LW7gIuBbUA/8BEAd3/FzL4APBht9/nRhnIpr2KuwENOEGmbC6uYu7KkT9Sh+5z0XVkx+5u2lKeES2wch7v/1N3N3c909zdGj7vc/WV3v9DdF0dfX4m2d3f/mLuf4u5L3b17zM/6lru/Lnr8U1J1lvySnsk1dExA2gYkQvLjGkL3OekpR4rZX439qH4aOS4FCx0AGHqCSNtcWMUMkkw6fbZyWQe//6aOw1O7H20alKSnhi9mf2ulK3g901xVEiTJmVzTNhdWMWmepNNnuaZB6VwwM7ZOSU8NX8z+prHTgYTRHYckJnQuqbSlnopJ86RtGpRcU8CXamr4t5w6J6gc0necJZwChyQm9ASRtrmwiknzJL0PoXdxSZ+k7318V1A5pO84SzilqiQxxUxLnqYxAcWmeZLch9bmBgYGR2LLc9Ulyanhi22vKGb1SXXfTQ8FDklMaD6+XHVK2wqAIQ4OHRk08pUnfQzK0V5Rju67n+3aPC64fuDcE/niyqUl+dm1SKmqOha6HkeotHW7DO0lVa5cfMhxGMlxs5OrPG3dg4uR9D58tmsz37l/x7jg+p37d/DZrs0l+fm1SIGjTpVjAZ60dbsMPQGVIxff1dPLVTdvGnccrrp5U87jkKt1JVd5MccgJJCFdg8uRtJ/R9/f8GxQuShVVbfKMe9U2rpdFnMCKqa9IiQdtub2h5mYZBqJyuPe09bSyP5Dw7HlcUKPQWhaqKunl5sffHbc1frNDz5b0nRk0n9HSXdZrkW646hTxV7FfbZrM6esuYuFq+/klDV35b2dL0caI+TqOLR7cLH1WXXrQ+PuIFbd+lDOesU1dOcr748JGvnKV61YQnPD+PuR5gbLeQxC78o+969bxq31ATA47HzuX7fEbl+MYrr8hkh6kGQtUuCoU8WcRENzwWkb2V2OQHbN2i0MTmhwGBxxrllbmhNprkWk8i4uNfH8l+d8GHpBEbe6YL7yYvzooeeDykN94NwTg8pFqaqaEpIiKWbm13y54Fw9UNI0srsca0fErRiYrzxU6OJS19+9NfaOINfvKG3pRUj+dzr6t6teVYVT4KgRXT29XHXLpsO9a3r7BrjqluykxKU6iRaTC07TFOOQrnEixQi9wg/9HS2cFR84Fs6KDxxGzKpq5L2pSaUvrlyqQBFAgaNGfPr2h4/okjni2fJSrQzXaBYbJHLlgpPuf9/UAHFNAU15ErChgSx0+xltzbEn8Rlt8amktuYG+mN2oi3HgL7QYxB6B/Hzp+JXLMhVnuuSoZTNyqG/U0me2jhqRNzJJ195MU6e0xZUnnT/+1y7lqs8tE2kq6eXVbdNaOi+LXdDN8DV7z6d5sYJjdGNxtXvPj12+0nN8b2hcpWH3vWFNiznunnMVZ70XFgQ/juV5ClwSMGe2tUfVJ70GIJQ5egxtHJZB9e/9w3jOgRc/9435LxLCU09hZ6oi5lLKkRor61irFzWwR+efeK4sSJ/ePaJVZ1yrHZKVdUIs/irwlL2KAy92m3PkWJoz5FiSDq1Va4eQyEpwNA2grecOofv3L8jtjxOOQZhTjz+pR7/kMapa+qdAkeN+OC5J8WeUD547kk535P0xHGhaY+kByWGBrJihfxeQ9sIQu8gQtuBQtsTrlm7JbZt7Zq1W0r2t1SOwaqpnURxeBD27IS+HbDn2ezXvtGvO2DPkf/zhy67i5ZFyxOtlgJHjQjtUliOieP25Ogumas89Oo4k2Om2EyOhuUDg/GD5HKVF6Orp5dP3voQw9HZtLdvgE/e+hBQmbum0Hagq999Oqtue2hcii5fe0LSXWUh+bum0UGbg2OO2apSHbND++GV7dDbDU//NPvYW5rxJ7n85PGXuHhRoh+hwJFmoVdBIV0K0zjlSOj2oTPFho7Sbmk0Dg0fee3f0pg7//eZH24+HDRGDY84n/nh5qqYjTZuGvZKtyckfaeYc9DmHY+w8tQ2ePlJeH4TbOmCp/+zJJ8ZYq9neGRkEb3MZqfPptdns9PnsNNns7dlHvPap9IxI0NHe4bXzZ3Ch85bkHidFDhSqpg7gpBAU8zqdg0WPwtrQ47zaGg+ftWKJfzZzZtiy+OEzhQbKi5o5CsHYueRylceKvR3Gqqrp5ebH5gw99QDueeeKnYcR8jfatF3iiMjsP9FeOlXsPPB7In/1w8fsdkmgNbsHGE2se5fzu7fPjOeb2qity1Db1MTvU2N7Gxq4rcHDnD+wABDZgxiDBkMmjE04ftBI7uNGTtsKo/ZHLY3tPNiwyQGGkfwxgNYYz+Nzf24HTj88VOap3DLu27hBKD1wEtMH3iJeQMvsWDgZV4a2MHLAz28fOBldg68xKa9L9F2oI0Lzvg+J05LdtS7AkdKhd4RhN5uh44HgPATdb6pIuLujG7tPvKEOFoetw+hgSx0zEQ5tGeaY9M67TmmEAn9nS4/ZSY/e/LIMRjLT5kZ+3PyTZkSdwyKGcdR8EXR8BC82su5wxs5r2kLv9v8AK/3l3BgwIw9DQ1suraR55qaeLK5me0tzWxvzn7vcX/HGWBR7ja/Ytw3Ob4r+tHtiR7ju7ZO/L3tG9zHxT+8uPCfenAPW3dvVeCoV6F53dB/+GJGgYcGm9D8d9wJLl956FlrKEeEy1VeDqFTiIT+ThfNmRL7+1s0Z0pJfn5egwMM736aF579BTueWsfG5+/nnkwLT7S00PQ6mDph8//9cPZxhCWwEfg72oDSnvirgY8040NTsJGpnDb3BM44roPZmdnMzsxmVmYWs1pnHf4+01SeqWEUOFIqNJcd+g9fzB1H2qafzjW0MVd5MamnpCU9SeB3Y9Jao+X528OGmdrwKvNanmTO5M0MTH2SpTeuPmKrqa/P/ROWfm9CwfT4YFVLZrbOZGbrzNdO7GNO6qNlszOzmdYyjcaG+EGeAMuvWx/7/9+7O8Mt77kgyV0oiAJHShUzCWGIYoJAaFpFSq/g7rIjIwzuf4HTJz3IcZN/ybaZ23l5wiaFBIIXokctOm7yccxtm8vs1tns3Z/h4WeG2bMvw4xJs/jwOWdw6RtOpX1SO5mmDA1W3nRm2hZBm0iBI6WSnsm1mPW09x+MvwrOVZ600DaOatLIMOzp5eCLW9jy2A/49vP/wT2tTbDgyBQPwBCw9MaYF06GZxKuazmMDE3GD81iZHAmPjSNkaEp+NBUvvORtzK7dTbtre1Mbp5Ma2Mrv/Xle3P+bf9sdeWv1guRxlmKx1LgqFPF3NGEjglI2pwpLbyw91BseaVN4hDz7CUWN23jzNYHsClPsvTG6UdslzfV0zXmSWv1/Kv6SDM2NJu3LT6DBdMWcPzk4w+naGa2zuS3r/s5PjIJvJGxfZgM2H7dO4/4eQtX35nzs847/rwjyoqd6iZNAwCTzjgcq+r5a0yhJP/Ykh6gF9dfv9RrRSctLmjkKy+YOwcHXuZ1LVs4uWUL89o280Lbq/wi89rVXlyaB8YHgt3AA9EDjgwaaXHS1JNYMG0BC6Yt4KHtTWz4VQM+NA0fbsVHWmCkhQ+dd3Jsm8iyz/9bztTZVz769tjPmz91dtDVdOho9uk5Uqq5Frsqx2DYUOVYO+ZYKHAUKek/tqQH6HX19PK9+3ccbkgedud79++ogfl/hmho2kPPjn/n1y9uZtuzP+X+V7bwcNNRru7jAsEpY/P76UgRjAxOY+TQ7OgxCx+cxchgOz40hYf/z++RacrQ1PDav3W+q/WnY67uOQc++I+/GNcTa/kpM3M2pBfTuL9qxRKuunnTuE4MDeQer/POM4+PHbvyzjOPj92+mMWukh4MW2sUOMYIuYMo5o8t5Ocn3Ti25vaHj+h9NBKVl/ufZXhkmP6hfqxpNw3NfTRO+jVtk3bSktnOQCZ7Agvt0fNH9455UqG/ch9uHXeS//Ilv8vszGzmts1lTtsc2ie1c/Ka/5fz/XEn9nyBYGpLXOtHmK6eXh7Yvntc2QPbd9PV0xs/ALCIyTW7n3kl9m+v+5lXYj8jdOxKX46glas8jamtNN4FjaXAEQk9UKF/bKEr9CU9zULo9BtHGsEa92PNr2JNe7n58X08tecptvVt45GXHqF/qD/4Cn/K4te+HwYq0X9kyYwlnH3c2cxtm8uX1vbiQ1PxoamMDE+B4VYg24Uy9mqd/Cf29yyOf0+aBA8ADJzIEuC7G3J0Ed4Q30U4tKt5aKqqmNRWkvORQfrvghQ4IqEHKrTXQ+gKfaWbkG+E/sF++of6GRgcoO9gH7sGdtHcfj/W9CrW/CoNzbtpmPRrGpr2A4Xl7yf64obAaiXkUF8nQ3vO4uef/AMmN08m05Q53F8+NG3zue/k3r5WlWPSwmKCTYjQVFVoedLzkYG641aN0AMV2uvhaCv0uTsHhg8wMDRA/2A/BxueoyFzELNDWOOB7Em+aS/etJc/WdfFroFdvNj/InsOZqctyHdSP3fiQCygNT49XDGnzTqNnsfnM7z/ZIYPHgcjrYydjCE0bTNv8rwkqll1aqHLcmjjeGi7S2hqK+n5yEDdcatG9kDto6Hl5agk+982d9oktu3ehkfPR7++foHziXdM5p9//jS79u1j9jRYedYcmqdv4tZf/ZyBwQH6h7JX+v2D/bQe/wQ0HKKhZReNreOHVMVd4U8+OXddf/7cse9vscz98DxR4wVhAAAJmklEQVRAjSMNNO07mT37zuSHH30f86fMZ8akGVj0eugV/sKf1t8VftKSngiyHEKneg+VxpO0uuNWiVUrlrDmjp/RtOgr48r3A+9Zm+eNc6BtDvQD33sm+xirxZrINDQzbbLTMmLsmVT4rebkkRH2NxQ2YnXRoUFOHhxk1vAwt0zLNpIuPDTI6YcOsWBwkOOGhpk3NMyBwdn8+6Hf5BdDb+QZn89BjhzzUEz+/ozZZxRUT5FQSXdNDZ1xuNgZgUMU012+nGNRFDgiK5d1MDi8jH/4z0s5OLCfOZkRfmfBZBZOb2DwYD/DB/sZOTTAyKF+ONSPDQ5gQwdoHD5AZugA04f7aR/azzQfpG3EaRsZIeN+xC94EHi+qYm2kRHa3Mm45/2De9HbmWt9HPBm1o28iXuGz+KZyUs547TTuPC0+Zx38ixamxtZuPpODs8PFy3TvTl6TAwEF5A/CIgkqdEgbnqwPMucJCp0VcUPnpdjtc3zSjcBY+hyueXuhaXAMcajW5/mJ3u+ln1yCJgwU+eIG/toZR8Z9nob+8gw0NDGwYY57G+aSl/zVIZapuEtU7FMO5aZTmNbO81t7XxuXS+v0sYAk6Kf9tp/SWj+/unPpL93jkguueaUzFWe9EkxdG2a0NU2ixHaWafcvbCqJnCY2UXAX5PtD/kNd7+ulD//s12buXXzPvobP8pez7CPDPs8w4KO43j7WYtpnTyDyVOnMzXTwrRMM/Nbm5jc0kRDga2M/32drvBFihF6UizHZJwhq20WI7SzTrl7YVVF4DCzRuDvgLcBO4EHzWytuz9aqs/4/oZnGaaFm4ffMq78oV7jq1d2lupjRCRQ6EkxtHttGiW97PKxqtzSZ2HOAba5+1Pufgi4CbiklB+QtrUmRKpBrnaJUrZX5DtZxgntXptGq1YsIdM8fr2OfL2qQrc/VtUSODqAZ8c83xmVHWZmV5hZt5l179oV36iVT64FjPItbCRS7/7qD94YVA65l63NVR56UgwNNGm0clkH1166lI72DEZ2SvhrL12as70idPtjVRWpKuJ7uo27FXD3G4AbADo7O4NvEz5w7omxPSU+cG5p1u6dNzV+CvB5U+OnAG8yGIrZi6Zct+Ek30WwHJ+RJqHHAGDapEZePXjkQLBpk+JXe2ttNA7EtAq35rhk/1COHj0fytGjZ/HcyTzx4v7Y8lJsX0xX2e9+9PzYiRS/+9HzS/IZoWMgQtdlL5eVy8Jmqw7d/liYV0EqxszOB65x9xXR8zUA7n5t3PadnZ3e3d0d/Dmf7dqcaE+Jc7+0blzwmDe1hQ2feVvO7V+35s5xJ64mg23X5u5RtWj1neNO7LnWNxgV13Mr1xiOcn1G2rYPPQYAZ17943HBY9qkRh7+3EU5tz/1M3eNCx6tjcbjX7o45/ahf6dv+8p944LB4rmTWXfVm0u2fRqFjmkICWS1zMw2uvtRG3WrJXA0Ab8CLiQ7SuFB4L+4+5a47YsNHCIi9azQwFEVqSp3HzKzK4G7yXbH/VauoCEiIsmqisAB4O53AXdVuh4iIvWuWnpViYhISihwiIhIEAUOEREJUhW9qkKZ2S7gmaNumNts4KUSVaca1Nv+gva5Xmifwyxw9/j55MeoycBxrMysu5AuabWi3vYXtM/1QvucDKWqREQkiAKHiIgEUeCId0OlK1Bm9ba/oH2uF9rnBKiNQ0REguiOQ0REgtR14DCzb5nZi2b2yJiya8ys18w2RY/c05RWITM70czuNbPHzGyLmX0iKp9pZuvM7Ino64xK17VU8uxzzR5rM2s1swfM7KFonz8XlS8ysw3Rcb7ZzOLn9a8yefb3n81s+5hjnHuhkCplZo1m1mNmP4qeJ36M6zpwAP8MxM13/VV3f2P0qLX5sYaAT7r764HzgI+Z2WnAauAed18M3BM9rxW59hlq91gfBC5w9zcAbwQuMrPzgC+T3efFwG7g8grWsZRy7S/AqjHHeFPlqpiYTwCPjXme+DGu68Dh7v8BHLmCSw1z9+fd/ZfR93vJ/sF1kF2K98ZosxuBlZWpYenl2eea5Vn7oqfN0cOBC4DbovKaOc559remmdkJwDuBb0TPjTIc47oOHHlcaWYPR6msmknZTGRmC4FlwAZgnrs/D9kTLTC3cjVLzoR9hho+1lEKYxPwIrAOeBLoc/ehaJMjlmCuZhP3191Hj/GXomP8VTObVMEqJuFrwJ8DI9HzWZThGCtwHOnrwClkb3efB/6qstVJhplNAX4A/Jm7v1rp+pRDzD7X9LF292F3fyNwAnAO8Pq4zcpbq+RM3F8zOwNYA5wKnA3MBD5VwSqWlJm9C3jR3TeOLY7ZtOTHWIFjAnd/IfoDHAH+kew/XE0xs2ayJ9DvuvvtUfELZnZ89PrxZK/aakbcPtfDsQZw9z7gPrLtO+3RipqQPcE+V6l6JWXM/l4UpSnd3Q8C/0RtHePlwO+Z2dPATWRTVF+jDMdYgWOC0ZNn5D3AI7m2rUZRDvSbwGPu/pUxL60FLou+vwy4o9x1S0qufa7lY21mc8ysPfo+A7yVbNvOvcB7o81q5jjn2N/Hx1wMGdlcf80cY3df4+4nuPtC4P3Aenf/IGU4xnU9ANDMvg+8mexski8AV0fP30j29u5p4E9Gc/+1wMx+C/hPYDOv5UU/TTbnfwtwErADeJ+710THgTz7/AFq9Fib2ZlkG0YbyV4g3uLunzezk8lenc4EeoAPRVfjVS3P/q4H5pBN4WwC/nRMI3rNMLM3A//L3d9VjmNc14FDRETCKVUlIiJBFDhERCSIAoeIiARR4BARkSAKHCIiEkSBQ0REgihwiIhIEAUOkRIzsy4z2xitC3FFVHa5mf3KzO4zs380s7+NyueY2Q/M7MHosbyytRc5Og0AFCkxM5vp7q9EU188CKwAfgacBewF1gMPufuVZvY94O/d/admdhJwd7RuiEhqNR19ExEJ9HEze0/0/YnAh4F/H53CxcxuBX4jev2twGnZqZQAmGZmU6N1Q0RSSYFDpISiOYPeCpzv7v1mdh+wlfgpzSGbLj7f3QfKU0ORY6c2DpHSmg7sjoLGqWSnMm8DftfMZkTTXf/+mO3/Dbhy9EktrokttUeBQ6S0fgw0mdnDwBeA+4Fe4C/IzkD8E+BRYE+0/ceBzmiFukeBPy1/lUXCqHFcpAzMbIq774vuOH4IfMvdf1jpeokUQ3ccIuVxTbQe9iPAdqCrwvURKZruOEREJIjuOEREJIgCh4iIBFHgEBGRIAocIiISRIFDRESCKHCIiEiQ/w/Be0TjqPvK/QAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<matplotlib.figure.Figure at 0x7fa01f4a9a20>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"x = df[\"age\"]\n",
|
||
"y = df[\"points\"]\n",
|
||
"plt.scatter(x, y)\n",
|
||
"plt.xlabel(\"age\")\n",
|
||
"plt.ylabel(\"points\")\n",
|
||
"p1 = poly1d(polyfit(x, y, 1))\n",
|
||
"p2 = poly1d(polyfit(x, y, 2))\n",
|
||
"p3 = poly1d(polyfit(x, y, 3))\n",
|
||
"xu = x.unique()\n",
|
||
"plot(xu, p1(xu), xu, p2(xu), xu, p3(xu))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"-255.78883132530993"
|
||
]
|
||
},
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"poly1d(polyfit(df[\"age\"], df[\"points\"], 2))(0)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"[<matplotlib.lines.Line2D at 0x7fa016a61240>]"
|
||
]
|
||
},
