
Formal Specification and Analysis of Zeroconf

Using Uppaal

JASPER BERENDSEN, BINIAM GEBREMICHAEL and FRITS W. VAANDRAGER

Radboud University Nijmegen, The Netherlands

and

MIAOMIAO ZHANG

Tongji University, China

The model checker Uppaal is used to formally model and analyze parts of Zeroconf, a protocol
for dynamic configuration of IPv4 link-local addresses that has been defined in RFC 3927 of the

IETF. Our goal has been to construct a model that (a) is easy to understand by engineers, (b)
comes as close as possible to the informal text (for each transition in the model there should be
a corresponding piece of text in the RFC), and (c) may serve as a basis for formal verification.

Our modeling efforts revealed several errors (or at least ambiguities) in the RFC that no one
else spotted before. We present two proofs of the mutual exclusion property for Zeroconf (for
an arbitrary number of hosts and IP addresses): a manual, operational proof, and a proof that
combines model checking with the application of a new abstraction relation that is compositional

with respect to committed locations. The model checking problem has been solved using Uppaal
and the abstractions have been checked by hand.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and Mainte-
nance—Documentation; C.2.2 [Computer-Communication Networks]: Network Protocols—

Protocol verification; D.2.4 [Software Engineering]: Software/Program Verification—Formal
methods; Model checking; Validation; F.3.1 [Logics and Meaning of Programs]: Specify-
ing and Verifying and Reasoning about Programs—Logics of programs; Mechanical verification;

Specification techniques; D.2.1 [Software Engineering]: Requirements/Specifications—; F.1.1
[Computation by Abstract Devices]: Models of Computation—Automata (e.g., finite, push-
down, resource-bounded); Relations between models

General Terms: Algorithms, Standardization, Verification

Additional Key Words and Phrases: Compositional reasoning, Compositional abstraction, mod-

elling, Industrial case study, Simulation relation, Timed automata, Uppaal, Zeroconf protocol

Research supported by PROGRESS project TES4199, Verification of Hard and Softly Timed Sys-
tems (HaaST), the European Community Project IST-2001-35304 Advanced Methods for Timed
Systems (AMETIST), the DFG/NWO bilateral cooperation project Validation of Stochastic Sys-
tems (VOSS2), NWO/GBE project 612.000.103 Fault-tolerant Real-time Algorithms Analyzed

Incrementally (FRAAI), and the European Community’s Seventh Framework Programme under
grant agreement no 214755 (QUASIMODO). A preliminary version of this paper appeared as
Gebremichael et al. [2006]. All the Uppaal models described in this paper are available on-line at

http://www.cs.ru.nl/ita/publications/papers/fvaan/zeroconf/full.html.
Corresponding author’