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAH2VJREFUeJzt3XmclXX5//HXxSaiKIJsASOgKJgK6ogkWWwagl+x0sRS0Sj8fsPSLGVRSnDDNpd+ffFHkQKPEolQyBBFlrQSkk1EIQFFGCF2EWUd5vr+cT6Dc84MA8w5Z+6zvJ+PxzzOua/zOee+bm/8XJ97N3dHRETyT42oExARkWioAIiI5CkVABGRPKUCICKSp1QARETylAqAiEieUgEQEclTRywAZvZ7M9tsZsvLxBqa2SwzWxVeTwlxM7MnzGy1mS0zswvKfGdAaL/KzAakZ3FERORoHc0WwNNA74TYUGC2u7cDZodpgCuAduFvEDAGYgUD+ClwMdAZ+Glp0RARkWjUOlIDd3/VzFonhPsB3cL78cA8YEiIT/DY5cXzzayBmTUPbWe5+3YAM5tFrKg8U9m8Tz31VG/dOnHWIiJSmUWLFm1198ZHanfEAnAYTd19I4C7bzSzJiHeAlhfpl1RiB0uXqnWrVuzcOHCKqYoIpKfzOyDo2mX6oPAVkHMK4mX/wGzQWa20MwWbtmyJaXJiYjIZ6paADaFXTuE180hXgS0KtOuJbChkng57j7W3QvdvbBx4yNuwYiISBVVtQBMB0rP5BkATCsTvymcDdQF2Bl2Fb0EXG5mp4SDv5eHmIiIROSIxwDM7BliB3FPNbMiYmfzjAYmm9lAYB1wbWg+A+gDrAZ2A7cAuPt2M7sfeCO0G1V6QFhERKJhmfw8gMLCQtdBYBGRY2Nmi9y98EjtdCWwiEieUgEQEclTKgAiIhmkpMS5c/JSZry1Me3zquqFYCIikmJ/X7WVG8YtAODltzfR59zmaZ2fCoCISMT2F5fQ7edz2bBzLwDntjiZ5wd3Tft8VQBERCL0wrIN3PbHJYemn/veJZxfUD33ylQBEBGJwKf7ijlv5MscLImdit+rQ1N+e9OFmFV055z0UAEQEalmE19fy4hpbx+afuXOL3FGk/rVnocKgIhINdnx6X7Ov3/WoenrOxfw8NfOjSwfFQARkWrw6Kx3eXz2qkPT/xzag881OD7CjFQARETSatEHO/j6mH8emr69Zzt+eNmZEWb0GRUAEZE0aT30r3HTS0Zcxikn1Ikom/J0JbCISIrNXL4xrvM/s+mJrB3dN6M6f9AWgIhIyrg7bYbNiIu9cU8vGtc/LqKMKqcCICKSAk/9431G/uWdQ9O9P9+MJ2+8MMKMjkwFQEQkCQcOltDunhfjYu+M+gr16mR+95rUMQAzu93MlpvZ22Z2R4g1NLNZZrYqvJ4S4mZmT5jZajNbZmYXpGIBRESicv8L78R1/rd+uS1rR/fNis4fktgCMLNzgO8CnYH9wEwz+2uIzXb30WY2FBgKDAGuANqFv4uBMeFVRCSrfLKvmHN+Gv9Y89UPXkGtmtl1Xk0yZaoDMN/ddwOY2d+ArwL9iD1DGGA8MI9YAegHTPDYMyjnm1kDM2seHhovIpIVvv30G8xZufnQ9ANXn8MNXU6LMKOqS6YALAceNLNGwB5iD4NfCDQt7dTdfaOZNQntWwDry3y/KMTiCoCZDQIGARQUFCSRnohI6mz+eC+dH5odF3v/4T7VevO2VKtyAXD3FWb2CDAL+AR4Eyiu5CsV/Vcq90R6dx8LjIXYQ+Grmp+ISKp8+edz+WDb7kPTv7upkF5nN40wo9RI6kiFu48DxgGY2UPERvWbSnftmFlzoHRbqQhoVebrLYENycxfRCSdVm3axWWPvhoXWzu6b0TZpF5SBcDMmrj7ZjMrAL4GfAFoAwwARofXaaH5dOA2M5tE7ODvTu3/F5FMlXgbh+cHd6VTqwYRZZMeyZ6r9OdwDOAAMNjdd5jZaGCymQ0E1gHXhrYziB0nWA3sBm5Jct4iIik3/71t9B87/9B03do1WHn/FRFmlD7J7gK6tILYNqBnBXEHBiczPxGRdEoc9f/trm6c1uiEiLJJv+y4WkFEJI2mv7mBHzzz2XN5z2t5MtNv+2KEGVUPFQARyVslJU7b4fE3b1s84jIaZthdO9NFBUBE8tKtExfy0tubDk33Pa85v/lmft2hRgVARPLK3gMHaT9iZlzsrfsup37d2hFlFB0VABHJG11Hz+HDj/Ycmu7cpiGTb/1ChBlFSwVARHLell37uOjBV+Ji2XjztlRTARCRnJZ4audNXziNUf3OiSibzKICICI5qaLbOGT7zdtSTQVARHJO4qh/5FWfZ8AlraNJJoOpAIhIznh+yYfc8ezSuFgu3bwt1VQARCQnJI76n7r5Irq3b3KY1gIqACKS5R6ZuZIx89bExTTqPzoqACKStRJH/c8O6sLFbRtFlE32UQEQkaxz47gFvLZqa1xMo/5jpwIgIlmj+GAJZ9zzYlzs1bu6U9CoXkQZZbdknwj2Q+A7xJ7t+xaxh7w0ByYBDYHFwI3uvt/MjgMmABcC24Dr3H1tMvMXkfzRfsSL7D1QEhfTqD85Vb4O2sxaAD8ACt39HKAm0B94BHjU3dsBO4CB4SsDgR3ufgbwaGgnIlKpj/ceoPXQv8Z1/svuu1ydfwokuwuoFnC8mR0A6gEbgR7AN8Pn44H7gDFAv/AeYArw/8zMwpPCRETKSTzIW69OTd4Z1TuibHJPlQuAu39oZr8g9tzfPcDLwCLgI3cvDs2KgBbhfQtgffhusZntBBoB8UdyRCTvfbDtU77883lxsTUP9aFmDd3GIZWqXADM7BRio/o2wEfAn4CKnpxcOsKvaM2VG/2b2SBgEEBBQUFV0xORLJU46r+03alMHHhxRNnktmR2AfUC3nf3LQBmNhW4BGhgZrXCVkBLYENoXwS0AorMrBZwMrA98UfdfSwwFqCwsFC7h0TyxPz3ttF/7Py4mPbzp1cyBWAd0MXM6hHbBdQTWAjMBa4hdibQAGBaaD89TL8ePp+j/f8iAuVH/YO7n85dX2kfUTb5I5ljAAvMbAqxUz2LgSXERu5/BSaZ2QMhNi58ZRww0cxWExv5908mcRHJfpP+tY6hU9+Ki2nUX30skwfhhYWFvnDhwqjTEJE0SBz1P96/E/06tThMazkWZrbI3QuP1E5XAotItRr5l7d56h9r42Ia9UdDBUBEqoW702bYjLjY1O9dwgUFp0SUkagAiEjanXnvi+wv1m0cMo0KgIikzb7ig5x178y42Lwfd6P1qSdElJGUpQIgImmReJAXNOrPNCoAIpJSW3bt46IHX4mLvXXf5dSvWzuijORwVABEJGU06s8uKgAikrTlH+7kyl//PS723kN9qKGbt2U0FQARSUriqL9t4xOY86Nu0SQjx0QFQESqZOL8Dxjx/PK4mHb3ZBcVABE5Zomj/qs6fo4nrj8/omykqlQAROSo3fnsUqYu+TAuplF/9lIBEJGjkjjq/9FlZ/L9nu0iykZSQQVARCpV+MArbP1kX1xMo/7coAIgIhWq6OZtT918Ed3bN4koI0m1ZJ4JfBbwbJlQW+AnwIQQbw2sBb7h7jvMzIDHgT7AbuBmd19c1fmLSProgq78UKOqX3T3f7t7J3fvBFxIrFN/DhgKzHb3dsDsMA2xB8a3C3+DgDHJJC4iqffJvuJynf/cH3dT55+jUrULqCewxt0/MLN+QLcQHw/MA4YA/YAJ4TnA882sgZk1d/eNKcpBRJKgUX/+SVUB6A88E943Le3U3X2jmZXuMGwBrC/znaIQUwEQidB7Wz6hxy//FhdbPvIrnHicDhHmuqTXsJnVAa4Chh2paQWxcg8kNrNBxHYRUVBQkGx6IlIJjfrzWypK/BXAYnffFKY3le7aMbPmwOYQLwJalfleS2BD4o+5+1hgLMQeCp+C/EQkwUtv/4dbJy6Ki+nmbfknFQXgej7b/QMwHRgAjA6v08rEbzOzScDFwE7t/xepfhr1S6mkCoCZ1QMuA24tEx4NTDazgcA64NoQn0HsFNDVxM4YuiWZeYvIsXlk5krGzFsTF1PHn9+SKgDuvhtolBDbRuysoMS2DgxOZn4iUjWJo/5OrRrw/OCuEWUjmUKH+UVy2JW/fo3lH34cF9OoX0qpAIjkqMRR/w96nMGdl58VUTaSiVQARHKMDvLK0VIBEMkRJSVO2+HxN2+b8O3OfOnMxhFlJJlOBUAkB2jUL1WhAiCSxT7ee4Dz7ns5LvbqXd0paFQvoowkm6gAiGQpjfolWSoAIlnm3U27uPzRV+NiK0b15vg6NSPKSLKVCoBIFtGoX1JJBUAkC/xp4XrumrIsLvb+w32IPWhPpGpUAEQynEb9ki4qACIZ6sd/epMpi4riYur4JZVUAEQyUOKo/4KCBkz9nm7eJqmlAiCSQTqOfJmdew7ExTTql3RRARDJEImj/jt6teOOXmdGlI3kAxUAkYjpIK9EpUYyXzazBmY2xcxWmtkKM/uCmTU0s1lmtiq8nhLampk9YWarzWyZmV2QmkUQyU7FB0vKdf5P33KROn+pNsluATwOzHT3a8ysDlAPGA7MdvfRZjYUGAoMIfbw+Hbh72JgTHgVyTsa9UsmqHIBMLOTgC8BNwO4+35gv5n1A7qFZuOBecQKQD9gQng05Pyw9dBcD4aXfLJl1z4uevCVuNhrd3enVUPdvE2qXzJbAG2BLcBTZtYRWATcDjQt7dTdfaOZNQntWwDry3y/KMTiCoCZDQIGARQUFCSRnkhm0ahfMk0yxwBqARcAY9z9fOBTYrt7Dqeia9a9XMB9rLsXunth48Z6kIVkv0UfbC/X+a+8v7c6f4lcMlsARUCRuy8I01OIFYBNpbt2zKw5sLlM+1Zlvt8S2JDE/EUynkb9ksmqvAXg7v8B1ptZ6VOmewLvANOBASE2AJgW3k8HbgpnA3UBdmr/v+Sq8f9cW67zXzu6rzp/ySjJngX0feAP4Qyg94BbiBWVyWY2EFgHXBvazgD6AKuB3aGtSM7RqF+yRVIFwN2XAoUVfNSzgrYODE5mfiKZ7NaJC3np7U1xMXX8ksl0JbBICiSO+ruf1ZinbukcUTYiR0cFQCQJ2t0j2UwFQKSKEjv/e/t24DuXto0oG5FjpwIgcow06pdcoQIgcpT2FR/krHtnxsWeHdSFi9s2iigjkeSoAIgcBY36JRepAIhUYsNHe7hk9Jy42ILhPWl6Ut2IMhJJHRUAkcPQqF9ynQqASIJFH2zn62Nej4u9+8AV1KmV1POTRDKOCoBIGRr1Sz5RARABJs7/gBHPL4+LqeOXXKcCIHkvcdR/RpMTeeXOL0eUjUj1UQGQvHXHpCU8vzT+kRQa9Us+UQGQvJQ46v921zb85L/OjigbkWioAEhe6TjyZXbuORAX06hf8lVSBcDM1gK7gINAsbsXmllD4FmgNbAW+Ia77zAzAx4n9lCY3cDN7r44mfmLHC13p82wGXGxJ64/n6s6fi6ijESil4otgO7uvrXM9FBgtruPNrOhYXoIcAXQLvxdDIwJryJppVM7RSqWjl1A/YBu4f14YB6xAtAPmBCeDDbfzBqUPjw+DTmIsGf/QTr8JP7mbdMGd6VjqwYRZSSSWZItAA68bGYO/H93Hws0Le3U3X2jmTUJbVsA68t8tyjEVAAk5TTqFzmyZAtAV3ffEDr5WWa2spK2VkHMyzUyGwQMAigoKEgyPck3a7d+SrdfzIuLLR5xGQ1PqBNNQiIZLNmHwm8Ir5vN7DmgM7CpdNeOmTUHNofmRUCrMl9vCcSfhB37rbHAWIDCwsJyBULkcDTqFzk2Vb67lZmdYGb1S98DlwPLgenAgNBsADAtvJ8O3GQxXYCd2v8vqTB7xaZynf+ah/qo8xc5gmS2AJoCz8XO7qQW8Ed3n2lmbwCTzWwgsA64NrSfQewU0NXETgO9JYl5iwAa9Ysko8oFwN3fAzpWEN8G9Kwg7sDgqs5PpKyfv7SS38xdExdTxy9ybHQlsGSdxFF/s5PqMn94uTGHiByBCoBkjb5PvMbbGz6Oi2nUL1J1KgCSFRJH/Td0KeCBq8+NKBuR3KACIBlNB3lF0kcFQDJSRTdve7x/J/p1ahFRRiK5RwVAMo5G/SLVQwVAMsauvQc4976X42Iz77iU9s1OiigjkdymAiAZQaN+keqnAiCRen/rp3RPuHnbsvsu56S6taNJSCSPqABIZDTqF4mWCoBUu9krNjFw/MK42PsP9yHcV0pEqokKgFQrjfpFMocKgFSLR2e9y+OzV8XF1PGLREsFQNIucdTf7azGPH1L54iyEZFSKgCSNt948nX+tXZ7XEyjfpHMUeUngpUys5pmtsTMXgjTbcxsgZmtMrNnzaxOiB8XpleHz1snO2/JXK2H/jWu8x/Su706f5EMk4otgNuBFUDp5ZqPAI+6+yQzexIYCIwJrzvc/Qwz6x/aXZeC+UsG0UFekeyR1BaAmbUE+gK/C9MG9ACmhCbjgavD+35hmvB5T9N5fzmjpMTLdf4TB3ZW5y+SwZLdAngMuBuoH6YbAR+5e3GYLgJKb9/YAlgP4O7FZrYztN+aZA4SMY36RbJTlQuAmV0JbHb3RWbWrTRcQVM/is/K/u4gYBBAQUFBVdOTarBz9wE6joq/edtrd3enVcN6EWUkIscimS2ArsBVZtYHqEvsGMBjQAMzqxW2AloCG0L7IqAVUGRmtYCTge2JP+ruY4GxAIWFheUKhGQGjfpFsl+VjwG4+zB3b+nurYH+wBx3/xYwF7gmNBsATAvvp4dpwudz3F0dfJb59392lev8V4zqrc5fJAul4zqAIcAkM3sAWAKMC/FxwEQzW01s5N8/DfOWNNKoXyS3pKQAuPs8YF54/x5Q7jJPd98LXJuK+Un1mvfvzdz81BtxMd28TST76UpgqVTiqP/UE+uw8N7LIspGRFJJBUAqNGbeGh6ZuTIupt09IrlFBUDKSRz1D/xiG0ZceXZE2YhIuqgAyCHfnbCQWe9siotp1C+Su1QABCg/6n/suk5cfX6Lw7QWkVygApDnOoyYyZ4DB+NiGvWL5AcVgDx1sMQ5ffiMuNhfbvsi57Y8OaKMRKS6qQDkIV3QJSKgApBXPt57gPPui79528J7e3HqicdFlJGIREkFIE9o1C8iiVQActzarZ/S7Rfz4mKrHryC2jWTfhqoiGQ5FYAcljjqb9v4BOb8qFs0yYhIxlEByEH/XL2Vb/5uQVxMu3tEJJEKQI5JHPV/o7AlP7umY0TZiEgmUwHIEX95cwPff2ZJXEyjfhGpjApADkgc9Y/q93lu+kLraJIRkayRzEPh6wKvAseF35ni7j81szbAJKAhsBi40d33m9lxwATgQmAbcJ27r00y/7z2m7mr+flL/46LadQvIkcrmS2AfUAPd//EzGoDfzezF4E7gUfdfZKZPQkMBMaE1x3ufoaZ9QceAa5LMv+8lTjqn35bV85r2SCibEQkGyXzUHh390/CZO3w50APYEqIjweuDu/7hWnC5z1NzxQ8Zrf9cXG5zn/t6L7q/EXkmCV1DMDMagKLgDOA3wBrgI/cvTg0KQJK7yncAlgP4O7FZrYTaARsTfjNQcAggIKCgmTSyynFB0s4454X42KvD+tB85OPjygjEcl2SRUAdz8IdDKzBsBzQIeKmoXXikb7Xi7gPhYYC1BYWFju83z0pZ/NZd323XEx7esXkWSl5Cwgd//IzOYBXYAGZlYrbAW0BDaEZkVAK6DIzGoBJwPbUzH/XLVr7wHOTbh529sjv8IJx+nkLRFJXpWPAZhZ4zDyx8yOB3oBK4C5wDWh2QBgWng/PUwTPp/j7hrhH8aF98+K6/zbN6vP2tF91fmLSMok05s0B8aH4wA1gMnu/oKZvQNMMrMHgCXAuNB+HDDRzFYTG/n3T2LeOWvLrn1c9OArcbH3HupDjRo6Xi4iqVXlAuDuy4DzK4i/B3SuIL4XuLaq88sHZ97zIvsPlhyavrdvB75zadsIMxKRXKb9CRlg9eZd9PrVq3ExHeQVkXRTAYhY4jn9T95wIb3PaRZRNiKST1QAIvL6mm1c/9v5cTGN+kWkOqkARCBx1P/84K50aqUreUWkeqkAVKOpi4u4c/KbcTGN+kUkKioA1cDdaTNsRlzstbu706phvYgyEhFRAUi7V97ZxHcmLDw03eykuswf3jPCjEREYlQA0uRgiXP68PhR/4pRvTm+Ts2IMhIRiacCkAaT/rWOoVPfOjR933+dzc1d20SYkYhIeSoAKbT3wEHaj5gZF1v94BXUqlnlWy6JiKSNCkCKPPbKuzz2yqpD0//7rQvoc27zCDMSEamcCkCSdu45QMeR8bdsfv/hPuhhZyKS6VQAknD3lDeZvLDo0PSkQV3o0rZRhBmJiBw9FYAq2LP/IB1+8tm+/sb1j+ONe3pFmJGIyLFTAThGr6/ZxrCpyw5Nz7zjUto3OynCjEREqqbKBcDMWgETgGZACTDW3R83s4bAs0BrYC3wDXffYbGd4o8DfYDdwM3uvji59KvPx3sPMPrFlfxxwTpOa1SPP373Yi45/dSo0xIRqbJktgCKgR+5+2Izqw8sMrNZwM3AbHcfbWZDgaHAEOAKoF34uxgYE14z3pyVmxg+dTmbd+3lu5e24c7LztIFXSKS9ZJ5IthGYGN4v8vMVgAtgH5At9BsPDCPWAHoB0wIzwGeb2YNzKx5+J2MtO2TfYx64R2mLd3AWU3r8+SNF+qunSKSM1JyDMDMWhN7POQCoGlpp+7uG82sSWjWAlhf5mtFIZZxBcDdmf7mBkb+5R127T3AD3udyf90O506tXRBl4jkjqQLgJmdCPwZuMPdP67k/PeKPvAKfm8QMAigoKAg2fSO2cade7j3ueXMXrmZjq0a8LOvn8dZzepXex4iIumWVAEws9rEOv8/uPvUEN5UumvHzJoDm0O8CGhV5ustgQ2Jv+nuY4GxAIWFheUKRLqUlDiT3ljPwzNWcKCkhHv7duCWrm2oWUMXdIlIbkrmLCADxgEr3P1XZT6aDgwARofXaWXit5nZJGIHf3dmyv7/tVs/ZdjUt3j9vW1ccnojHv7auZzW6ISo0xIRSatktgC6AjcCb5nZ0hAbTqzjn2xmA4F1wLXhsxnETgFdTew00FuSmHdKHCxxfv/39/nlrH9Tu0YNRn/tXK67qJVu4yAieSGZs4D+TsX79QHKPfEknP0zuKrzS7WV//mYIVOW8WbRTnp1aMoDV59Ds5PrRp2WiEi1ybsrgfcVH+Q3c9fwv3NXc/Lxtfn19edz5XnNNeoXkbyTVwVgybodDPnzMt7d9AlfPb8FI648m4Yn1Ik6LRGRSORFAdi9v5hfvvwuv//H+zQ7qS6/v7mQHu2bRp2WiEikcr4A/HP1VoZOfYt123dzQ5cChvRuT/26taNOS0QkcjlbAHbuOcDDM1Yw6Y31tG5UT/fqFxFJkJMFYFnRR3x3wkK27NrHrV9uyw97nUnd2rp5m4hIWTlZAAoa1uPMpvX57U2FnNdSN28TEalIThaABvXqMHFgVtxpWkQkMrq9pYhInlIBEBHJUyoAIiJ5SgVARCRPqQCIiOQpFQARkTylAiAikqdUAERE8pTFntOSmcxsC/BBEj9xKrA1Relkg3xbXtAy5wst87E5zd0bH6lRRheAZJnZQncvjDqP6pJvywta5nyhZU4P7QISEclTKgAiInkq1wvA2KgTqGb5trygZc4XWuY0yOljACIicni5vgUgIiKHkRMFwMx+b2abzWx5mdh9ZvahmS0Nf32izDHVzKyVmc01sxVm9raZ3R7iDc1slpmtCq+nRJ1rqlSyzDm7rs2srpn9y8zeDMs8MsTbmNmCsJ6fNbM6UeeaCpUs79Nm9n6Zddwp6lxTzcxqmtkSM3shTKd9HedEAQCeBnpXEH/U3TuFvxnVnFO6FQM/cvcOQBdgsJmdDQwFZrt7O2B2mM4Vh1tmyN11vQ/o4e4dgU5AbzPrAjxCbJnbATuAgRHmmEqHW16Au8qs46XRpZg2twMrykynfR3nRAFw91eB7VHnUZ3cfaO7Lw7vdxH7h9MC6AeMD83GA1dHk2HqVbLMOctjPgmTtcOfAz2AKSGeM+u5kuXNaWbWEugL/C5MG9WwjnOiAFTiNjNbFnYR5cyukERm1ho4H1gANHX3jRDrMIEm0WWWPgnLDDm8rsOugaXAZmAWsAb4yN2LQ5MicqgQJi6vu5eu4wfDOn7UzI6LMMV0eAy4GygJ042ohnWcywVgDHA6sc3IjcAvo00nPczsRODPwB3u/nHU+VSHCpY5p9e1ux90905AS6Az0KGiZtWbVfokLq+ZnQMMA9oDFwENgSERpphSZnYlsNndF5UNV9A05es4ZwuAu28K/5BKgN8S+x8np5hZbWId4R/cfWoIbzKz5uHz5sRGUTmjomXOh3UN4O4fAfOIHf9oYGa1wkctgQ1R5ZUuZZa3d9j95+6+D3iK3FrHXYGrzGwtMInYrp/HqIZ1nLMFoLQTDL4KLD9c22wU9hGOA1a4+6/KfDQdGBDeDwCmVXdu6XK4Zc7ldW1mjc2sQXh/PNCL2LGPucA1oVnOrOfDLO/KMoMaI7YvPGfWsbsPc/eW7t4a6A/McfdvUQ3rOCcuBDOzZ4BuxO6etwn4aZjuRGyzaS1wa+m+8VxgZl8EXgPe4rP9hsOJ7ROfDBQA64Br3T0nDpBXsszXk6Pr2szOI3YAsCaxAdtkdx9lZm2JjRYbAkuAG8LoOKtVsrxzgMbEdo0sBf67zMHinGFm3YAfu/uV1bGOc6IAiIjIscvZXUAiIlI5FQARkTylAiAikqdUAERE8pQKgIhInlIBEBHJUyoAIiJ5SgVARCRP/R+YYSKJORaaoAAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<matplotlib.figure.Figure at 0x7fa01f4a19e8>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"plot(xu, p1(xu))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"[<matplotlib.lines.Line2D at 0x7fa0169cd518>]"
|
||
]
|
||
},
|
||
"execution_count": 15,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAH6hJREFUeJzt3Xd4FWX6xvHvQwcRkaZUEUEQVFRixUJbqmUtrK6uIoui+4NVd23ouoKKCquia5eFVewiuoIVEekCCoiUgNQAoYZe09/fHxkwgeSckDLnnDn357pyJeedJ8kznDD3nJk575hzDhERiT9lIt2AiIhEhgJARCROKQBEROKUAkBEJE4pAERE4pQCQEQkTikARETilAJARCROKQBEROJUuUg3EEqtWrVc48aNI92GiEhMmTt37lbnXO1wdVEdAI0bN2bOnDmRbkNEJKaY2ZrC1OkQkIhInAobAGb2XzPbYmaLco3VMLMJZrbc+3y8N25m9qKZrTCzBWZ2Tq7v6eXVLzezXqWzOiIiUliFeQXwFtD1sLEBwETnXDNgovcYoBvQzPvoC7wGOYEBDATOB84DBh4MDRERiYywAeCcmwpsP2z4KmCU9/Uo4Pe5xt92OWYB1c2sLtAFmOCc2+6c2wFM4MhQERERHxX1HMAJzrmNAN7nOt54fWBdrrpkb6ygcRERiZCSPgls+Yy5EONH/gCzvmY2x8zmpKSklGhzIiLym6IGwGbv0A7e5y3eeDLQMFddA2BDiPEjOOeGO+cSnHMJtWuHvYxVRESKqKgBMA44eCVPL2BsrvFbvKuBLgB2eYeIxgOdzex47+RvZ29MRERyyc52vDJpBcs37yn13xX2jWBm9gHQDqhlZsnkXM0zBBhtZn2AtUBPr/wroDuwAtgP9AZwzm03syeAn7y6x51zh59YFhGJaz+s2MqNI2YDsHl3Ko9fdXqp/j6L5pvCJyQkOL0TWESCLiMrm07DprBm234AWtWrxrj+F1O2TH6nT8Mzs7nOuYRwdVE9FYSISNB9u3gTfd+Ze+jxJ3+5kDYn1fDldysAREQiIDUji3MHf8eetEwALj21NqN6n4tZ0fb6i0IBICLiszFzk7nv418OPf767ks4rW413/tQAIiI+GRPagZnDPr20OPfn1WPF244O2L9KABERHzw3+mrefyLxEOPJ9/Xjsa1jolgRwoAEZFStW1vGm0Gf3foce+2jRl4RasIdvQbBYCISCkZNmEZL05cfujxrIc6cuJxlSLYUV4KABGRErZx1wEufPr7PGNT728fVRt/UACIiJSoR8cu4u2Zv92RsWurE3n2D62pWjH6NrfR15GISAxalbKXDs9NyTM24pYEOrU8IUIdhacAEBEpBucc/T/4mS8XbDw01rZpTV684WxqVq0Ywc7CUwCIiBTR4g276PHi9Dxj/7ruTHq2aeDrO3qLSgEgInKUnHPc+J/ZzFy17dBY6wbH8fKN59CwRpUIdnZ0FAAiIkfhp6Tt9Hx9Zp6xAd1acPslTYo8e2ekKABERAohMyub7i9OY9nmvYfGTql9DC/98Rxa1vN/Hp+SoAAQEQlj0tIt9H7rpzxjfS9twt9/dyqVypeNUFfFpwAQESlAWmYWbYd8z9a96YfG6h1XiWHXn8UFTWpGsLOSoQAQEcnHuF82cNcHP+cZu/acBgy8siXVKpWPUFclSwEgIpLLvrRMWg0cn2fs+CrlefqaM+h6et0IdVU6FAAiIp53Z63hkc8W5Rlr37w2Q687kzrHRtc8PiVBASAicW/n/nTOenxCnrHK5cvyyOWnceN5jWLiTV1FoQAQkbj2yqQVPDP+1zxjZzeqzrA/nMXJEb5hS2lTAIhIXNqyO5XznpqYZ6xcGePujs34S7tTKFe2TIQ6848CQETizuAvEhkxfXWesYY1KvPqjW04o8FxEerKfwoAEYkba7ft59JnJuW77Nt7LqNyhdh9U1dRKABEJPCcc9z38QI+mZd8xLITq1Vi1sMdI9BV5CkARCTQft20hy4vTM132Rd/vZjT68fPIZ/DKQBEJJCysx19Rv3EpF9TjljWsEZlpj3QIQJdRRcFgIgEzry1O7jm1R/yXRbve/25KQBEJDAys7K59vWZ/LJu5xHLGteswvf3tqNMjM3ZX5oUACISCNOWp3DzyB/zXTa2X1taN6zuc0fRTwEgIjEtPTObjsMms277gSOWNal1DOP/dinl4+BNXUWhABCRmPXNoo3c+e68fJd91PcCzg/AnP2lSQEgIjFnf3omCYO/Y396Vr7Lv7zrYlrV04necBQAIhJTRv+0jgc+WZDvsqoVy7HosS4+dxS7FAAiEhN2Hcig9WPfFrj8g9sv4MJTdMjnaCgARCTq/WfqKp78akmBy1c/3T2wc/aXJgWAiEStlD1pnPvkdwUuf/1Pbeh6+ok+dhQsCgARiUrPjF/KK5NWFrh85VPdKas3dRVLsQLAzP4G3AY4YCHQG6gLfAjUAOYBNzvn0s2sIvA20AbYBlzvnEsqzu8XkeBZt30/l/wr/ymbAZ66+gxuPL+Rjx0FV5HfHWFm9YG7gATn3OlAWeAGYCjwvHOuGbAD6ON9Sx9gh3OuKfC8VyciAuRM2fzw/xaG3PgvfaKrNv4lqLhvjysHVDazckAVYCPQARjjLR8F/N77+irvMd7yjqazNiICrNiyh5Mf+or3Z6/Nd/nfOp1K0pAeVCofXzdsKW1FPgTknFtvZs8Ca4EDwLfAXGCncy7TK0sG6ntf1wfWed+baWa7gJrA1qL2ICKxLTvb0e/9eXy9aFOBNYmPd6FKBZ2uLA1F/lc1s+PJ2as/GdgJfAx0y6fUHfyWEMty/9y+QF+ARo30Uk8kqBYk7+TKl2cUuPz+Ls3p176pjx3Fn+LEaidgtXMuBcDMPgUuAqqbWTnvVUADYINXnww0BJK9Q0bHAdsP/6HOueHAcICEhIQjAkJEYltmVjY3jZjN7NVH/Pc/ZOkTXXW4xwfFOQewFrjAzKp4x/I7AonAJOA6r6YXMNb7epz3GG/59845beBF4sjMldto+o+vC9z4P9i1hY71+6g45wBmm9kYci71zAR+JmfP/UvgQzMb7I2N9L5lJPCOma0gZ8//huI0LiKxIy0ziytems6yzXsLrFnyeFcqV9CG308WzTvhCQkJbs6cOZFuQ0SKYULiZm5/u+D/xwO6teDOy07xsaPgM7O5zrmEcHU6tS4ipeJAehYXD/2ebfvSC6xZ/FgXjqmozVCk6F9eRErcp/OS+fvoXwpc3qpeNb686xIfO5L8KABEpMTsTs3gzEEFT9kM8MbNbejSShO4RQMFgIiUiLdmrGbQ54kha1Y91Z0ymsAtaigARKRYtu5NI2FwwVM2A4y4JYFOLU/wqSMpLAWAiBSJc45/T1zOC98tD1mnvf7opQAQkaO2fucB2g75PmTNyF4JdDxNe/3RTAEgIoXmnOOxzxN564ekkHW6RWNsUACISKGsStlLh+emhKzRXn9sUQCISEjZ2Y6/j57PZ/M3hKzTsf7YowAQkQItWr+Ly1+aHrLm4qa1ePe2833qSEqSAkBEjpCZlc2fR81h6rKUkHULBnWmWqXyPnUlJU0BICJ5/JS0nZ6vzwxZ0+OMurxy0zk+dSSlRQEgIkDOlM3XvTaThet3hazTtM3BoQAQESYt3ULvt34KWXN9QkOGXnemTx2JHxQAInFsf3omvxs2lfU7D4Ss+3VwVyqW015/0CgAROLU2PnrufvD+SFrbr2oMYOubOVTR+I3BYBInNmdmsF5T35HakZ2yDrt9QefAkAkjrw7aw2PfLYobF3SkB4+dCORpgAQiQPb9qbRJsyUzQCT72tH41rH+NCRRAMFgEiAOed4dfJKnhn/a9ha7fXHHwWASEBt3HWAC58OPWUzwLQH2tOwRhUfOpJoowAQCRjnHE9/vZThU1eFrKtQtgzLnuzmU1cSjRQAIgGyeus+2j87OWzdjAEdqF+9cuk3JFFNASASAFnZjoc+XcDoOckh66pXKc/8Rzv71JVEOwWASIxL3LCb7i9OC1s386EO1D1Oe/3yGwWASIzKyMrm/96bx4TEzSHr6levzIwBHXzqSmKJAkAkBs1ds51rXws9ZTPA0ie6Uqm83s0r+VMAiMSQ1Iws/jRiNnPW7AhZd8dlTXio22k+dSWxSgEgEiOmLEuh139/DFu3bHA3KpQr40NHEusUACJRbl9aJle8PJ1VKftC1v2t06nc3amZT11JECgARKLYlws20u/9eWHrlj/ZjfJltdcvR0cBIBKFdh3I4LJnJrFzf0bIugHdWnDnZaf41JUEjQJAJMp8+ONaBny6MGyd9vqluBQAIlFi6940EgoxZXOdYyvy4z86+dCRBJ0CQCTCnHP8Z9oqnvpqadhavZtXSpICQCSCNuw8wEVDwk/ZrHfzSmlQAIhEgHOOZ8b/yquTV4atnftIJ2pWrehDVxJvFAAiPkvauo92hZiy+cwGxzGu/8Wl35DELQWAiE+ysh2Pjl3Ee7PXhq1dMKgz1SqV96EriWfFuobMzKqb2RgzW2pmS8zsQjOrYWYTzGy59/l4r9bM7EUzW2FmC8zsnJJZBZHot2Tjbk55+KuwG//LTq1N0pAe2viLL4r7CuDfwDfOuevMrAJQBXgYmOicG2JmA4ABwINAN6CZ93E+8Jr3WSSwMrKyueej+Xy5YGPY2sTHu1Clgl6Ui3+K/NdmZtWAS4FbAZxz6UC6mV0FtPPKRgGTyQmAq4C3nXMOmOW9eqjrnAv/P0MkBs1bu4NrXv0hbN2Vrevx4h/P9qEjkbyKs7vRBEgB3jSz1sBc4G7ghIMbdefcRjOr49XXB9bl+v5kbyxPAJhZX6AvQKNGjYrRnkhkpGZk0WfUT8xYsS1srWbulEgqzl9eOeAc4DXn3NnAPnIO9xTE8hlzRww4N9w5l+CcS6hdu3Yx2hPx37TlKbT45zdhN/792zclaUgPbfwloorzCiAZSHbOzfYejyEnADYfPLRjZnWBLbnqG+b6/gbAhmL8fpGosS8tk56vzyRx4+6wtaue6k6ZMvntD4n4q8i7H865TcA6M2vuDXUEEoFxQC9vrBcw1vt6HHCLdzXQBcAuHf+XIPhm0SZaDRwfduP/5NWnkzSkhzb+EjWKe8nBX4H3vCuAVgG9yQmV0WbWB1gL9PRqvwK6AyuA/V6tSMzatT+DLi9MZdPu1LC1q5/ujpk2/BJdihUAzrn5QEI+izrmU+uAfsX5fSLRYvScdTwwZkHYujdubkOXVif60JHI0dNFxyJHIWVPGm2Hfk96ZnbYWu31S7RTAIgUgnOO/85I4okvEsPWftT3As5vUtOHrkSKRwEgEkZhp2wGSBrSo5S7ESk5CgCRAmRnO16YuJwXJy4PW/v9vZfRpHZVH7oSKTkKAJF8FHbK5hOrVWLWw0dc8yASExQAIrlkZTue+CKRt35ICls755FO1NKNWiSGKQBEPEs37abrC9PC1nVueQLDb8nv6meR2KIAkLiXnpnNA2N+4bP54WcmWfRYF6pW1H8bCQb9JUtc+3ntDq4uxJTN/9fuFB7o2sKHjkT8owCQuJSakcVf3p3LpF9TQtY1OL4y3/39MiqVL+tTZyL+UQBI3JmxYis3jZgdtk4neSXoFAASN/amZfKnEbOZv25nyLo+F5/MPy9v6VNXIpGjAJC4MH7xJu54Z27YOt2XV+KJ/tIl0HbuT+eqV2awZtv+kHVDrz2D68/VLUglvigAJLA+mZvMvR//ErZO9+WVeKUAkMDZsieVTs9NYXdqZsi69287n4ua1vKpK5HoowCQwHDO8dYPSTz2efgpm1c+1Z2yujWjxDkFgATC+p0HaFuIKZtvPL8RT119hg8diUQ/BYDEtOxsx8uTVjBswrKwtUse70rlCnpDl8hBCgCJWau37qN9IaZsfvqaM/jjebrCR+RwCgCJOZlZ2Tz99VJGTl8dtnbVU90po2P9IvlSAEhMWbJxN93+HX7KZt2XVyQ8BYDEhPTMbB7+30LGzE0OWWcGq5/WfXlFCkMBIFGvsFM2T72/PY1qVvGhI5FgUABI1DqQnsVdH/7MhMTNIesuPbU2b//5PJ+6EgkOBYBEpR9WbOXGQkzZvGBQZ6pVKu9DRyLBowCQqLInNYM+b83hx6TtIevu79Kcfu2b+tSVSDApACRqfLt4E30LMWWzpnEQKRkKAIm4HfvSuX74TJZt3huy7q3e59KueR2fuhIJPgWARIxzjs/mr+dvH4WfsjlpiC7tFClpCgCJiC27U+nx0nRS9qSFrJt0XztOrnWMT12JxBcFgPjKOcc7s9bw6NjFIetaN6zO2H5tfepKJD4pAMQ367bvp8Nzk8nIciHrfnm0M8dV0aWdIqVNASClLjvb8dqUlTwz/teQdV/edTGt6h3nU1ciogCQUrUyZS8dn5sSsuashtX5TId7RHynAJBSkZmVzTPjf+WNqatC1s15pBO1qlb0qSsRyU0BICUuccNuur8Yesrmfu1P4f4uLXzqSETyowCQEpOWmcWgcYv54Md1IeuWPtGVSuV1a0aRSFMASImYt3YH14SZsvnlG8/m8jPr+dSRiIRT7AAws7LAHGC9c+5yMzsZ+BCoAcwDbnbOpZtZReBtoA2wDbjeOZdU3N8vkbU/PZP7Pv6FrxZuClmnWzOKRJ8yJfAz7gaW5Ho8FHjeOdcM2AH08cb7ADucc02B5706iWEzVmyl5aPjQ278x/VvS9KQHtr4i0ShYgWAmTUAegAjvMcGdADGeCWjgN97X1/lPcZb3tGrlxizOzWDm0bM4qYQ8/U3P+FYVj/dnTMbVPexMxE5GsU9BPQC8ABwrPe4JrDTOZfpPU4G6ntf1wfWATjnMs1sl1e/NfcPNLO+QF+ARo0aFbM9KWkTEjdz+9tzQtbMfaQTNXVpp0jUK3IAmNnlwBbn3Fwza3dwOJ9SV4hlvw04NxwYDpCQkBB6zgDxzfZ96dw8cjaLN+wusOavHZpyb+fmPnYlIsVRnFcAbYErzaw7UAmoRs4rgupmVs57FdAA2ODVJwMNgWQzKwccB4S+7ZNEXGGnbF7+ZDfKly2JU0oi4pciB4Bz7iHgIQDvFcB9zrmbzOxj4DpyrgTqBYz1vmWc93imt/x755z28KPY5t2pXP3KDDbsSi2w5s1bz6V9C92kRSQWlcb7AB4EPjSzwcDPwEhvfCTwjpmtIGfP/4ZS+N1SApxzvDtrDf8MM2Xz6qe7o/P4IrGrRALAOTcZmOx9vQo4L5+aVKBnSfw+KT3rtu/nd89PITUju8Cayfe1o7Fu0iIS8/ROYAEgK9vxxtSV/Oubgqds1uEekWBRAAgrtuyl07DQUzbrnbwiwaMAiGMZWdkMm7CM1yavLLBGh3tEgksBEKcWrd/F5S9NL3B5++a1ebP3EadyRCRAFABxJjUji8FfJvLurLUF1iwc1JljK+mevCJBpwCII3PXbOfa12YWuPyRHqdx2yVNfOxIRCJJARAH9qdn8uAnC/n8lw0F1qx8qjtldZJXJK4oAAJu+vKt/GlkwbN2fnD7BVx4Sk0fOxKRaKEACKhdBzLo//48pi3fmu/yl/54Nle01t25ROKZAiCAvl28ib7vzM13WdWK5fhlYGcd7hERBUCQbNubxq1v/sTC9bvyXf7VXZfQsl41n7sSkWilAAiAcFM2dz/jRF69qY3PXYlItFMAxLhNu1K55tWCp2zW3blEpCAKgBjlnOPd2Wv552eL8l3+6OUt+fPFJ/vclYjEEgVADFq7bT+dhk0hPSv/KZuXDe5GhXK6O5eIhKYAiCFZ2Y7hU1cx9JulRyy7u2Mz+ndoqtsyikihKQBixPLNe/jd81PzXTbl/nacVFMzdorI0VEARLmMrGxe+G4Zr0w6csrmZ3u25tpz6uu2jCJSJAqAKFbQlM1N61Rl9B0XUuOYChHoSkSCQgEQhVIzsnjyyyW8M2vNEcvev+18LmpaKwJdiUjQKACizE9J2+n5+pFTNvc4oy7P/aE1lcqXjUBXIhJECoAosS8tkwGf5j9l8/h7LqX5icdGoCsRCTIFQBSYtjyFm0f+eMT40GvPoGebhroZu4iUCgVABO3an0G/9+cxfUXeKZsHdGvBnZedEqGuRCReKAAiZPziTdyRz5TNCwZ1ppruxysiPlAA+CxlTxo3j5zN0k178ow/17M117ZpEKGuRCQeKQB84pzjfz+v5++j807ZXKFcGRYM7Kyre0TEdwoAH2zYeYArX57B1r1pecbf7H0u7ZvXiVBXIhLvFAClKDvb8d6PR07ZfOoJVfn67kt1W0YRiSgFQClJ2rqPds9OPmL8s35tOathdf8bEhE5jAKghGVlO96YupJ/ffProbEWJx7LF3+9mHKaqllEoogCoAQt27yHzodN2TzmzgtJaFwjQh2JiBRMAVAC0jOzGTZhGa9P+W3K5ktPrc2o3udqqmYRiVoKgGJakLyTK1+ekWfsm3suocWJ1SLUkYhI4SgAiig1I4vHPl/MBz+uOzR27TkNeLbnmdrrF5GYoAAogh9Xb+cPb+SdsnnaA+1pWKNKhDoSETl6CoCjsDctk6FfL81zo5Y7LmvCQ91Oi2BXIiJFowAopCnLUnj404Vs2HWAP7c9mf4dmlK1YjkqlNOlnSISmxQAYezcn84TXyzhk3nJNK1TlTF3XkSbk46PdFsiIsVW5AAws4bA28CJQDYw3Dn3bzOrAXwENAaSgD8453ZYzpnRfwPdgf3Arc65ecVrv3R9s2gjj3y2mB370+nfvin9OzTVpG0iEhjFeQWQCdzrnJtnZscCc81sAnArMNE5N8TMBgADgAeBbkAz7+N84DXvc9TZsieVgWMX8/WiTbSqV41Rfz6XVvWOi3RbIiIlqsgB4JzbCGz0vt5jZkuA+sBVQDuvbBQwmZwAuAp42znngFlmVt3M6no/Jyo45/h03noe/yKRAxlZPNC1Obdf0oTymsJBRAKoRM4BmFlj4GxgNnDCwY26c26jmR2c77g+sC7XtyV7Y1ERAOt3HuDhTxcyZVkKbU46nqHXnknTOlUj3ZaISKkpdgCYWVXgE+Ae59zuEG+Cym+By+fn9QX6AjRq1Ki47YWVnpnNmzNW8+LE5Thg0BUtufnCxpqqWUQCr1gBYGblydn4v+ec+9Qb3nzw0I6Z1QW2eOPJQMNc394A2HD4z3TODQeGAyQkJBwRECVp6rIUBn2+mFUp++h0Wh0GXtFKb+YSkbhRnKuADBgJLHHODcu1aBzQCxjifR6ba7y/mX1IzsnfXZE6/r9u+34Gf5nI+MWbaVyzCm/eei7tW+jOXCISX4rzCqAtcDOw0Mzme2MPk7PhH21mfYC1QE9v2VfkXAK6gpzLQHsX43cXSWpGFm9MWcWrk1dQxoz7uzTntktOpmI5XdopIvGnOFcBTSf/4/oAHfOpd0C/ov6+4nDOMSFxM49/kUjyjgP0OLMu/+h+GvWqV45EOyIiUSHw7wRelbKXxz5PZMqyFJrVqcr7t53PRU1rRbotEZGIC2wA7EvL5OVJKxgxbRWVypXln5e35JYLT9I1/SIinkAGwILknfR9ey6bdqdy7TkNeLBbc+ocWynSbYmIRJVABkCjGlVodkJVXrnpbNqcpPvxiojkJ5ABUL1KBd7pE5XTDImIRA0dEBcRiVMKABGROKUAEBGJUwoAEZE4pQAQEYlTCgARkTilABARiVMKABGROGU5k3RGJzNLAdYU40fUAraWUDuxIN7WF7TO8ULrfHROcs7VDlcU1QFQXGY2xzmXEOk+/BJv6wta53ihdS4dOgQkIhKnFAAiInEq6AEwPNIN+Cze1he0zvFC61wKAn0OQEREChb0VwAiIlKAQASAmf3XzLaY2aJcY4PMbL2Zzfc+ukeyx5JmZg3NbJKZLTGzxWZ2tzdew8wmmNly7/Pxke61pIRY58A+12ZWycx+NLNfvHV+zBs/2cxme8/zR2ZWIdK9loQQ6/uWma3O9RyfFeleS5qZlTWzn83sC+9xqT/HgQgA4C2gaz7jzzvnzvI+vvK5p9KWCdzrnDsNuADoZ2YtgQHAROdcM2Ci9zgoClpnCO5znQZ0cM61Bs4CuprZBcBQcta5GbAD6BPBHktSQesLcH+u53h+5FosNXcDS3I9LvXnOBAB4JybCmyPdB9+cs5tdM7N877eQ84fTn3gKmCUVzYK+H1kOix5IdY5sFyOvd7D8t6HAzoAY7zxwDzPIdY30MysAdADGOE9Nnx4jgMRACH0N7MF3iGiwBwKOZyZNQbOBmYDJzjnNkLOBhOoE7nOSs9h6wwBfq69QwPzgS3ABGAlsNM5l+mVJBOgIDx8fZ1zB5/jJ73n+HkzqxjBFkvDC8ADQLb3uCY+PMdBDoDXgFPIeRm5EXgusu2UDjOrCnwC3OOc2x3pfvyQzzoH+rl2zmU5584CGgDnAaflV+ZvV6Xn8PU1s9OBh4AWwLlADeDBCLZYoszscmCLc25u7uF8Skv8OQ5sADjnNnt/SNnAf8j5jxMoZlaenA3he865T73hzWZW11tel5y9qMDIb53j4bkGcM7tBCaTc/6jupmV8xY1ADZEqq/Skmt9u3qH/5xzLg14k2A9x22BK80sCfiQnEM/L+DDcxzYADi4EfRcDSwqqDYWeccIRwJLnHPDci0aB/Tyvu4FjPW7t9JS0DoH+bk2s9pmVt37ujLQiZxzH5OA67yywDzPBazv0lw7NUbOsfDAPMfOuYeccw2cc42BG4DvnXM34cNzHIg3gpnZB0A7cmbP2wwM9B6fRc7LpiTgjoPHxoPAzC4GpgEL+e244cPkHBMfDTQC1gI9nXOBOEEeYp3/SECfazM7k5wTgGXJ2WEb7Zx73MyakLO3WAP4GfiTt3cc00Ks7/dAbXIOjcwH7sx1sjgwzKwdcJ9z7nI/nuNABICIiBy9wB4CEhGR0BQAIiJxSgEgIhKnFAAiInFKASAiEqcUACIicUoBICISpxQAIiJx6v8B3W8knbfsetMAAAAASUVORK5CYII=\n",
|
||
"text/plain": [
|
||
"<matplotlib.figure.Figure at 0x7fa016a3d198>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"plot(xu, p2(xu))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<matplotlib.collections.PolyCollection at 0x7fa0169a93c8>"
|
||
]
|
||
},
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXe8JFWZ//9+TnX3TRNhhjgooIiiIuAQRFddQCTJEAbEBEhGxAi7usnXd132t7uAeQmDsIKiAkNOApIURXAQFQHJOc7AwIQbu+r8/qg61dV9q7srnIt35p43r+He21319DlVz3meU13n+ZRorXE4HA7H1EP9rRvgcDgcjr8NLgE4HA7HFMUlAIfD4ZiiuATgcDgcUxSXABwOh2OK4hKAw+FwTFFcAnA4SiIih4vIHR3ev15EDnsj2+RwZMElAMeUQUSeFJHdWl7rGLxtoLXeU2t9/kR+hsNRBJcAHA6HY4riEoDDESEiG4nIpSKyVESeEJEvJN67TkROT/x9kYic17y7fF9EXheRv4rIrok3bhORo6LfDxeRO0TkNBFZHn3Onm9IBx2OFip/6wY4HJMBEVHA1cCVwCeAecAvReQhrfUNwBHAn0XkWmBDYHvgPQkTOwKLgTnAAcBlIrKZ1vrVlI/bETg/2vYY4FwR2Vg7XRbHG4y7AnBMNa4QkdfMP+CM6PXtgbla63/XWo9qrR8HzgEOAdBavwgcRxi4vwscqrVembD7MvAdrfWY1voi4CFg7zZteEprfY7W2o/sbQisb7mfDkdXXAJwTDX201rPMv+Az0WvvxnYqCU5/BPNgfkawAMe0lq33jh+rmUG/xSwUZs2vGh+0VoPRr9OK9gfh6MwLgE4HCHPAE8kk4PWerrWeq/ENqcADwIbisgnWvbfWEQk8febgOcnuM0ORylcAnA4Qu4GVojIP4pIn4h4IvIuEdkeQEQ+CHwWODT6930R2Tix/3rAF0SkKiIHAe8ArnuD++Bw5MIlAIcDiL6P/xiwDfAEsAz4ITBTRGYAFwCf11o/F339cy7wf4lZ/13AFtF+pwALtdavvMHdcDhyIW7hgcPhcExN3BWAw+FwTFFcAnA4HI4piksADofDMUVxCcDhcDimKJNaCmLOnDl60003/Vs3w+FwONYo7rnnnmVa67ndtpvUCWDTTTdlyZIlufd78sVnuPaum9ltu79jy03eUrodKwdXcemvr2Pe3A3ZZZv3o1S5C6cgCLjxnttZ+torHPCBvRjo6y/dxvuffIjb/nQnC3benXlz2xWgZmfZ669y6a+vY5u3bMUOb9+W5hqn/IyOjXLVnTciInxsp49Qq9ZK2dNac/df7+WPjz3Awg/uzbozZpeyB/DMy89z1Z038uH3vI93brplaXurhwa59I7rWG/Wuuz+3g9Z8Zub772D55a9yMIP7s20voHSbXzomcf45b2/Zp8dd+PN688rbe/VFcu59I7reOebt+R9W723tN+M1ce45ne/ZMyvs+B9u9NT6yndxiUP/4klj/yZA96/J+vNmlPa3vPLXuSK397AB961PVtvvlVpe0MjQ1x2x/XMmjaTPeZ/GM/zctsQkacybTeZl4HOnz9fZ00Avu9z3d23cNolZ3H3X/+IKEFrzbs3ezsnH3Q8C3bePXfQ+dNjD/Cdy37IRbddhVIKEWF63wBfOuAojtjjEObMXCeXvZeWL+WH1/+M7152LkOjw0A4qD+92wF8Yb8jcgedkdERLr3jOk69+EweevbxyJ7mA+/anpMOOjZ30NFa85v7f8+3Fi/iurtvwVMeIsIG68zlpIXH8ald92d6fz7FgideeJozrr6ARdf+BONrSimO2evTfG7fQ9l0g01y2Vs5uIoLb76c0y45ixeXL0VrjR8E7L3jLnzlwGPY+Z3zcwUd3/e58Z7bOe2Ss/nN/UtQSkDDlptszskHH8+BH9grd9D5yxN/5XuXn8eFt1weH//+nj6+sP8RHL3nJ1lvdr6gs/S1VzjvFz/nO5f9kFXDg2itCXTAIR9ewJcOODJ30BkdG+WKO2/g1EvO4i9PPYSIoAPNjm/fhpMWHsee8/8+V9DRWnPXg3/gW5eew9V33hSPlbmz1uWkhcfymd0OZMbA9FxtfObl5znz6gs48+oL8AM/fFGEo/b4BCcsOIy3bLRpLnurhwf52a1Xcuris3h22QsA+IHPR9/7Ib5ywNF88N075fIbk4xPu+Rsbv/znWGfgbdsuCknH3wcCz+4N309fbna+NenH+V7V5zHBTctRkQQoKda48T9juDovT7Jhutml4sSkXu01vO7bremJ4Dnl73I2df+hP+96nxGx0ZZObR63DbT+wYyB52hkSEuvv0aTr34TJ548RlGxkYbDhjR19NLEATstcMufGXhMbz/ndu3dR6tNbf/+U5Ov2QRv/zDr0GE4Sj4GyqeR7VSZct52YLOo889wQ+u/BHn/uLnCKT2eVrfAH21Xr54wJEctecnWH92+6vB11ev4IIbF3P64rNZtmI5gyNDtPrFQG9/HHS+uP+RvOct7YNO3a9z3V1hMv79w38iCDSj9dGmbWrVGgph+7dvw8kHHcdeO+zSMeiEyfgcLrr9apQoVg8PNr0vIvT39DFn5jph0PnIgcwcmNHW3kvLl3LOdT/le5efx/DocFu/AThyz0/w+QWHdww6w6PDXPrr6zj14rN4+NnHGfPHqPstflPrJdABH3nvBzlp4bF8cOv2QUdrzR1/uZtvLV7E9b+/FaUUQyPNfuMpj1q1yls2fDMnH3w8B3UJOk+8GCXj6y9Ea922z7VqjRP3PZxj9vxUx6CzcnAVP7n5Mk675CxeWr6MoZFhAh00bTPQ248f+Cz8u7358oFHs90W725rz/d9blhyG6ddcjZ3PnAPGs3IWIvfVKoopdj2re/i5IOO42Pv+wgVr/0XGX958q989/JzufC2K/BEsSrFbwZ6+pg1bSZfPeAYDvvIQmZPn9XWXmsyXtVm7KE1h+9+MCfufwRvm7d5W3ujY6Nc/ptfcOrFZ/LAU48w5tep+/WmbXprPWit2WWb9/PVhcfy99vs3HVit1YngGT2/dWffwcCw6MjXe3VKjWUErbfcnzQac2+aSe2lTjozJjNVxcey6G7L4yDzqsrlvOjGy/hW5cu4vXVK1kdzdy6Mb1vAA0cucchfH7B4bx1482A8FL46jtv4tRLzuKPj92PHwSM1ce62uut9YLW7Lbd3/HVg47hQ1u/Lw46Sx76E9++7Bwuu+N6lFIMDg91tecpj55qjc03fNO4oPPcshc4+5oL+d+rfsRYfSw1wLTrc61a44R9D+PYvT/NRnM2ALIl4zRM0DnwA3vx5QOP5r1v2xoIg+ptf/ptmIzvvQMlEl+JdaJaqeIlgs4+O+1GtVIF4JFnH+cHV/6I8264CCCz3wz09jNrYAZfWXgMh+9+UBx0Xlv1OhfcFCbjV1e8xuqUZJyGCTqH7X4QJ+53RPzVZ92vc93dt3Dq4rNY8vCfCfT4ZJyGCTof3vp9nHTgsU1fff7x0fv5zmU/5OLbr0ap8ck4DeM3b1pvI04++Hg+/qF9468+X3z1Zc657kK+d8X/MTI6kstvPK/C5z72GY7/2KHxV5/Do8Ms/vV1nLr4TB55/klGx8Yy+U1/Tx+BDth3p935ygFHs8OW24RXR1EyPn3xIm5YchtCRr/xKniel/otxBMvPM3/Xvkjzrn+p2gNK4dWZerztL4BpvcN8OUDj+azH/14228h1soEoLXm25edw6kXndk2+2Zlet8AtUqVvXfcjb88+RAPPp2efbPS39tHEAR8dP6H8P2AX977a5QoBke6B9U0TNDZevOteNvGm3H1735JEASZHaWVMOj0MXNgBnvM/zC/vu9unl32AsNjIwRB0N1ACtP6BtBas/eOu7L0tVeiWRuMjHVPxmn01npAw87vnM+cmetw7V03Z07GaSil6Kv1MG/Ohrz/XTvwi9/fyorBVZmTcRph0PHYe8ddeeS5J/jz4w9mTsZpmKCz27YfQCmPG++5vZzfeBUqXoWt3rwFW226Jdf+/uZcyTiNaX0DTOsdYK/tP8yd9/+Bp156NnMyTrXX20+gNXvtsAuvr17Br+67G8k4iUujp1pDRNjx7duy4Zz1uebum4FsyTgNJYq+nl42mD2XD797J25c8iuWr8yejNMw30LsveNuPPni0/zh0b8QBAGjBf2mr6cXrTV7bv/3nHbsv7L5hm9uen+tTAAvvPISb/70ToUH25qKmYVMVpSocZf+k9GmTQRBY/ecCFi1KJ7YbaFvt78T4jcVz55NrcGyC9oey4Jw4n6f5bsn/Hvr52RKAGtUHYDWmmqH7/uKUHaVwhtBeDto8jIRx3Cyn5eJaJ/1FD/pj+FE2JzsfbbbPo0ulfDWqATgcDgcDnu4BOBwOBxTFJcAHA6HY4riEoDD4XBMUVwCcDgcjinKlE8Ak3l5pWGyt3Ei2jcV+2ybyd5G5zd/e9aoBDBjYDp9Pb1WRLAgXIdsk6Q9m7Y12po9FS1Ds7UcLbmW24ZFYyPQgZ0+C4inQAmqoqw0UomyWgMwUX6Dr1FawvXsRQNPtK/Skd9YWpLsiSKI2mRzmXNQ9+30OdBI1GdlcazYTAC1SpXeag9bvfltxdtkrTVvANP6BnjuZ0tY9KX/Ztu3vJO+Wi+VnEp5xtlEpGn9rBeVuRcZgMZBmoOCbnovl72oLV5C7yPQQeGgbfqsEoNOa12qz0asKunQqtQxVJHdxr5aawQp1G/lKfAEr+KF50Ug0BrleeAJ4hU8lu38poDSZ8M3GsdQ2/abIAgDWQCiyR4UtQ63D0BpFVeLa3TjPBfoszmXQaLP5rUyfpNsiw4CJJCo3zkSgdYowmOVDNaB1gn/zH9eBLt+M71vgOn90zhxwWe5/9xbOP5jh+a2Ebdtsl2SJOkmBvfAUw/z/SvO44KbLkWJjBN6SmJmqkqpjtIHYuoxu1TsKZHYMboVYphtulWPmkDdbXbpKYUfdO9L3OcubTTViaZP3eyZz++Esdmpz+a9bp8LiT536ouEAyrIYLPp2NTbSxqYY9ytz5L4f8dzHB/rHH7TxRdFJMohnT2nyW9MiWsyoBm1VsI+dx0r5hx3HSvZ/SbrWEl+fifiPnsegW6oisZoDTr63KD7sc46prL6jekHunNvK16FaqXCVm/agpMPPp79dv5oR8HItVIKoh2Dw0NcfPvVnHrxmTzZolMi0DWYtyMt6DQcoHvQaiXNeTxR+BkHRxrtkkbRMvu0/mUd6Kn2ooGQdgyL9DmtLcozQb9on6O+asIZI3b8xpzb8DOyBY709o3ft8wxhMZM1viNkYQu4teQfp6t+02OoNpKU1viPit0hkTXto1xsmpcw2VNxmmkxRujt3XoRxbyhf2O4O1vemsmW1MqASS599G/8J3LfsiPb7oUpaTQ4GiljCN3tW1JUya+IinozG3tFQwIbwQighZQyk4blVIEY37hoJravi5XQbltEsYXW75ozq+tPq8xfpPxKiwLacmqVPuis7zx3I34j8NP5uAP7ZP72QJrpRZQFrZ967s4/x++Q6VSseLQYL4v96wHf0951gKDGWw2gr+xN5kHMYTnxVbwh8axs+s3dm8Ya7Dqi+bY2epz42tR+xMlW5jJnC3ROOM3tuxpNL21Xv75Eydy2O4H5Q7+eVjrEoDD4XA4suESgMPhcExRXAJwOByOKYpLAA6HwzFFcQnA4XA4piiZEoCIfFlE7heRv4jIz0SkV0Q2E5G7ROQREblIRGrRtj3R349G72+asPP16PWHROSjE9Mlh8PhcGShawIQkY2BLwDztdbvAjzgEOC/gW9rrbcAlgNHRrscCSzXWr8V+Ha0HSKyVbTfO4E9gDNEJJ+OQwZWDq7irKt/jO/7Vh+k6Ae+1ce5CRAUfKj2G0UQrWG3hfWH9U3QMlWbffaDwPoxLPow9jcKU8lrC1OyZpPJXP8EMFIf5cJbLuPPjz8woZ+T9SugCtAnIhWgH3gB2AVYHL1/PrBf9PuC6G+i93eVMHIuAH6utR7RWj8BPArsUL4LIX967AE+e+qXWf/gbThp0TdDJyyhtwGNask48JvK0xKCXWZfTaOgx/xXhFY9H0/G68HkoVWXxXS9qL2kTZ3yWhFMWwQgql6F4qJdrcdOlDR9Tl6SelOQ1Pex4zdJ20WPY6ueT5qmTh6k9RxI8+eUsRmPFcr5zbi+tvzMbU8sjz2Ita+CIODOB+7hfV/Yl62P3o0f37SYoZGhQnY70bWlWuvngNOApwkD/+vAPcBrWut6tNmzwMbR7xsDz0T71qPt102+nrJPjIgcIyJLRGTJ0qVLO7ZtcHiIH91wMe86ahd2/uICfvzLyxgaGWZ1pAkUF2gEjdL0LDQCjJhjEP6M3k8qVWYJOklHaS0W0Vqj0bmDjhFj81uKUIz0gOlzVudWLX029pKFQnmCTnKwpc22TCVmcttOJD/b9FlH8g1BPQBfxycoa9Axnx8E4f5+pAmULAjLE3QaybjZbwzNftO9jSqRjNP8BhrnK6/ftI4NY18H+ZJV61hJig0a+0X8xlPj/UbTLGLoZWhjk/hjS1/jPudM0HEyjsXimseeGStZp3XxMYyKBnVizA2ODHPfk3/lc9//Z+YufA+f//4/89Azj2VqZ6a+dNtARGYTzt43AzYCBoA9UzaNJydt3mv3evMLWi/SWs/XWs+fO3duapsefOoRjv/u11nvoPdw4v/+K/c/9TCDI0NdL407BZ1k9m0Nqmk03pNUe5CctemWfVLsZQg6SQVB3UU8Kj1ZtfQ5MWvLUs2YJejEwS/I0OeWoNOpz63JONWeHwbyoO6Pm4U32pdIxnU/TBxBe5sm6KQpbRpak7Gfpc8dgk7ra1mOYaeg05qMO/tN47y1U3dNS8aZ/EY6+U0iGdO5Mrn1OHccK22ScVr7jAZWms20ZNzpSDYmdtn9plMV/6qh1aweHmTRtReyzXG7s/0Je3Hx7VczOjbadp8sZEl5uwFPaK2Xaq3HgMuAnYFZ0VdCAPOA56PfnwU2AYjenwm8mnw9ZZ9MjIyOsPMXFvDez+3JD6//GauHB1k1tDqPiXFBx9CaffPaC7VAGk6jEqXmeW22Bh1DFkfp1MZWh22dteW1l7wqgEgTJb5aym7TbNva56wBJsUgOkoG0tIMrXWcJPLQLjBlScapTUwJOtDsN3nPS2vQiV/PkIzTCIJ0/5UMQbWTvXF+U1JDR2vddDUgSKZknNrGLs8oKHoMW/3GK+g3Y36d4dERljz8Z448/STmLtyaa373y5xWGmRJAE8DO4lIf/Rd/q7AA8CtwMJom8OAK6Pfr4r+Jnr/Fh16ylXAIdEqoc2ALYC78zT2lRXLufexvzA0Okzdr3ffoQOth96Ghk5ywNq4ORl/dVXaUkjaVxI2bJoAZuUYxl9d2RE7M1cF5p/27ei1mHMymf3GUFaLaCLGitHjATt+2FBdtSO819omW4sNTGKxob20amg1KwZXccOS2wrbqHTbQGt9l4gsBv4A1IF7gUXAtcDPReQ/otfOjXY5F/ixiDxKOPM/JLJzv4hcTJg86sAJWuvcyxlsP8VrIhQ+bSOi0JaEpiYCEQX5T+UbbtMmk/2cwOT3bSWCb1s0brL7jZJx3z78LemaAAC01t8AvtHy8uOkrOLRWg8DB7WxcwpwSs42OhwOh2MCcJXADofDMUVxCcDhcDimKC4BOBwOxxTFJQCHw+GYoqxxCcC2DspkXiVhsPWouYnC1mMok0z2FTaT/ZzA5PftYAJWw0z286InYKyUYY1KAOvNnsM+O+1GT7VGX623lK2G1k2z9k1Zyin7NNNalVi2jbHcgyV7cS/NDwtiea26QWUttkp2lNGmSdobp31TgrgK3VLFh23f9lrsZZFgyMQE+E3DdDmb445hab+JO9v8d0FEhGm9A2wydyMO+uA+xdtVqhVvMBWvwuJ/W8TTF97Nv3zqi6w3aw7T+wZy2YhLwxPVp9AsmZDHeVolAnT8X7N0Q1aSg7ZVV6UhH5DPeYxEgG6p7Ax0UGjwxYlEtWglJXRa8gSdWEwrof/SkA8oLlKWfPB3fCxz6vs02tjOb/S4YJHJXlLzBhJeU9BvSPpN83ku4zcwXt/HT/hNnrHitZzL5LluFafLQme/KZb8jG+MO4aRqmvexNL6+WX9pq+nl55qjQXv253r/vMCnrrwLj649U652pREJvNl4vz58/WSJUvavh8EATfd8ytOX3w2v77vbjQwMjYybjsVyQZnLTlXSoXSDtHPNAQgY6GNGSpI+8ty07bMbYy2a1fsY973lMpUdWi2a9dnIaywzFpc1Djm7SWbzXtZbZrtTFvG2YvanrXP8Xluc8zN5+U9J522F5FYVTbLyIs1kNps3a0P7duYfl6y+H66vc6fn/scd9g+r9/EY6WL32Tts/EvT1Sq1IT5HJt+M61vgGm9/XzpgKM4Yo9DmDtr3Y42ReQerfX8bp+9RieAJM8te4Gzr7mQ/73qR4zVx1g5tLqrs2ch6WR5g2oaZt+kM5bRQml1niwDqBthkKLJibMOjk5tNIlQo8vZi/aNk1LY6FL9TR6zvMk4tY2JfW36jUIIEjP6on7dOimy5zehV+dNxqltTJxnIFdQ7WbPTGbCQ1lMPKJ1UpQ3Gae2MZGsatUqAB9+z858deEx7LrtBzJfIU25BGCo+3Wuu+sW9v9/R03IzUmbtJuROBydEGw/HmXyM9X67CnFXjvswllf/C82mrNB7v2zJoA16h5AFipehX133h1P2X3YmG17UP7G0kRj4wbnRDPZ21jmQTrtUBPgizaxrdcVYvc823y630RQq9TYa4ddCwX/PEzuCORwOByOCcMlAIfD4ZiiuATgcDgcUxSXABwOh2OK4hKAw+FwTFFcAvibMpUWtjkcjjy8EbpGa1UC8H2f6+66mV1OPpix+pi15WhKqViEzsbiseRzQW1qEIG9ZYfmAe+2lssl7dhcghe0PEi+DLEcgS2/kUYRlA2dH2PBD3xr59m233iqUchkg4Y2lLa25Fdoli0pS0P+xJ6W09DoMP903n9xyk+/x0vLl1qxm8ZaUQj24qsvc851P+V7V5zHyOgIK4dWx+/lLRtPklbRl7dsPElczZmwm7dsvLl96RIX3SQTOpF2nEzJu60+l6mM7VRhWuQcN1VzJo6VkqhqtITfNFV7l6iMTfM5UxhVxG8aFc/NlcRlqoHT9ilTRd7Jb4rYazdui1aRt5N3KVNFnibv0lvrBa3Zbbu/46sHHcOHtn5fpgnUWl8JrLXm1j/+ltMXn83N9/4GERgeHa8DZMgadPKcwKzOkyyR70RW6Yqs25nA3bXPBfVk2pEnkGTdNreuSpcgEeu5eB6+eYh468DSGkW2hJ9Hb2ri/KbzZ2c9z7b9pjHJ6eyvE+k33SZD3fR9Wrfr5g9ZdaSyaGYZewO9/cwcmM5XDjyGw3c/iHVmzO60/dqZAF5ZsZz/+8VFfPuyc1gxuIpVidl+VtKcp5u4WifSgk5WR0m3Nz6YtJu1ZSWpw9P6OUWuFNKCThktlLQEXWY21S7oJL9SiKQfuxvTGnT6VUEZvam0q4L4aqvUzH683xTV+EnTyyk1VlJ8JGvwTbWXMvZsaDm19i1rMk5v4/hvIcqMlf6ePgId8LGdPsKXDzyand6x3Xg57LUxAaxYvZKNDnkvgQ4YGhkubb+MI6cxEdo+Zb4iSsOGYFVT+ywdu1Tblo5nU5Ag6nPR72sTVwUT0XdbfW4VKCuLdb+ZQB0sW+fFhohfmj2b7eut9fBvn/ky//jxzzW9t1ZqAa0aWo3W2krwh8ZddluDeCIcOlS7FCuDDhpP77Jlz8w4baNEWTuegQ5AQSA6DPxlbtaJEEg51cxO2OpzrDtvSRDRut9YvKmbRImydl5MX20Ef2PPpt8EOmBwZIhnlz5f2MYalQAmgskuCgWTv40T0T7rNi3bm+znBCZ/G9cIv7HMZGvflE8ADofDMVVxCcDhcDimKC4BOBwOxxTFJQCHw+GYorgE4HA4HFOUyt+6AXnwPI+x+phVm5O5DsLwRohClcHoJFlDCT6W++zrxnSnzEqMeHnl5Pebye7btpZXNtu07IuWsf2cck95VCvVwvuvUVcA68+ey4+/9j223uwd9PX0ln5Or1mSZcScvBLr2c2aZhGJfy+zPt4Ik5m2iZST1zJ7mzbZED4zx08QK/ZUxQMvtCUi4AniqcIKfOP6qhUEIJo4kGdG62hfQXSz35QRozNtFJH4eJZZH2/sJf3GBq12rfiNSOMclRp7jfMgkaeX6Xc8flv6WmYEJttkw2+m9Q0wrbefE/Y9jH84+Pji7ZrMs4ROWkD3PfEg373sXH566xUoUaweHuxqr5sgV5MwWIbjkkXvI6sWSdJma+l9krwSE90qOPNKTGQRNctV7KJCQa1O+8TyCCgCv/sMr5sAYJMwWKfKYFO230UPqJ0wWDuyVHfnrRrtJgCY22+6aCpl1bBptdfJb4pIk3Q6PkU1rtr1Ka/ERKaxQkKapAsVz6PqVdlyk805+eDjOeADe4ZicWl210YpiDRWDa3m57deyf9cfCbPv/IiQ6Mj4xy2iOJfJ9XPIlojnQZUkZLzTkEnq/hWuzamDaoimjKdgo6qeGGfc+i/NAW5IGh6nEJW8a1W4qCjoqATab6EUkGdk3EaaSqW8WcVkFPo5GtFlWm76drkrVbtFDiLqPF2Ok5FVFU7+W5RqZVO25vj26q91YlOekjTevsJtObTu+7PF/Y/knduumVXe1MmASRZ8tCf+PZl53DZHddT933qfr20jker09jQQmnMdML4UrY83PQxduaS+i+tfbShJxP2EfDs6MAoFV4NiC4W+Ftp9ZPJ6TfmanJi/KaIGFtz+5oTgI0+N5I+GBHsMp4zbqyUbKMZG7E8d8mxkvwWoqdSY9MN5nHywcfz8Q/ty0Bff3Y7UzEBGF5b9TpzDtza6g2hoiqcb7RNmxintmpQWSyF1zpOAJOVqek3EyGKOLWen1etVPnqwmP4/478eqH910oxuKzMmjbT2lOiDDIBgmcTYdMmk023JI3J3sKJ0buZin4ztbScKsrjzevNm/DPyeRJIjLzALhYAAAgAElEQVRLRBaLyF9F5EEReZ+IrCMiN4nII9HP2dG2IiLfE5FHReTPIrJdws5h0faPiMhhE9Uph8PhcHQn61Tiu8AvtNZvB94DPAh8DbhZa70FcHP0N8CewBbRv2OAMwFEZB3gG8COwA7AN0zScDgcDscbT9cEICIzgA8C5wJorUe11q8BC4Dzo83OB/aLfl8AXKBDfgfMEpENgY8CN2mtX9VaLwduAvaw2huHw+FwZCbLFcDmwFLg/0TkXhH5oYgMAOtrrV8AiH6uF22/MfBMYv9no9favd6EiBwjIktEZMnSpUtzd8jhcDgc2ciSACrAdsCZWuttgdU0vu5JI+3uiu7wevMLWi/SWs/XWs+fO3duhuY5HA6HowhZEsCzwLNa67uivxcTJoSXoq92iH6+nNh+k8T+84DnO7xundVDg2jL+jm27U2UTZtM4pWGMZO9iRNxDCfzsleYmEej2j7Tk/0Y+oHPC6++NOGf0zUBaK1fBJ4REVN+tivwAHAVYFbyHAZcGf1+FXBotBpoJ+D16CuiG4DdRWR2dPN39+g1a9z3xIMcdfpJzD1o6/g1r+RyUFOqbdZd23j+rbFhyt7LLkhr7WPZNpolcmYglz2GsU3dbL8MRrfJDOSyNluXDZddRizQ9Cxnu34TRJ9Rrs+xXpCxX7bPxm+0Pb9RsS/a8RulmnV9SvtNy3m1MlYQxup1/vvnZ7DNcbtz4c2XMTxq5zno4z4ro87INsAPgRrwOPBZwuRxMfAm4GngIK31qxIe0R8Q3uAdBD6rtV4S2TkC+KfI7Cla6//r9LlZCsGGR4dZ/KtrOfXis3jk+ScYHRtLLQDLWzXZqTS7UHl7rJ1iuaSfKFCHalNhcRSCDvJXBHcqwe+mNdPRXormTqzvk6ONnaQgishpJPdLKzQqIiHSUf6ii9ZMevvaa+6YY5i3z938Nm91bCf5iyISIh3lL7poFKURh/iUNhSxl9wvbTzY9ptpfQMAHPHRj/P5BYezxbzNu9pb6yuBH372cb5/xXn86IaLQYRVQ6u72stysvOIM2Wxl3fQd3Oeps/MI2TW5vPzDtAsQSceHEl9nS50CjpxMkbhZxCD69an3KJeWfymi75Os732k4F4m5y6QV39prAwWmcRwax+k08MrvsXPln0rvIL4HUREcxw3pq2tyycWK1U8ZTiPZtvxckHH8e+79u9rRT0WpsArvjNL/jPn/2AvzzxV+qBX+j5AK06IHkdJdVmYkCgKSTGlqS1TbH9HEE1RutxipZFrzqSJJNl5sTUgdagE9sPdKEv08f1tcAMPElr0Ck6A29qYyLoALlny+PstQSdIlerSVpF9jpdGeex2TpGymjytJ7fPMk41V5Lwi8i4pdGfCwt2JveN4CnPI7Z51OcfNDxzJm5TutnrX0J4OXly5j3ye2tPxRm0iM0rmPLfGcZqVxav0cniZ+2Suw1sAY8dMXh+FtS8Sp8cf8jOO3Yf2t6fa3UAqr7daqe3YeYTXZNEADleWFgLdtWEbtibBGe50W6/pZsBxpvkrumjZu6E81k920bN0zH2yz3kKiJxrZGWd2vMzI2Wnj/ye/FDofD4ZgQXAJwOByOKYpLAA6HwzFFcQnA4XA4piguATgcDscUxSUAh8PhmKKsUQkgfCiyprfWY8WeEhUVuUze5XIiQlD3UVqsKIt5okAJyrN36v26jwSE6/bLtFFrCEKpB6vPc/bCPnuenSWCYfFSYG+ZpQh40T9LNpMFXDYwdmzZC8+xXTFE4zfl1bVCzJJNW0s3RSR6gLy9c9zf08eG66zXfeM2rFEJYObADB674Lf80yc+z5yZ6zA90sjIi3FiUysYlBwoaY5i1jgXWetsHMQkqLCxGgIaiSBnoDXBKtChblCARjyFFAw6RozN9FlHlbEEoMiZrLQO+xWEdk2fjW2vyLkRQTxBPEVAo89ErxUZg60+kgywRQa1qnjgCV4l4TcVBZ6E7+UkFnVLHEPj40UnOa3CgGUTX3y8EvUoZowUGYMq4YemjcZ20cAd1jNKXCGvo6BdtN+tPmIq56FYrUZvrZeeao29d9yVa085n69/4sRC7YI1rBI4ie/73HjP7Zx2ydn89oElaK07FkS0lrS3I0+ZdkPhsn3ZuZEPyFKKn/Wzs2rtZJV7aPrcevuZd9a+NJW86yC9QjiqSlbSLHXRzWY3VMXLJAoXl/ujCDroC7XKhnS1101aQ0CUwjwio53nSOK3blIYWSUpklIJWcTgutnLK6GS2W8ySHVklfVo6At1FjHMotsDnYXvmvpCeIYz+02GeDO9b4DeWi9fPOBIjtrzE6w/u/3zUtZKKYh2PPPy85x1zQWccfWP8f06KxPCcHmFv5KkKWAWVZ2E9ICcNcCk2mujv1NEgTFsS+O3ZNApo/8Saxkphcb0WaEL6hDFbUkef5HEjDKfBkw7hdEyfpMWdJTnEVDMXhx0Eskqz8RifPvS+1ZGNyhNfydrUE1tY8pkqNRYaTO5Mu2GfAop7cZYOb8Zr0zbUw2/7v7Au7bnpIOOZff3fijTlc2USgCGsfoY1/zul5x6yVnc+cA9pcWbDMnAV0aoy5C0UUaMbZxN0WGgsWDPUwp/zM8l/9yJ5LmwdV5CeQzwvOJibEmUUgRjvpVzHNvTASix5zdBEH7NZukYlgmqaZhgn0XRMwtNY8WW30TYGntxn236TRAwrbefLx14FMfu/Wnmzd0ol40pmQCS1PbczKponKc8qzcmQ5t2AlfDoN2b2RJM/icnqYoqrLiaim+3v17FK6yamUqg8cS+L9rEdqAGrE1EYnuWgvVE0Vfr5dRj/4UT9j280P5rpRjc2sfkXX0Ek711DsfajScTL2znEoDD4XBMUVwCcDgcjimKSwAOh8MxRXEJwOFwOKYoLgE4HA7HFGWtSwBBEHDD72+zvkwumIBldzbWIE8kVpdXThCTvY229W6QifFFm9heAgp5y/sy2JvkfjNaH+XGe25n6WuvTOjnrDUJ4OXly/jPn36fjQ7ZjoO+eWxU9Wc0dcprl+jE72WeZWr2TWqAlNIhSvYxElJLPkO+CGltKyOIlexzrO9Twl6TjkpcDFy8xxL/E1CNvpbSvEn0z8oxjPus4lBYxm+kZWyYv8sIldn2m/g8IHE7rflN1NSygn4Sj7ikYF75eBNozfV338omn9ye/b9xJL++764JSVprdCGY1ppf/fl3nL54ETfd8ytEhKHR4XHb5ZVvyFrOnaeYJK1UvvkzJRKl666DAt11g7Jq4qTaS9EDylsx2lQqH4mxxXpAkQ6QkE+yIq1Uvun9qM9ZKzw7atkY3Sg/u734HHbQQBLC1zL7jSmACkjVA8qqiWPopmWTVVcoq73WdnYjTkDSfpaeV+qkIUfSop1lKozJppll6KaB1BjL+cZKu3MoIgz09LHOjFl8deGxHPqRhcyaNrObzbW3Enj5ytc4/8ZLOH3xIl5bvYLVw4O5AnE758kqlpW2T5oz5B1M3ewV0vgRIZxUpFdSxvovmlD/J08bUxw8HhyeR6D9uA2pGK0h8fB9P/U4FdFWEU+iK7b2A6pTMh7Xxi7JqknjiSCTumqnfmUV52u21z7oFNeGalYCTWt/HsmHTH6TQ56h08QuSzJuItaD6hyI8+sutZ/YZU2eSfp7+gh0wP7v34MvH3g089/2ntSrmLUyAfi+z+GnfpnFv74WJYrBkaHCtltnTllnUO1IinMB40TkCtlsmRmU1S4xsgRNyqgZA0yn9sWCWmmz/awkAm1sq6AwWRJzVWDslJLfSF4VJIXTivaZNn6TIxmn0erTZaUZGgnJjr1mvwEb3/C3Jrk8ybiJlquCrCrC3WiNN6X9Win6aj1suM76/Pgfv8tOW7236f21UgripeVLueRX1zA8OlIq+EPjRpUJ+mVvJhoX1lqP02IvbLOlbWVvGvt1H3yN9gPwdangn2wfAlqBFg2q4ENNRECFgnbJo1Z2ghKYPkd2St2UFQmfKaAgEECF/S7cZxJ+4wfoenheygR/GO/TZW/KGr+zZa/xjIuw/zamoElfDM+PLu6HItH+yTFY8hhG+8exoaxfBwGrh4d49PknufCWywvbWaMSAISibDax9lSnCcTWU5hiLF/0KaXigVOa6Aad9T7bxNzMnuS+M9l9Wyn77VOeZ++8TMDhE0tPF7PF5GqNw+FwON4wXAJwOByOKYpLAA6HwzFFcQnA4XA4piguATgcDscUZY1LALZ1RiZzHYRhsrdR68YD5K3ZxO55torWaB3Y7fMEnOI1wm+s27R4XibinJRc4mubNSoBrDNjFlu9+W309/RZXw5qY9lh0oYVe8roEOlSGi1t7VtYLiciBH70oHIdFXGVKXARBUoIBMRTpZfiKU/Ze1ay1qHekha0r8v3OdpPaTu6UGk2bPS81fdstFEShZc27BmNoKAeIDrUxSrshzo8x8kEYGP8xUWDlNNIMkzrG2Cgt59dt/1AYRtrVALorfVyzxnX85vvXMFndjuAvp5eBnr7c9kwB771BJgTk3ftdFIIKnl1Ykrew23yEVeFJmYLGh07eV7nMUJi7YS08g7ApChechYXBGbw0Va7phNhUGgcQ43Gq3jgSRjIMxtKBP6Wgx+L0WXtczJIB+F+yT7rIEwEuYJOVO0bJpDm6u5mv8npi8ZvSPpNe5/vRtyOlvX6cRDLOVaSAnFNfhNVahchLMCWpgI/rXV4fpMJuhst51ladjHHoOgxbB0rOghCGbmc/faUR39PL+/e9O2cceIpLF38J/Z7/x65bCTJLAUhIh6wBHhOa72PiGwG/BxYB/gD8Bmt9aiI9AAXAO8FXgE+rrV+MrLxdeBIwAe+oLW+odNndhODWzm4igtvvpxTLzmLl5YvZWhkuO1XRHnKzrNodOTRqDH2jDZQqr2knkyXatWkfEBbwawM26T1p5N8RZ4y9nH6ODCuQMdsk0WeIS7JR8Ljk/LxDQ2gfCJcqTRJU0QvdfGchg6S0Z9J9LdFYiBLnzvpQrVuk+kYmv93EFqLt83rNx22zyO3kkUTqIjftJXsaNIAyuY38TjoMFby6C9liTcDvf0EOuATf7+AL+5/JFtvvlVHmxMhBfFF4MHE3/8NfFtrvQWwnDCwE/1crrV+K/DtaDtEZCvgEOCdwB7AGVFSKcz0/mkc97HP8Oj5d3Dz//ychR/cm95qD/09fUDzzFdrnbns3DhVu5lO8kRlcRhjz0+Z6SQ1YCCb3ENSdqJ1dtcqSZs1wZt+NGSC1bi/zeDNYtP0QwcBEkhjhkxDQtdsk0WeIT4+6LDa05PwKyJCvR88QWIp3Wz3D4xNc2XkKRXOAglngUqSftO9z7HfmKuCAIi+KjKz0Tx9jn0sIW1uaPydXeJCE0kv6MTVZItss3k9t9+0SCI3Xxlnl1sx/TA6PMleh38LuoDfGD2f+KogSMz2o0/J6jemH/FVgTQfy+RsP8txbI03sTS3CAO9fbx1o0351nHf4OVL/sS5Xz29a/DPQ6YEICLzgL2BH0Z/C7ALsDja5Hxgv+j3BdHfRO/vGm2/APi51npEa/0E8Ciwg41OiAg7vmM7LvqXM3n+ons45bP/EDpejsGRRqsWT15H6WQzVlosqQ0SJAZMsm3trjS62muT2Ir2ORl0zBw0eyru3EaNBk9yJeM0/GRACUJdHiiuvdR6Ts3XCWX0pho+2Px3UZt+i7/kSUzp7Ws5B9L8ehHC5Ev8vIY8k7jUNiYmJejxY6eovVadn7LxxiSrHbbchltPu4SHf/Rrjtn7U0zrGyhktxNZrwC+A/wD8eM3WBd4TWtdj/5+Ftg4+n1j4BmA6P3Xo+3j11P2scbs6bP40oFH43me1VUGnvKsPpUo/E7f7o1s26iSioXjsb8CwsaN7FZsttJTyrLf2NfDso1quU9SlubUZ8feROgk2TzPPdUah+9+MNtvuc2Eajp1TQAisg/wstb6nuTLKZvqLu912if5eceIyBIRWbJ06dJuzXM4HA5HQbJcAbwf2FdEniS86bsL4RXBLBGpRNvMA56Pfn8W2AQgen8m8Gry9ZR9YrTWi7TW87XW8+fOnZu7Qw6Hw+HIRtcEoLX+utZ6ntZ6U8KbuLdorT8F3AosjDY7DLgy+v2q6G+i92/R4fXgVcAhItITrSDaArjbWk8cDofDkYtK903a8o/Az0XkP4B7gXOj188FfiwijxLO/A8B0FrfLyIXAw8AdeAErXW5J5I4HA6HozC5EoDW+jbgtuj3x0lZxaO1HgYOarP/KcApeRvpcDgcDvusUZXADofD4bDHWpcAHnjqYY77zteo+/Xs5f5dEMAPfKvLsYxNa/ZaCrhs2DMPALeH3eVspo22zktrUZQN/KC4zEEagoS+aMmeWUZrq89GzsP28lybSyybHkpvgYnwm+HREf774jO46LarGB0btWa3lbUiAYyMjvCzW65gu+M+yvzP7cW5v/gZWutG8UzBE22qIiVRHakSVXp5iQebSOzOrRWYeWmtJDY/iwbuuM+JojeJ/ipyFJsqTrUGX4+rnMxDoy0SP9zeFFoVPYamHVrr8IHiBXWhDE2aTRIGr0aldn6bkgjSRs5AbPmNEvBAiyW/EeM3uqmiNS9pPlIm0BqfEWRcMWbRwB37DY0qfqNNVISk32g0T774DEd/62TmLNyar571/3j8hacK2e1EZi2gvwXdtIAee/5JfnDljzj3+p8DmpVDq9tum0szRUIBqU5HJo+9WBcng9ZILp2dLvYaekWdNViy6pbk0WBpaAu1L6xqaPfk0IgRRVBvc+UUBcYsGkixtlC7Y9ii3ZNJo8l8pkhY/tsaCMzn+dnsNeniEKTai/WK6F5NHp8/z8MPNRDG6xXphmRFN/+KhRq6aAsZDax8ftNBZyd6L8t4yqqxlXUMNPyms8/m0QrL4v+1ShUliu3e9m5OPug49tlpNype+1u4WbWA1rgEMFYf4+o7b+LUS87ij4/djx8EjNXHMts0Aan1xORx0nE2U5wnjxhUK+1EwLKIUOWxl0WEqh0C0NK3huhXfnuq4qUmK4nOmM6pLmqCXOv5zJOMYzoIhmURvUuzZwJ3R79JEy9rZw/wxMP3/fF9NkHVE3QWe5FNpSU1WWURN2xHnKyw5DdtAm2WSVyqvTYJo+hYaSfKGCfjAsdwet8AFa/C5/Y9lOP2+Qzz5m40/nPXxgSwemiQtxz2fgaHBzvO9rNSxOGy2ssyw+tGMtDbsAeJAJMzibQjGWyKJLtx7fMa0gkdZ/uZDQqizIyx+0yrIy1XBUBsO1NQbWPTXBVAlLi0X8qeSVYQymIHWRNJG3vJq4JOV3R5SPqzjXHYNFYsjeu8irrdKDK57ERPtQYIPzjxmxy15yeb3suaAMrUAbzhvL56BSsGVzI0MmzFnu2nizU9D8DCiY7VARPKmaVtmnsFlm6qJWdFNgaJEWJTShH4Fm6Sax0+vMUrGfwhDqABOkxUOghn1GVuyYqEATr6GtpP+6onpz0NoT1PYbQ6y9iLxFFDobzilpowCqeB1lbGoe3gn7Rpa5JsFgTYsjcS3Rz+02MPFLaxxt0Etv1krIkUWrLFZG/jRLRvIp6AZhMRKReoxxu0bm9K+s0U7HMZ1rgE4HA4HA47uATgcDgcUxSXABwOh2OK4hKAw+FwTFFcAnA4HI4pyhqXAOp+vftGOZjMdRAG28tVbePrwLbMj1WdpIlgUp8TrcPlr2N+ruK5rjYtY3NNfMPmJPebCehzmRVza1QC2HDd9fm3T3+ZdWfMZnrJByQbHQ9BGvo+ZQ5kQvMm+XtRTEtUYjlfWWG25BI0kfILLVXFA09QnkJ5jd8L20tovSgbfRZBPEESbSq7DC/db4pjBAuVqPKiYjrSRQrCwi3RAnWN8oFA5w/iWkOgEV9DXcc6N2X9pqEPJXbGSsJXzDkpKwRpdINaP6Mosd+INPlQUXprPfRUe9hj+w/z+f0+W9jOGlUJbKj7da6/+1ZOu+Qs7n7ojwSBZrTeXTGvm4ZIEZkAU3JOSmVtETmIbhoiWTR20rZvV4XYpDeTZXYiAqp91W+jrD+UEcjSyKZ9UmzmLZ4xshJd+5zxPLeTD2m1l6esv5Nv5KpAzahZZF4XT4XCb50CmtYoHRbidbOXp0I9TT4kfi+jxk5TG7qMlbx+000OJvdYaWln2/bnsDe9b4Ceao0T9zuCo/f6JBuuu37qdmulFEQaT774DGdefQFnX/sTgiBIlYjII8xk6OQ8eYTgDJ2CTiMxZXf+bkEs1g3KOAiM5k67AdotqKbRlKz89CCX55x0HICxQqapdO5Ot6BTxm/SpDaK+E3bQBtNOggKTjCUIpCERESr5ENmv2n8P626PI+AYGsbOyVHa35DfnmUbhO7IoG9k85XrVpDIez0ju046eDj2GP+h/E8r1sbp0YCMIzVx7jytzdw6sVncd8Tf2W0PlpY6CyJcZ6k7HKZcu6GsxEH27I6P+OEpiz1GSXRRLGcblAyEUhAYeEvgwk6GhAvDPZldVbGibyV1A0ys0lBYrXMMjaT59gEaVt9FhUJ3ZX0wyZdqPjrjeKek1QGjZ8zYGmsmKu60sewpT1lpR6S30L09fRQ8aoct8+nOf5jh/Lm9edltjPlEkCSh599nK2O/LDVm0w2NTwm0qZVPMt3dgNtT0zGYLuNlrEluhcT6CZNe8faScXzOOKjh/CDE/+DaqWae/+sCWCNugmclbfN2xylOl8i5cXuk7EmzqZNbD/VyXrwZwLaaBml7Ldv8vuN/fZNNQ2wqldl27e+q1Dwz8Pk9iSHw+FwTBguATgcDscUxSUAh8PhmKK4BOBwOBxTFJcAHA6HY4qyViaAILDzeMJmJmLZ3eReyrcmrDSc7E2cmPZNzV5bZZI3UWvN6uHBCf+ctSoBLHv9Vf7nojOY94n5sSiUjeVeShrFImU1RqChhWIK1crSqvFjAxFBJx7aXRalVOxthbVukvaiNpnCvLIIzUsNbfmNKRLyLPTZUwqEuKq1LE1+Y2mhZbLYzYbfmOOm0Zb8plG1bHOspP1eFKUUw2MjfP3c/2Lhvx/Db+9fMmF1H2vUQ+HT0Frzm/t/z7cWL+K6u29BKdX00HgpWG3bkAlorhA1zl2kiMvskyxQC6UG8sk2GOIqZSXRw8nDWbvCI/D93FWOcdm+5zU9nLzoA7fjkCKRCqIKdYSM1ICZheUplDJt1Iqm9hWRHEjaE9XcN3Mu8tprlpdo7BdXyJbxG9FQDYNgEES+6Qe5K4yb/EYb6QyNQqGLHMM20gdaB03vZyWWl5BmxdCkREVufaioDck9kuM7b3xoJy8RS1UUjDciEu835o9x2R3X84vf38bcWety0sJj+cxuBzJjYHpmu10/dzJXFHaqBH599QouuHExpy8+m2UrljM4MtTVIbIEnTyCcKbcv9PJzmMvi1ZM7Cgm6Bstl1a0hoBQ3ofOstdxyb1nbLaxR2NW2ynoNA0O0+dWm0Z7hlA0rlOfY7G4Vv2alDaaKtluxzsOINLQQGrXZ2OzU9DJIzCXJeiMT8Zt+hxoVCAE9fbCbXEfjMAcnY9h+HZD+qRbP7JUO2fRVcojMJdnrGQ5J1k1hvIknizJKo/fDPT24wc+C/9ub750wFG8921bd/rstVMK4g+P3Mfpi8/msjuuRynF4PBQbrutzlN0VtHObvh7e3GnLLS2yVMefuCjPI+AaDadhTjQNqs7thUFy2gzTgSJwWoSrBZtOpG9jQGY3WLNG9NWzyOQIJ89ksmqOeB2TEwdbCrxCALfmt+kiQDGPhRdLeXqs6+RIPzqrvUKxvM8fO1n73PUHk88/MTVZEO5tZiWU1pQNoq6RUdeY2IX2iii6pukNVkVvbqM7bUktlxqryl4yqOnWmOTuRtx8sHH8cld9qOvp69pm7UyAbyyYjkbfXw76oFv9cEKk1mTJ25b3oCQhtaIFrSfURY4g73wJ42ZJSXaaGafmkaf8ySmNjabZvDtZvt52giNPtvym0h0LzzHlGtjoJEAdN1cOZS0V1B5NAtZZc2z2bKru2TaZrONYNdvems9fOXAoznliK+1fkamBLBG3QMYGR2h4lUYrY9ZszmZgz9E383WKnaeQCXRVzxKYb7cKGsPCGeXgW/HnhiVxoqdpztJqBoa/7TUZ5X4rtYKgj1hOyVo0QjKjm8nkofNsVJWibMVTeNK2Y695p82KKtm2srw6AgrBlcVb4+1ljgcDodjjcIlAIfD4ZiiuATgcDgcUxSXABwOh2OK4hKAw+FwTFG6JgAR2UREbhWRB0XkfhH5YvT6OiJyk4g8Ev2cHb0uIvI9EXlURP4sItslbB0Wbf+IiBw2cd1yOBwORzeyXAHUga9qrd8B7AScICJbAV8DbtZabwHcHP0NsCewRfTvGOBMCBMG8A1gR2AH4BsmaWSlt9ZD3a/jWXzcoynbn6wIQjBaB1+XV2fTOiy2CqKfVpYIgk9YV1AareM2+vV6/HfpJkY1FGLj8YxRm2I5CxtUBPqr0FuxsxQ00Igf1QEElo6hp6CmkJpXeiVtaBB8NGJr6auAVBS+0nbahzUzTVj1G8KYOKN/WuH9u45arfULWus/RL+vBB4ENgYWAOdHm50P7Bf9vgC4QIf8DpglIhsCHwVu0lq/qrVeDtwE7JGnsevMmM3vvn81n/j7BfTWehjo7c+ze4wRlWoITYUUPTFmr6T4lfm9qMRWa1s8BOph2X+uQR0FLBUtsDd2Jfo7fD1/kFCeAk9QFS9au68RT4UDOu9xjAO/ND3wXIlqbmNOVMUDTxClQCQMYqbNBdrnEbanVRCwkN8IYcCfUUMN1MLAr0D1VqCvkj/Qag31ABnVMBqEEwaitgagdIHzLKCqHlRVeOyUhOe3xwvbWSChxn7jGb8hPi+FitWUIFWFVLxYGsWrVqCqwrYXIB670c84XhQUtzP2YkHAuF6yWGzwlEd/Tx9bvWkLzjjxP/mXT39iTegAACAASURBVH2xkB3IeQ9ARDYFtgXuAtbXWr8AYZIA1os22xh4JrHbs9Fr7V5v/YxjRGSJiCxZunTpuDZs+9Z38eOvfY8XL76X/z7qn9h0g00Y6O3PdDBFogATFWKYIpRYEEs3FAezKBm2OkqzaFxU5q6kadss9jylmtrU1NYgHNziA37QfkBHVbVG18UUn8Q/deNvFQW2rlcF0hjARnyuSfwrqsP0KhkCbUti8kSF+yc+P7Zt5CwyBDHxJP7suI96fN8zBR2tw9l01EZjJ81vvKx+UxHU9BpMr4VBVCApURZo3Qi8vRVUX7VzoA00qg6MBKig4dvj/SaUiRCdYQKhVBxUTdsaxzL6G43qqUCPh1S7JCtpJGOzXXKsmOrdTH4T2fOixORVvcjNG/3xI9saGokgY6xNyke0+o2vg+YJVBfMtqZt8bkgJd5kUDod6O2nr9bLp3bdnzu+czn3n3srn93j4+NkIPKQuRJYRKYBlwJf0lqv6BBw097QHV5vfkHrRcAiCKUg2n3IzIEZnLDgcD6372Hc+cA9fOvSRVzzu5tRSprUQLOIRiUJWk5Sq+hZUsej1VE62Qt0Q5+llcZnNDtKGk1BRxR+PUB5Eur5NPVZ4ynB1zr1M5vaaJJVLKSWULKMZs6tQlmdbDYCZBBd4keBKZFgTFDVLUE1vX2NINQQIKNJ1sEEfBGF1kHXyuk46HiRoJ8ognpUQRpr1TSrgWbqc5rfCNDjQc0L/aYlqKba00GcHFRvJdSVqmv0mB8nJhWEQno6OgadKkzjAKmTGkvReY4qsFWlQkAQixx2q4ENojZKRaG9SNhvtB6KEBImY01rUM3qNypsdUAjWSkQz0OjzUd0HivmOKNR1bCaXnT01VhEq6BjV7/RjfPrp2gipcWbTn4TtGzTGiOUKPp6ellv1hxOPvg4PrXL/lbVQDMlABGpEgb/C7XWl0UvvyQiG2qtX4i+4nk5ev1ZYJPE7vOA56PXP9zy+m3Fmx63jZ3fOZ+d3zmfV1Ys5/9+cRHfvuwcXnj1ZbTWtGbfrOg46LQIVylBB92DaiebSefIOjjSiPtkZnRKENWY7eftc3LGI0Y2wpPYKfPKUejEb17Fw6/7EJSTAGhNVniCUtmScRp+Yj/xFLruh4nJlt9UgV4vlCjQQSGtmiBS75SaF+o3rRhrkhTI64tB4qoADdRCvzFh1c95DONjH10VBGN+9HVjtmTcik7836tEviIS+k08u8/Z53j8KnRFQz2cxPkJn89Dk98kgnZZv0lK19e8Kgve/1G+cuDR7PiO7azeOzBkWQUkwLnAg1rrbyXeugo4LPr9MODKxOuHRquBdgJej74iugHYXURmRzd/d49es8a6M2Zz0sHH8ezPlsQ3im1ol5iMDvkdJY344TKqmFphK8mZpi2tFq11fGPXRhv9ILohSf7BkUY8+1T5tPA7odFx1rLlN6pWgUSgKWsPP7wqseGHcR8jnSQbR9EkvvB3e2NFbB5D7GqAJe1Y8ZsgoLfaw38e+TUu/tez2Gmr905I8IdsVwDvBz4D3Ccif4xe+yfgv4CLReRI4GngoOi964C9gEeBQeCzAFrrV0Xkm8Dvo+3+XWv9qpVetCAiE3DAJuIETN7VR2BfBXEimOxtlIlo4SReteawg4gUXuSSh64JQGt9B+0j1a4p22vghDa2zgPOy9NAh8PhcEwMrhLY4XA4piguATgcDscUxSUAh8PhmKK4BOBwOBxTlLUyATz0zGMElh4LZ7DySMY3wKZNbC2vjJmAxSvW22iZCfEbm4+inAAm4pzYfNYv2FsuPVGM1cf4w6P3MWbx8bdprDUJYHRslItvv5rtT9iLbY7bPX69rNBbskQ7LgMvYTO2ERVtQUIjpIzNRJOylJV3Im5P1MayS2pjyYyKh6pkl9poR/iM87DC2JTkl+1zvH9FhfUFJfvsKYV50Lupp7DhN1Q9pNqiLVMQpSJ9n6jPVv0mWopd5iiqxHhT5jyX8BtoSDiY41n6GNrQhUraM/VGWvPTWy5n7sKt+cdzTuGpl54tZbcdMpkz4fz58/WSJUs6bvPEC09zxtUXsOjan6C1ZuXQ6nHbxKXvkr3wqlOhiLGXp6LVbKuqXijbYPRddKTc6AdNQmjdiNtQ8fBFh6lcjFZOqJsTV/RmsClRMZAoQfeoULrA2PM1yodgtJ7rodZmW6kotGkfhPo6dY0e9QvZU5XoGEpzn0WkUciVYcZojo1SikBF5yTRZ68Ofj1fG0WFshlMr8G0ChiVVD9AjUEwMpbLb4zPKhSBn7iqDTSMBTASyWLk8ZuoQC0Y8JrP82iAGg0IxvxxEiht+5v4f9MxN35IKFdRpM+CoP3mfaSi0DJeoqUTsdwDiqBeH1eWYfwg11iJJVPSpF2iY5zHtyNbRmomSa1aQyHs8PZtOOmg49hrh13wvM56SSJyj9Z6fte+rIkJoO7Xue6uWzj1krNY8vCfCALNaH20qz1zcNslgjKJIu3Exe8phVa6s/iY1qFMgpaOQSduW0WBR1cxM6XDwNFuAJrXvZ4qfo90bmOgoR7AaPugYxxZeYpAaCSmdn2uh2Jmge+3HYCxqJaSzn1OqIh2StBxMq60JOM2fTYaPMbuuD5HQdXrreJPq0Cv17mNYwEyGoQCbYw/jrHeVFJDqR3mGI5BMNY+QYdt1MhAFd3vhf7TDj9AjWiCkbHOfQ4yBrnIt41cVbtzrCNxwKBbnyEWmAtoH4jjMRmEfepGN92w2G8yxodGvLGXKKb3DVCr1vj8vodzzN6fYqM5G6R/9tqYALTW/MeF3+U7l/2QsfpY6mw/K8lZhpFQSAviWYlnGRJeTsczVdUlwKShNfhAPbRnVDKVZ+yRrxrUzJB1pP9C42sj3RuKlOVqo7kqqOt4tgihHk+moJpGENmLrgrQOkokUZ/NbD9PGyFUvwyjbHSFEyVj1SHRtbPnR8mq7sdfcQRomBbN9jsF1TTqAV5d44/Uoz5HsiMofL/APaxAI2MaPeLHX71odDjb7/c6J6Y0zFXBSBAmaE18tVBolER+aPrX5DfRlUIRGlcFoYBcYBJJpOtUyGZ8NRn5TUnpiPhqOPparN1sPyu9tR601nxw6534/gnfZMtN3tLa/rUvATy/7EU2+8z7GJ3gGyOliATUCuubJ4lmTkborYj+eqpNT6BWCR9EUraNgYYRn/B631Kfx4IwAXa7wslqD6Lzouwcw0CHtnoU9FXstHHVWHh1ZWM4RskKEegvkJjSqAewovtVdmaiKxeMIJ0NBBAFk/wmuW1OXPBZvvf5bza9ljUBrHE3gSteZgXrTFjXDPJUdCPRgl0JE4mqFnv4Rlub/TWoWmqjErxa9F23rT5XVGjTlj0RqOa8yumEEtTMnvApXhb7bC8QSvj0rhk9doI/xDfHrRGpe1pd3KOjBydNYsreaE+jzAqpNS4BOBwOh8MOLgE4HA7HFMUlAIfD4ZiiuATgcDgcUxSXABwOh2OKssYlAOuaIFatTQza9sIGy2ddVZTd1VSCvRU7EV61c+VkbnsVu6vRALurbPQE6N1YPifW/ZrJP54nW/smwIsnjpkDM5g5MIOK8koVgRlUxYsq+qSpSKqYMfBq1VCWQQjLzssI0gnQV4UehQZUIASDo+Ea+aL2ptXwZvehK4AW9OpR9PD40vis9M/oZ+7Gc+mZ3gsaVrz0Gq88u4yx4WLrxaWq6Jndj5pWC18Y8hletopgsFjdh/IU09afwayNZqNqHv5IneXPL2f1q6uKnWuBGXNns8Hm8+iZ3ocOAl55+RWWvryM+ljB2hQBr6eK7guHogwH+CuGi59naEiKDI6FhXQVytWlVATVWyGYVkEC0CtGYdUoFG2iJ6i+WljgB2HV8aqRsHahCAJSq6BV2CRFlWCkHj+DupjNUAcrc0V2hjaqSiWMN54K4029XL1CTzUcJ9u85Z3Fm7UmFYJBKANxze9+yamXnMUfHrmPIAhyFYaJF2retJZzN8lA1HMEbk+QmoeW5mrBJn2RPBWOVYXqrxGohsRA3EaikvIRH4bGsjlkVYVBf6AS2kvs5InCD3zUGNRXjYTFPl1QFY/Zc2exzobroCpeLGgHYY4JgoDRwVGWPf0yK19ZkamN3kCN3nUGoCZIVPkcEwBBwOgrg4y9PpwpSPRM62H2vHXpnd2HEg8tjX1Ehw8aH3x1Na+9sJyx4e6+U+2pMedNG7DuJuuhlId4zX32g4Dh1UO8+PyLrFyxsnuHAbywfiIsVG5UhJrgLYHGXzECgxnPM+2lBeKq96qHrmQsKBRQPVWCyng/9FD42kcNa4LXhmA0o3/3eEhPJaxAT7Y78msVQLByJCoszIAnYZUzelwb4yRYD3IlU+WFY6RVDiKWgchZsSxeqIPVKgdhlAM8FH6KPlEnpvcNUK1UOWHfwzl2n0+x8ZwNx3/u2lgJ3MrjLzzFGVeez6LrfwpthOAMZrafRcfDPMhbmyrc8RuEjqcix+hiryHoJemaHwL0VqCnEs86utoLgnDAtLsqmFbFm92PriQEyjr0Nww64K+OBmDL5n3T+pi78Vx6Z/bhtQTVVAJNEAS8/uJrvPLcMuojzYFWKorarD68GT14okL5iE59RsIBOVgPrwqG6s32PGHanOnMmrcuXq05MaX3GYJA4w/XefX5V1m9fNW4Pk+fM4sNNt+Y3hkDeEp1/cpCBxrf91n60lJeXfoK9XpzG5HwKlFn9BsPwdcBMhTgr2x/VWAE2TL5jZHr8Ei/KqhIGPgl0rDp6DeEx8zX6NdHYHVKsvIE1Vsj8DSe8rqPlUgaQoYC9ODo+IQvhEV9nqBUd0G4cJIThOKIo2PpVy3SGCPdJB8yaRYldYoy6PzEk8WAtpPFWqWGUsL2b3tPKAi34y4di2KnRAIwjIyOcMVvb+DUi8/kgaceYcyvU/frYTDNqRyYpEn8qe43ZhySXTkwSZOKoB8Kuqn+7IMj1SYSfp0xUg+1g2b1wrTquNl+VhSKQPvIiEaPjDFz1gzW3WhdvGqla1Bt174g8BlZNcLSp19meHg4mu2rwm004l4jr6xGjWlmb7QOfev0ozIE6dQ2BuDrgNXLVrHylZXMWn8Oc960Pp7nxVLOuewRXWWsXM0Lz7/I4NBgONsn8oGcfTYzZPE1/utDMOQXEi5ssilCQPi1m64I0ltFV6Vr0G9HfFUwFBC8PgyA9ITJrojmTTzJ8Qm/HhoLUD3ps/2smISlx4JwrLSZ7edqY1LHSIUCjUU1fprsRTpG0/sGEBGO3fszfG7fQ9l0g00y2ZpSCSDJX59+lO9dcR5nXfcTlEihoNqKQDhIPM/aTWipKnR/1dqNPyUKZlZDJ7LQRkGYt9H69PX0WGvjypWreH3lSms3wqrKY9bMabFgXlkEYWDm7OgKx0IDgWefe47XXn/d3g3ZYZ9g2WB0jVoeJYpgvR6U8goF1VYEQa8cDa9ObfV5NAgnOJYQBD1SLy3wZjBJ09YxhLCNm82dx38d8XUW7Lw7tej7/sz7r61aQN14+5veyhlf+E8qlYqV4A/hQPO8itUVSFrKP4wiSRDO56wEfwhXW1UrFasrU3xtq3Uh8X0Xi30WKXYV0ZZAW12No4MAz/OsHccg+k7EVuBqyK1bPNPRvTRr5nI8JyMLgQ6F92w+/a231sPJBx/HQR/aJ3fwz8NalwAcDofDkQ2XABwOh2OK4hKAw+FwTFFcAnA4HI4piksADofDMUVxCcDhcDimKGtdAnh15WucfvkifN+3unTMD+zaE/GsLdkE80Bsu3piptDIFhWvgqfsibIpsftIQSF84LmyeRSVWH0MoGSoLM1pMfF/OwQ6sDxWrJmK7NlbAhqjjYKAHUbGRjnvxou566/32m9rgrWiEExrze8e+gPfuuKHXHP3zSilGBwexNMK3/cLV/qZNeaqWiEYUICCoaiApOAgrNZqeF6Ft229HT0zp/HIw/exatXrBL5faB1xrVrDDwI22+wdrL/xm3jmpcd5YenTKFGM+fkFympeFRFh643fwce335eXhl/mxodvA2CoPpzbniD0VnqY1Tedg9+1J6tXD7Hozot4bWgFg2PDhZy7VqmhtWaLN72b9dbdgJeWPc7ylUsRCRN1bnteaG/bee/mA299Pw+/+gR3PvsHPIRhP7+wXRj8hFqll/6+2SxbtpTHnnqQIPAZy6FblSRMnJqZM6bjjQSseGE5I4MjoHWxKnfPww98emf0oWbU8EUYGR0tXhVr9Hx0KE8idUnUBBQbK3Hl7mgdxoIoQYfvFaq0NdXTFY8g8PHq4I8Vjw+t1dimsr1UvEnoh4kI/T19bDB7LictPJZP/f3+TO+fltXW2l8JvGJwJT+59XJOu3wRL7/+CkMjw+OdTWsIQhEw83e3HptSczXw/7d35uFR1ece/7znzJk5M5OVBMISQGQHWQUUt3oFKYJg0bZqperVqr23PtV7q73t/eduT//o43V5eru5tlpttWrdihsoasGlgCCgAWRJWBJJIBCyzH7e+8dMMJBJMiFDkMn5PE+e5JycvPN7857ze3/L+X1/XpygmdQeaWsv6mCEHZxoPCOtD4/Hg6oyYPBQxk2fxaBhI45pFdbX17KtYj27dm3FNAyisc4rHRHBND34/UEmTJzJmSMnYLVZLBIKN7O96jO27vyEhJMgFu+6Egt6A4gI1878BkvPuZLy4i8FpqLxKKur1vDcplfY21BDwol3ucjO9nhxVLlg+NksnbKYqYPGH20VqiofVX3Cb1b/kRXbPsBACMUjndozxEAMg6JgPyaMnMHwQaMx22ihtIQb2VNTwe79WxDIKPn5LRuv6WXxpMuYN/YSigNFX9qLhVhdtZZl21bQEG4kmoh1WemYhomjSmGwhML8MnzewNHfqTrsr6tme+Wn1NXvxwDiXSQr00guqArYNoUFeQQD/mNa1pHmMIerD3F4fz2mYbbXHjoOScrUYpgGVrEfX4F9jNSF4yixWIxISrcpk8RyVKYimpQOSae1c1SMLoOWd3vtnjbXp/42qbTrZFTRHpVfMQwcU5NCeG27FI4iUQeNJo7KT3Tpc0papjPJBzGNLyvzLnzuUisMCNoBHMfh6q8t4s4l32PKmRM6tZnTCWD9js3c/9KjPLt6GaZh0hxu6dqYKmjq5knTK0i29pMiZZrnAb+na9XEhIOEHTQUS3vzeL0+EGHs5OmMmjSNYH5Bp+ZisSi7dlZQ8ek6QqFmEon4MTeP5bFw1GH4sNGMnXA2paWDOu1qO+pQU7ubLTs2UHuwGkGIO19WEh7Dg2kYjC0byS0XXsfccRfi9VidlrHq0B5e/Ox1Vu5YhYHRrlcQsGwClp+lUxazePwciv2d+3yw+TBPrX2ZB99/mqZoiObosbH0erw46jCyfCLjRkyjKL+kU3uOk2B/fRWV+zZzpKU+1UL+Mi5e00KBCWVjuXLKIqaVT+50mEtV2V5fyWvbVrKueiOGGETa9AoEQUTwmF6KCsooCJZidDHM1RJqYtfurezYvQWUdgnaNJKSI0X5eRQW5GNZnau2OwmHI7WHObSvPinFfVyvIKkzlcDO9+MpsjFtT6f3jaoSjyeIxxJEYrF2z8oxrf1QPGO1zdaKM12v4Fj1zgx6cannuXXY5fh67KiOl2UmhQa7epZVIa4YUcWJJ9qV8RhdsG70aAwzKQ/Rrr45KubRvdEE0zDxWV5GDBzKXVfdxrcvWkTA9re7LicTQDgaZvZdS9hWvYtILHpC3X3gmF5BawY3AqnWvvcExqhbewWhBBp3MAyTkrKBjJ9+DkNGjOr2GLCqcvDAF2ytWE/V7s8xxMDnsxk/cSYjR07E57O7XcTmUCPbd21ma+UmDJKiX1dNW8ANs7/FiNJh3bYXjoV5d9cHPL/pr9Q2H0BVmTlkEt+degUzyyd1e+7AcRz+tnMtv1r1FKt2rsNByfMXMmHkDEYMHouni8SUjqaWw+z+ooK9+7fhMUwsw8PCifO4bPyllOZ1nkjS2ou28F7lh7y67W2ORJpIOAnyg/0ozC/D9ga7Pe7tOA41tXvYvmsz9Q3J/6Hf56OwII+8YOCExtFDjSEaqutpqDsMJOcMvMV+vIU2xgkI2zmOQywaJxyNJStZBSMGTrgH+wHQRqBRUwklclxrP1OO6xUASRFIgxPfAyGhSEzRNvpDPdZeEjlGtsSQZEO0J+TZARxVnvzxL1hy/vzjPi4HE0D1wf2MuvVCQtHOhwsyRhWKbPAaWdvtaPzoaYwdM4W8wqKuL86ASCRMS1Mj/UrKsjKx5jgOi8omMnnIeGzLl4USwoHGGsqCRfQP9suKvTcrN/D89g/Jy8uOPY/CBaXDGDdgdFYmoVWVn6/5A82J+DHDUD2hau9nHDi0B6/V/USXjnAoTH3tIcSXnd3aVJWG6oaM9ozIFCOmON3Uwu+c1HydOtmZOXYcaMyeCB2cnAno2xfdyP/94H+O/5yMEsBptSMYgGTxrRQktZlLFk36AoGsVf4APp9NwA5m7RkxDINpw87CMrIX+lElw7HN7L3dU5JXTEnBACJOdh4+0/QwbsCYrInviQj5diHhcENW7AH4bX/WKn8A02NiBawTmoxMh4ggTnY3ZD26n0DWDApiGD3bCew4e9nmpLyB1AN6/TVQEZkvIltFZLuI/KS3P9/FxcXFJUmvJgARMYFfAZcBE4BrRaTz6WwXFxcXl5NCb/cAZgHbVXWnqkaBp4ErerkMLi4uLi70fgIYAuxpc7w3de4oInKriKwVkbV1dXW9WjgXFxeXvkRvJ4B0syrHzIio6kOqOkNVZ/Tv37+XiuXi4uLS9+jtBLAXaLurcTlQ3R0DiR6+O9uOr9CMvMuXZHfzSLIrdnOacDL0brJrLvvP3lfpDZu0fMXK19sJYA0wWkRGiIgXuAZ4OdM/Lisq5eqLFmF7fQR87Ve/dQe/18a2fEweMIriQAH5drBH9kzDJOC18UUilHgDeA1Pj0XFbNMiz+OjPFiMR0ws6dmrll7Dg9cw2dtYS1KtpuckZReym5RHFfRnaLAISwzMHr7260u97tocDWXF51YblwyZTL5lY5s9e3XTQPAZHkYNGMXwoiHYHi9mD+MctPz0CxQyafBYfB4vtqdn6z0Clo3t8TJz3BTy7SB5PXxWLNPCtnyMGTKS8pKBBO0TW/TWioiQZwcpK+zPhCGjsC0fXk/P9tHNswMEfH6mj52E32cTtANd/1En2F4ftuVjwvAx9C/sR76/Z/9DwzAI+vyMGXImS+dcecJ2en0hmIgsAB4ATOAxVf1ZR9d2JAVxuKmBJ95+nntffJj6xsM0R0IZZ/48f5A8X4A7r7iJmy69mv6FJcQTcZZtfJd73niMdVWf4qhDNEPRrqDPj6PKd2Yt5I651zOpfAwAlY0HeGPPJj6q3YGBZPxOu0dMRGBUQRkLhk1hckk5hhgcjrTwbvUWlu/7jJiTIJyh0JuQrPgLvH4uGzqJ8waOwp/S6WmJJ2iIRYl38/3u1kc13/KQb1lYRlL3RIG4oye8QNQAPEZykbyIcCDcxLs1n/P+/h2okvH/0EAwDYMBdj5zh4xjWulQLMMkoUpDJMLBSJh4NzeoN1Jl6uf1Ueyz8aT0ojYcqOLlynV83lCTUhPILBn6TAtVZfbA0SwcNo0zCgYAsPXALp7Y8AqvbnsPQwxaYpkJ8FmGB0OEs8pGc9P0JVx0xgw8hkldUz1/WPsKv/3gGULRME3RDGRTUr4GLJviQCG3n/8drpl2GYX+fCKxKC+sfZN7lj1CRfVOYok48URmccmzA4Bw89eu4vZLv8uogcNRVT7Y+jH3vfwIy9atREQIRTPz2bZ8KMrcyefzo8W3cPFZ5yIiVNXt49dvPsmDK/6E4zg0hpszsmcaJj6PlxEDyrl78S18e/ZC/F6bplAzf1z5Ivc891tq6msJRcMZK7Lm+4NYHovbF93IbQuvY3DJQBzHYfnH7/G/zz/I3zavAZRIF/pfrQR8fhx1uOr8Bdy55GZmjJmS9rqcXAl8PKrKqs/WcO8LD/P6x+9giJH25mld8XrRWedw15JbmTPl/A7lGXbW7eHXK//IQ+89CwqNkfY3jyEGfsvH4KIB/Hj+zVwza0GHraJQPMr7X3zOst2fcCQWIppIpO362qaFIcKcwRO4pHwCpXZ+WnuOOmyq38druzey/Uhth5WO1zBRhamlw5g/dBIjC/p32MqKJhyOxGI0p8TEOrojBLAMg0LLIuAxO7SnqsRVSWR4a5kCntRS+XTEnAQbD+5j+b4KvggdIeE4aYeIfIYHRZnZfzgXDxrD4GD6BXmqSigR52AkTFMsmUg789nv8VDis8nzWB2WsS50hDf3bGT53o04qmkTtCB4TQ9F3gCLhk/nwsHj8XfQUm2Ohli29T0e/fgv1DXXE0nE0mrQBK2kQNy3Js7jO5MXUF44MK09x3F4Z8cafrnqKd6v3ABAJI1IoN/jw0GZO3o2P7jgWs4dPqVDnyv2becXb/yBJ1a9iCFCU6R9cvEYJpbHYuzAEdx9+fe4csY8bG/6HsnBxkP87q1nue+VR2kMNdPUQcWdbwexvT5+uPBGbrn0GsqK0s8VxuIxXlq7gnteeZhNVVuIO05akcBgqlK9evbl3LHgRqaekf7NdFVl7bZPuP+FR3jh/deTCToSaned1+PFMISZY6Zw9ze/z2Uz/wFPByvG99bV8OCrT/KrVx4nnojTGGrvc6sqaGlBMXdddRvfnXsVhcHONbb6RAJoS13DQR5b/gwPvPQYTeEWmsLNyexrWtx++Q3cNv86BpeUZfzZ0XiUFz5ewT1vPMZn1duJJRJ4U2JsV06by7/Mu5EZZ5yVsT1VZceRWl7bs5H1B6oQhIQ6GCIMyyth4bApTCsdjqcbUgUHw028va+Ct6srcNQhnIjjMz0EPF7ml0/igkGjybMy1w1yVGmOx2mIxkikWvStj36ex0O+18LbjdW00Ne/OAAABm5JREFUqsneQLoehpBs7be2rDPli5YG3qn5nI9qdyEIUSeOZZgUeQNcWj6Os0uH4+uGPEPccTgcjVAfCR/12QAQodjro5/Ph9WNmMSdBGvrdvJK5ToqG+twVDHFQFFm9B/JwuHTGF04MGOfVZXNtdt5fP1LrNjxIYYIMSeOaZiM7jeMm6ZfyZyR5+DtxlBUdUMtv1/zIo98+ByxRJymaAt53gBBr59/Ou9qls5YTEkHyTMdLZEQf/7oNe5Z9jCVdfsIx6IEvDaOKkvPX8wPv349E8tHZ2xPVVm5+QPufekR3tq0+hjVzQvGzeBHV9zCvCkXYnZj9fm26l388o0n+N07zwFCc6SFgNemrLA/dy++hesuWEy+PzOpZUiNQqx4jnuff+joKEReaijrtgVL+efLr+eMgUO7NpQinoiz7O9vcc+zv2Xd55uSAnKmieM4LJw1h3+98hbOmzAj4/umzyWAVhzH4a1PVvPs6mUsmjWXy86+uMPsmylbanby4LvPMKK0nOvPu4KiQOfZtyuaYmHeq9nK4UgLc4ZMoCxQ2CN7ccdhw8EqNh3cy7llIxlX1LlKaCZEEgmaYnF8pkHAkxxe6AmtvQLovLWfKdFEnI8P7qGy8SCzB5zJ8Pye6QapKi3xOA2xKHkei3yr49Z+ptQ0H2LF3k0U+4JcPGRit5JxOo5Emnip4m32Hanj22d9nTP7lffIXjwR581t7/PGltUsmTSHi86c0ePNa9ZXfsaj7zzL9BETufqcBT0eO//iUB2PLH+aSDzKrfOuZWjp4B7ZC0cjPP/R66zasoYbL/4ms0Z13MPJBFVl1ad/58m3/sLcaRdyxex5eK2ezT/srKniwVeforSgmH+cdzWlhd2/t/tsAnBxcXHp6+REAhCROqCqByZKgQNZKs7pQF/zF1yf+wquz91juKp2uZDqK50AeoqIrM0kC+YKfc1fcH3uK7g+nxxyblN4FxcXF5fMcBOAi4uLSx8l1xPAQ6e6AL1MX/MXXJ/7Cq7PJ4GcngNwcXFxcemYXO8BuLi4uLh0gJsAXFxcXPooOZEAROQxEakVkc1tzv2niOwTkQ2prwWnsozZRkSGishKEakQkU9F5I7U+X4islxEPk99Lz7VZc0Wnfics7EWEVtE/i4in6R8/q/U+REi8lEqzs+k1HVPezrx9/cisqtNjKee6rJmGxExRWS9iPw1dXzSY5wTCQD4PTA/zfn7VXVq6uvVXi7TySYO/EhVxwPnAj9I7a/8E+AtVR0NvJU6zhU68hlyN9YR4BJVnQJMBeaLyLnAz0n6PBo4BNx8CsuYTTryF+DuNjHecOqKeNK4A6hoc3zSY5wTCUBV3wPqT3U5ehNVrVHVj1M/N5K8cYaQ3GP58dRljwPfODUlzD6d+JyzaJKm1KGV+lLgEuC51PmciXMn/uY0IlIOLAQeSR0LvRDjnEgAnXC7iGxMDRHlzFDI8YjIGcA04COgTFVrIFlhAgNOXclOHsf5DDkc69TQwAagFlgO7AAOq2qrEH+7vbVPZ473V1VbY/yzVIzvF5Ge7XLz1eMB4MdwdDuNEnohxrmcAH4DjCTZjawB7j21xTk5iEge8Dxwp6oeOdXl6Q3S+JzTsVbVhKpOJbmF6ixgfLrLerdUJ4/j/RWRs4CfAuOAmUA/4N9OYRGziohcDtSq6rq2p9NcmvUY52wCUNX9qRvJAR4m+eDkFCJikawIn1LVv6RO7xeRQanfDyLZisoZ0vncF2INoKqHgXdIzn8UiUirznm399Y+HWjj7/zU8J+qagT4HbkV4/OBxSJSCTxNcujnAXohxjmbAForwRRLgM0dXXs6khojfBSoUNX72vzqZeCG1M83AC/1dtlOFh35nMuxFpH+IlKU+tkPzCU597ES+GbqspyJcwf+bmnTqBGSY+E5E2NV/amqlqvqGST3SX9bVa+jF2KcEyuBReRPwMUk5VP3A/+ROp5KsttUCdzWOjaeC4jIBcDfgE18OW747yTHxP8MDAN2A99S1ZyYIO/E52vJ0ViLyGSSE4AmyQbbn1X1v0XkTJKtxX7AemBpqnV8WtOJv28D/UkOjWwAvt9msjhnEJGLgbtU9fLeiHFOJAAXFxcXl+6Ts0NALi4uLi6d4yYAFxcXlz6KmwBcXFxc+ihuAnBxcXHpo7gJwMXFxaWP4iYAFxcXlz6KmwBcXFxc+ij/D47MmTsWDbcZAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<matplotlib.figure.Figure at 0x7fa016a32518>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"nbins = 15\n",
|
||
"title('Hexbin')\n",
|
||
"hexbin(x, y, gridsize=nbins, cmap=plt.cm.BuGn_r)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import matplotlib"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 18,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Text(0,0.5,'points')"
|
||
]
|
||
},
|
||
"execution_count": 18,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEKCAYAAAAFJbKyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XuUXGWZ7/Hv07nINRAghJgAHZJAiExAaCOo3AIL0AHBObIWcwSzGM5kcECcMx7lcmYdxlFnLWcN4lG5mDE6XHQQQeUqTCCEcJBbJ5HcQ5oQkpAmaXIjhJBL93P+qLed3rn03m/Ru2pX1e+zVq23atdbVe+uXbWf/V72u83dERERyaqp2gUQEZHaosAhIiJRFDhERCSKAoeIiERR4BARkSgKHCIiEkWBQ0REoihwiIhIFAUOERGJ0r/aBcjDYYcd5s3NzdUuhohITZk1a9Y77j4kLV9dBo7m5mZaW1urXQwRkZpiZm9myaemKhERiaLAISIiURQ4REQkigKHiIhEUeAQEZEoChwiIhJFgUNERKIocIjIbnZ0dvH0ojXs6OyqdlGkgBQ4RGQ3M1/r4Op7ZzHztY5qF0UKSIFDRHZzxrFDuPPyUzjj2NTZJ6QBKXCIyG4G9GvinOOHMqBf4+wi1DyXXeP8KkREeqHmuewUOEREUPNcjLqcHVdEJFZ385ykU41DRESiKHCIiEgUBQ4REYmiwCEiIlEUOEREJIoCh4iIRFHgEBGRKAocIiISJdfAYWb/08wWmNl8M/sPM9vHzEaa2UtmttTMfmVmA0Pej4THbeH55h7vc2NYvsTMzs+zzCK70hxGIkm5BQ4zGw5cB7S4+wlAP+Ay4HvAre4+BtgAXBVechWwwd1HA7eGfJjZuPC6jwEXALebWb+8yi2yK81hJJKUd1NVf2BfM+sP7Ae0AxOBB8LzdwGXhPsXh8eE588xMwvL73P3be7+BtAGTMi53CJ/ojmMRJJyCxzu/hbwr8AKSgFjEzAL2OjuO0O2VcDwcH84sDK8dmfIf2jP5Xt4jUjuGnGKcZHe5NlUNZhSbWEk8FFgf+Cze8jq3S/Zy3N7W77r5002s1Yza+3oUJOCiEhe8jyEOhd4w9073H0H8BvgU8DBoekKYASwOtxfBRwJEJ4/CFjfc/keXvMn7j7F3VvcvWXIEDUpiIjkJc/AsQI41cz2C30V5wALgWeAL4Y8k4CHwv2Hw2PC89Pd3cPyy8Koq5HAGODlHMstIiK9yO16HO7+kpk9AMwGdgJzgCnAY8B9ZvadsGxqeMlU4B4za6NU07gsvM8CM7ufUtDZCVzj7p15lVtERHpnpYP6+tLS0uKtra3VLoaISE0xs1nu3pKWT8NEREQkigKHiIhEUeAQEZEoChwiIhJFgUNERKIocIiISBQFDhERiaLAISIiURQ4REQkigKHiIhEUeAQEZEoChwiIhJFgUNERKIocIiISBQFDhERiaLAISIiURQ4REQkigKHiIhEUeAQEZEoChwiIhJFgUNERKIocIjkYEdnF08vWsOOzq5qF0WkzylwiORg5msdXH3vLGa+1lHtooj0OQUOkRyccewQ7rz8FM44dki1iyLS5/pXuwAi9WhAvybOOX5otYshkgvVOEREJIoCh4iIRFHgEBGRKAocIiISRYFDRESiKHCIiEgUBQ4REYmiwCEiIlEUOEREJIoCh4iIRFHgEBGRKLkGDjM72MweMLPFZrbIzE4zs0PMbJqZLQ3p4JDXzOyHZtZmZnPN7OQe7zMp5F9qZpPyLLOIiPQu7xrH/wWecPexwInAIuAG4Gl3HwM8HR4DfBYYE26TgTsAzOwQ4Gbgk8AE4ObuYCMiIpWXW+Aws0HAGcBUAHff7u4bgYuBu0K2u4BLwv2Lgbu95EXgYDMbBpwPTHP39e6+AZgGXJBXuaX26KJJIpWVZ43jGKAD+LmZzTGzn5rZ/sBQd28HCOnhIf9wYGWP168Ky/a2XATQRZNEKi3PwNEfOBm4w90/Dmzhv5ql9sT2sMx7WZ58sdlkM2s1s9aODu1AGokumiRSWXkGjlXAKnd/KTx+gFIgWROaoAjp2h75j+zx+hHA6l6WJ7j7FHdvcfeWIUO0A2kk3RdNGtBPgwRFKiG3f5q7vw2sNLPjwqJzgIXAw0D3yKhJwEPh/sPAl8PoqlOBTaEp60ngPDMbHDrFzwvLRESkCvK+dOxXgV+Y2UBgGXAlpWB1v5ldBawALg15Hwc+B7QB74e8uPt6M/s28ErI90/uvj7ncouIyF6Y+27dBTWvpaXFW1tbq10MEZGaYmaz3L0lLZ8ahUVEJIoCh4iIRFHgEBGRKAocUjg6E1yk2BQ4pHB0JrhIsSlwSOHoTHCRYsv7PA6RaN1ngotIManGISIiURQ4REQkigKHiIhEUeBocBr6KiKxFDganIa+ikgsBY4Gp6GvIhJLw3EbnIa+ikgs1ThERCSKAoeIiERR4BARkSgKHCI1SMOopZqiA4eZNZnZoDwKIyLZaBi1VFOmwGFmvzSzQWa2P7AQWGJm38i3aFIJOnKtTRpGLdWUtcYxzt3fBS4BHgeOAq7IrVRSMTpyrU3dw6gH9FNrs1Re1l/dADMbQClwPOTuO3Isk1SQjlxFJFbWwPETYDmwPzDTzI4GNuVVKKkcHbmKSKyse4tH3H24u3/O3R1YAfxVjuUSKQz1A4kkZQ0cD/Z8EILHfX1fHJHiUT+QSFKvc1WZ2VjgY8BBZvYXPZ4aBOyTZ8FEiuK0UYfylTNHcdqoQ6tdFJFCSKtxHAdcCBwMXNTjdjLw1/kWTSSbvJuSXnh9HXc8+zovvL4ul/cXqTW91jjc/SHgITM7zd1fqFCZRKJ0NyXdefkpucz0q5FnIklZp1VvM7ObgOaer3F3dZBL1eW9Y9fU8yJJWQPHQ8BzwFNAZ37FEYnXiDv2HZ1dzHytgzOOHaKh1FJxWQPHfu5+fa4lEZHM8m6eE+lN1kOVR83sc7mWREQyU7+LVFPWwPE1SsFjq5m9a2abzezdPAsmInunM/6lmjL96tz9QHdvcvd93X1QeKyp1UWkYTXyjAK9Bo5wAiBmdvKebpUpoohI8TTyjAJpneN/D0wGbtnDcw5M7PMSiYjUgEbuZ0o7AXBySM+uTHFERGpDIw4D75b1CoADzOw6M3sg3K4N1+fI8tp+ZjbHzB4Nj0ea2UtmttTMfmVmA8Pyj4THbeH55h7vcWNYvsTMzo9fTRER6StZh2TcAZwC3B5up4RlWXwNWNTj8feAW919DLABuCosvwrY4O6jgVtDPsxsHHAZpckWLwBuN7N+GT9bRET6WNbA8Ql3n+Tu08PtSuATaS8ysxHAnwM/DY+NUr/IAyHLXZSuKghwcXhMeP6ckP9i4D533+bubwBtwISM5RYRkT6WNXB0mtmo7gdmdgzZph75AfBNoHu82qHARnffGR6vAoaH+8OBlQDh+U0h/5+W7+E1IiJSYVkDxzeAZ8xshpnNAKYDX+/tBWZ2IbDW3Wf1XLyHrJ7yXG+v6fl5k82s1cxaOzoab3icZNfI4+9F+kLWwPE8peuOd4XbT4C0adY/DXzezJZTulrgREo1kIPNrHs01whgdbi/CjgSIDx/ELC+5/I9vOZP3H2Ku7e4e8uQIY03PE6ya+Tx9yJ9IWvguBsYCXw73EYC9/T2Ane/0d1HuHszpc7t6e7+JeAZ4Ish2yRKM+8CPBweE56fHi5R+zBwWRh1NRIYA7ycsdwiu2nk8fcifSHr7LjHufuJPR4/Y2avlvmZ1wP3mdl3gDnA1LB8KnCPmbVRqmlcBuDuC8zsfmAhsBO4xt01tbuUrZHH34v0hayBY46ZneruLwKY2ScpNV9l4u4zgBnh/jL2MCrK3T8ALt3L678LfDfr54mISH6yBo5PAl82sxXh8VHAIjObB7i7j8+ldCIiUjhZA8cFuZZC5EPQ1fBEKivrtOpv9nbLu5AivdEoKZHK0uGZ1DyNkhKprKxNVSKFpVFSIpWlGoeIiERR4BARkSgKHCKyG83nJb1R4BCR3WikmvRGgUNEdqORatIbBQ6RAiha01D3SDWdUCl7ol+FSAGoaUhqiQKHSAGoaUhqiQKHSAHUQ9NQ0ZrbJD+1+ysVKbBG3Imqua1xKHCI5KARd6JqbmscmqtKJAeNuBPVnGGNQzUOkRzk3WcR2xTWiE1nkh8FDpEaFNsU1ohNZ5Ifc/dql6HPtbS0eGtra7WLIZKb2Kse6iqJkoWZzXL3lrR86uMQqUGx/Qnqf5C+pEMPERGJosAhIiJRFDikcDQCSKTYFDikcDQCSKTYFDikcBrx5DmRWqLA0eCK2CxUDxP+idQz/TMbnJqFiqGIAVxkbxQ4GpyahdJVYqeuAC61RIGjwVWiWajWj6YrsVNXAJdaosAhuct7x5t3YDpt1KF85cxRnDbq0FzeH9SvI7VFv1LJXd5H03kHphdeX8cdz77OC6+vy+X9y1HrtTipbQocEi12p5X30XTegamIzUixwVKBRvqSAodEa7SO3CI2I8UGs0bbZpKv4vwTpGYU7Qi8EY++Y4NZJfpppHEocEi0oh2Bxway6YvXMPmeVqYvXpNzyYrjuaUd3DajjeeWqsYhH15u/3wzO9LMnjGzRWa2wMy+FpYfYmbTzGxpSAeH5WZmPzSzNjOba2Yn93ivSSH/UjOblFeZpTbFBzLrcUtXDzWU2HUuR318T5JFnoeMO4Gvu/vxwKnANWY2DrgBeNrdxwBPh8cAnwXGhNtk4A4oBRrgZuCTwATg5u5gIx9eI/7ZJ449nClXnMLEsYdnyl8P/QOx61yOevieJJvcAoe7t7v77HB/M7AIGA5cDNwVst0FXBLuXwzc7SUvAgeb2TDgfGCau6939w3ANOCCvMrdaBrxzx5bQylan045KtG8WA/fk2RTkUvHmlkz8HHgJWCou7dDKbiYWfch0HBgZY+XrQrL9rZc+oD+7NJXdHnaxpF776aZHQA8CPydu7/bW9Y9LPNelu/6OZPNrNXMWjs6Gufo+cMqWkd3ETVirUykN7nuLcxsAKWg8Qt3/01YvCY0QRHStWH5KuDIHi8fAazuZXmCu09x9xZ3bxkyREfPeSpav0je5Sliraxo20AaS56jqgyYCixy9+/3eOphoHtk1CTgoR7LvxxGV50KbApNWk8C55nZ4NApfl5YJlVStCPwvMtTxFpZ0baBNBZz363Vp2/e2OwzwHPAPKD7sOgmSv0c9wNHASuAS919fQg0P6bU8f0+cKW7t4b3+qvwWoDvuvvPe/vslpYWb21t7eM1km47OruY+VoHZxw7pBA706KVpxJi17kRvyOJZ2az3L0lNV9egaOaFDhqWz3s5Iq2Dk8vWsPV987izstPya0DW8Gs9mUNHNpakrvY9vh6aIYp2jpUYsqR2HUu2nck2SlwSO5idxBF64wupyO6aOtQianhY9e5aN+RZKemKsldrTdJVKKZJ5aahSQPaqqSwijiqKQYRZxZNrYWp0sES1+qzX+ySAUV8QqARWzmUZ9F41DgEElRxJ30js4uXl25sVBH90X8niQfChySu1pvwihiU9udM17nh9PbuHPG65nyV2Ib5P091frvqJ4U558gdatoTRj1sAO6+qxRXDdxNFefNSpT/qJtg3LkvQ7vb9/J9/9zCe9v35nL+9cTBY4GV4mdaNGaMIq4E43dDgP6NXHikQc31NTwea9DbC2ukSlwNLhK7ESL1tRTxJ3otIVv89d3tzJt4duZ8uc9qqqcA4q8D0Ly/h3F1uIaWTH+yVI1RdyJ5q2IQ1PnrdpEl5fSLPLebuUcUExfvJbJ98xi+uK16ZnLkHdg2m9gf/7+vOPYb2BFLlNU0xQ4Glw5O9GitQUXsc9i+uI1TL6nlemL12TKP+6jg7CQ5iH2OyovMHmPW9+L/U4lPwocEq1obcFF7LMoXX+s+5ZuYP9+NDUZA/v3y5Q/73mhyjmgOH3MEK45azSnj8mr9hr3nUqO3L3ubqeccoo3qu07O/2phW/79p2duX3Glm07/JYnF/uWbTty+4wYlVjnWLFlis0fuw3yfn9396cWvu2jb3rMn1r4dubXxCjidq43QKtn2MeqxlFnpi1cEzpZ86vOx7YF592U9P72nfxuzluFaTqD/PtRYs9mjy3Pbc+08cPpbdz2TFvmMuXd71K0QRaNTFugzixYXepkXbA6WydrOWL7OPJuSvqH387nkbnt/MNv52fKHxvIKtGHkvcMwrHrMPaIUp/L2COy97lox944tIXrzDVnj+a6iaO55uzRuX1GbB9H3keiN39+HBOaB3Pz58dlyh+7k857tBDET6QYu5OOXeeB/ZtCn4t2EbI7/SrqTCWGFF51+kguGj+Mq04fmcv7xx4dv7pyE3NWbuTVlfkMZe3s6sLd6ezKr8YxY8lafvxMGzOWZAtOeY+Smjj2cKZccQoTxx6eKX85ZYpVxNFzjUqBQ6K9uGwdj89v58Vl2drX8x4BlHeNpl9TE2ZGv6b8/i4LVr8bmhjfzZQ/9juK7Qcqp9kp7+GyxRw915gUOBpceUdxccMi874yXOxMsbE7uEocfU8+4xguGj+MyWcckyl/7HcU2w9UnnyHy+Z9gKAaTXYKHA2unKO408ccxjVnjeL0MYdlyh979BqbP/68krgdXDlTmMdOIdK6fANPLHib1uUbMuWP/Y6+84UTuGj8ML7zhRMy5S9H7O+iaHSCYXYKHAWX91FQOVe3ix0Kmvc6xM4xFFuDuG16GJo6PfvQ1LkrS6Pb5ubU7xL7nR6070B+9N9P5qB9B+by/gDPLX2H22a8znNL38n8mhj579h1gmFWChwFF1sjiP3Dl3N1u9hgE/uH37R1O1/95Ww2bd2eKX/sTLGxxg47sDQ0ddiBmV8z/siDaLJSmoe8d6LlvH/sIIL44JTvjr2cJslGpcBRcLFHorF/+ErUODq7HPdSmsVNv5nHI3Pbuek38zLlj20WqsRJkhNGHkLL0YOZMPKQTPnjmwzjdqLx84vF76RjBxHErnPeTWFFPA+lqP0uxfmGZI/if8xxf/hyahyxwaxfk2FWSrM4/4QjMCulWcSOSJq3amOYiXZjpvyL396MhzSrGx+Yx8vLN3DjA9mCX0vzYC742BG0NA/OlD/v5rZTjzmEz51wBKceky3wQfyOPfZ39NzSDm6b0cZzSxtnVFVRR5IpcNSZvP+85Zg4dihTrmhh4tihmfKfeewQLvyzYZyZsUyxJz2OPvzARJrmyk83M6F5MFd+ujlTfoB33vsgkab50VNLeWRuOz96ammm/LEHFKOHHpBI00x97g0emdvO1OfeyJQfyjsIidHZRai5Zstf1KP1GEW97IECR52JPZGsnOp5bNPQpq3b+cmzr2fus5gycxmPzG1nysxlmfLHnvT4+PzViTTN3X94k5eXb+DuP7yZKT/Al05rTqRpZq3YmEj7Wtva9xJpmnIuahS7k4s9mi7VXC1zzbWoR+sxith8BgocdWduuCDQ3IwXBCpHbNPQ3947m5eXb+Bv752dKf+Yww9IpGliO9PXv7c9kaYpZye638D+NBmZg9mkTx2dSNPkfZ5IJWYgyPts9qIerdcDBY6Ci91BjPvoIMzyuyAQxDfd3H75yUxoHsztl5+cKf+S0JewJGOfwg0PzuWRue3c8ODcTPkv+8SRiTRNOaO2tu3spMtLaRZnjz2ci8YP4+yMO8XYo+nYs/3Lkfc1P/I++q6Hpq1KUeD4kPL+scX+GT/Sv4kmK6VZlFP+nz+/nJeXb+Dnzy/PlP+gfQfyN2eOynwOwehQ0xidscYxfPB+iTTNivVbE2macoamPrVgTSJNM+XZ0Dz3bLbmudjO9Nj+gXKUM0IvRuxvNe+pbhqZAseHlPePLba6HXsVttj+CohvSnpsbjtX3dXKY3PbM+X//fz2RJrmhFC7OiFjLevKz4Qa02eaM+XfvtPp6iqlWX3rko8xoXkw37rkY5nyjzxsv0SappzO6xjlnQAYN+opdohwbADPe6qbSihqLUiBYxd5zzqa9w8h9s87+80NdHkpzWruik2JNM3dLyxPpGnWbNyaSNMsXL05kaaZ8uwyXl6+IfPR/YLVm3DirnHy7JIOXl6+gWeXZNsOv1/QnkjTxM5QHNuxXE4ta+v2Ljq7SmkW8ReLKtaZ3UW8TkulKHDsIu922tiTz+L/wHF/rqXtmxNpFn98a2MiTXPi8IMSaSrbJU2xbXtnIk2zrOO9RJrmuCNKZ44fd0T2M8d/8NRriTTNO5u3J9I0z7e9w2Pz2nm+Ldv0HvEnz8XvpJ8MQe/JjMEv9mJRsZ3jeTdVlVNbj1XEWhAocOwm7w01N5x8NjfjyWfbdnaFTtZsRzUnjhjEMYftx4kjsv0Z5721PpFm8RcfH5FI04wNTUhjMzYlHXbgPok0zbNtaxJpmk3bP0ikaeavLNU45mecdwqgY9MHiTTNx0ccnEjTzFlR+h3NyTh8N/Yci3LO0v7snw3DrJRmEXtiaOxBWmw/UOx/f8FbYXThW9lGF5ZDw3FrRN4bamw4ah2b8eh14Vvv4l5Ks/jKPbNYunYLX7lnVqb8W3d4Is3i3j+0JdL0/G8k0tQyhTbvrRnbvkcctG8iTTNr2eZEmmb5+i2JNIuvnzcmkaZpCjvPpow70e5sGbNz3ND9OeyAgRw3dP9M+cs5S/vc44fy1bNHc+7x2U70jG0+ixXbDxT7379mYjjxdGJ+V9ssKgWOCuuetiLr9BXdE+tlnWBv0H4DEmma7nH6MeP1F3d8kEjTtG/8IJGmmR2OomdnPJpu63g3kabZp18yTbP5gx2JNIuZbesSaZo31r2fSNMcO3RQIk1z+dSXaN+0jcunvpQpfzmjsJ5etIYfTW/j6UX5XeckRmw/UGyfRSXOdSkqBY4KGz8izJo6Ilt7f+w5DWs2bEmkaYYdtE8izWLALmmapqbORJqm3y5pmjWbOxNpmn0G9EukaV5evjGRZvHSsvWJNE1b+4ZEmuZ3s1cm0jTbw/kk2zOeVxI7MSXA7+a8hYc0i9irEsaKvcZJETuiY4NZpUZh1UzgMLMLzGyJmbWZ2Q3VLk+5zjrucK49ezRnHZftKGv4wfsm0jSxtYFDBlkizWLHLmmatVs8kabZ2plM0/guaZr9+3cl0jx0DyzKOMCIzds6E2ma2MC07t0diTTN7OXr8ZBmtW7LtkSa5pu/fpVH5rbzzV+/mil/3iMe8z4PpRxFPRelJgKHmfUDbgM+C4wD/tLMxuXxWfHTT8f5/bx2fji9jd/Pyzby5JYnFiTSvjbztc2JtBGsfM8TaRFs3OaJNM2B+/ZPpGm2ezJNM3vFhkSaxaRPjUyk6eKGz+W9U4xtaquEop6LUhOBA5gAtLn7MnffDtwHXJzHB8VfhjTOHeF978j4/tu9KZGmGRg6Ggdm7HCMHPka3juZ1rvYpjmAQ/fvn0jTDPpIUyJNc9GJH02kaY4fum8iTWNmiTSLC8d/lKmTWrhwfLYy/cul47lo/DD+5dLxmfLnPYniE/PfxkNaFEWbluVP3L3wN+CLwE97PL4C+PEueSYDrUDrUUcd5eXasm2H3/LkYt+ybUfZ79Gb9o1b/NxbnvH2jVsy5V/avsHH/Z/HfWn7hkz5F61a58f+78d80ap1mfLPWbbGR97wqM9ZtiZT/nI+45Wl7d58/aP+ytL2TPmnzVvpR1//qE+btzJT/heWrPajr3/UX1iyOpfyxG4Dd/eV6zb7qf88zVeu25wp/xtrN/lJ33rC31i7KVP+2N9px+atfukdz3vH5q255C+i7Ts7/amFb/v2nZ2Z8m98f5tf+4tZvvH9bTmXrLiAVs+wT7ZS3mIzs0uB8939f4THVwAT3P2re8rf0tLira2tlSyiiEjNM7NZ7t6Slq9WGhtWAT2nMh0BZLuYgoiI9KlaCRyvAGPMbKSZDQQuAx6ucplERBpSTZy54u47zexa4ElKw/t/5u75DDMSEZFe1UTgAHD3x4HHq10OEZFGVytNVSIiUhAKHCIiEkWBQ0REotTEeRyxzKwDePNDvMVhQLYr5NSHRltf0Do3Cq1znKPdPfXU/LoMHB+WmbVmOQmmXjTa+oLWuVFonfOhpioREYmiwCEiIlEUOPZsSrULUGGNtr6gdW4UWuccqI9DRESiqMYhIiJRGjpwmNnPzGytmc3vsewfzewtM/tjuH2ummXsa2Z2pJk9Y2aLzGyBmX0tLD/EzKaZ2dKQDq52WftKL+tct9vazPYxs5fN7NWwzt8Ky0ea2UthO/8qTBpa83pZ3383szd6bOOTql3WvmZm/cxsjpk9Gh7nvo0bOnAA/w5csIflt7r7SeFWb/Nj7QS+7u7HA6cC14TL8N4APO3uY4Cnw+N6sbd1hvrd1tuAie5+InAScIGZnQp8j9I6jwE2AFdVsYx9aW/rC/CNHtv4j9UrYm6+Bizq8Tj3bdzQgcPdZwLrq12OSnL3dnefHe5vpvSDG07pUrx3hWx3AZdUp4R9r5d1rlvhgm7vhYcDws2BicADYXndbOde1reumdkI4M+Bn4bHRgW2cUMHjl5ca2ZzQ1NW3TTZ7MrMmoGPAy8BQ929HUo7WuDw6pUsP7usM9Txtg5NGH8E1gLTgNeBje6+M2RZRR0F0F3X1927t/F3wza+1cw+UsUi5uEHwDeBrvD4UCqwjRU4dncHMIpSdbcduKW6xcmHmR0APAj8nbu/W+3yVMIe1rmut7W7d7r7SZSumDkBOH5P2Spbqvzsur5mdgJwIzAW+ARwCHB9FYvYp8zsQmCtu8/quXgPWft8Gytw7MLd14QfYBfwb5T+cHXFzAZQ2oH+wt1/ExavMbNh4flhlI7a6sae1rkRtjWAu28EZlDq3znYzLqvw1OXl2Dusb4XhGZKd/dtwM+pr238aeDzZrYcuI9SE9UPqMA2VuDYRffOM/gCMH9veWtRaAOdCixy9+/3eOphYFK4Pwl4qNJly8ve1rmet7WZDTGzg8P9fYFzKfXtPAN8MWSrm+28l/Vd3ONgyCi19dfNNnb3G919hLs3U7qc9nR3/xIV2MYNfQKgmf0HcBal2STXADeHxydRqt4tB/6mu+2/HpjZZ4DngHn8V7voTZTa/O8HjgKGWPBUAAABzklEQVRWAJe6e10MHOhlnf+SOt3WZjaeUsdoP0oHiPe7+z+Z2TGUjk4PAeYAl4ej8ZrWy/pOB4ZQasL5I3B1j070umFmZwH/y90vrMQ2bujAISIi8dRUJSIiURQ4REQkigKHiIhEUeAQEZEoChwiIhJFgUNERKIocIiISBQFDpE+Zma/M7NZ4boQk8Oyq8zsNTObYWb/ZmY/DsuHmNmDZvZKuH26uqUXSacTAEX6mJkd4u7rw9QXrwDnA88DJwObgenAq+5+rZn9Erjd3f+fmR0FPBmuGyJSWP3Ts4hIpOvM7Avh/pHAFcCz3VO4mNmvgWPD8+cC40pTKQEwyMwODNcNESkkBQ6RPhTmDDoXOM3d3zezGcAS9jylOZSai09z962VKaHIh6c+DpG+dRCwIQSNsZSmMt8PONPMBofprv9bj/z/CVzb/aAer4kt9UeBQ6RvPQH0N7O5wLeBF4G3gH+mNAPxU8BCYFPIfx3QEq5QtxC4uvJFFomjznGRCjCzA9z9vVDj+C3wM3f/bbXLJVIO1ThEKuMfw/Ww5wNvAL+rcnlEyqYah4iIRFGNQ0REoihwiIhIFAUOERGJosAhIiJRFDhERCSKAoeIiET5/82Z6+CReLkuAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<matplotlib.figure.Figure at 0x7fa016987a20>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"plot(x, y, linestyle='', marker='o', markersize=0.7)\n",
|
||
"xlabel(\"age\")\n",
|
||
"ylabel(\"points\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Handedness t-test"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"scoresL = df.loc[df[\"hand\"] == \"L\"][\"points\"]\n",
|
||
"scoresR = df.loc[df[\"hand\"] == \"R\"][\"points\"]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"left-handed mean: 642.2278481012659\n",
|
||
"left-handed var: 1196169.9474196683\n",
|
||
"right-handed mean: 595.3157076205288\n",
|
||
"right-handed var: 885851.1384912046\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(\"left-handed mean:\", scoresL.mean())\n",
|
||
"print(\"left-handed var:\", scoresL.var())\n",
|
||
"print(\"right-handed mean:\", scoresR.mean())\n",
|
||
"print(\"right-handed var:\", scoresR.var())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"ttest = (scoresL.mean() - scoresR.mean()) / (np.sqrt(scoresL.var()/(len(scoresL)-1) + scoresR.var()/(len(scoresR)-1)))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"0.3628504016994108"
|
||
]
|
||
},
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"ttest"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"720"
|
||
]
|
||
},
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"degfree = (len(scoresL) + len(scoresR)) - 2\n",
|
||
"degfree"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Links to the converters:\n",
|
||
"- https://surfstat.anu.edu.au/surfstat-home/tables/t.php\n",
|
||
"- http://www.socscistatistics.com/pvalues/tdistribution.aspx\n",
|
||
"- https://goodcalculators.com/student-t-value-calculator/\n",
|
||
"\n",
|
||
"TODO:\n",
|
||
"- try the stats package imported above to do the t-tests and calculate the alpha and p values"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.6.4"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|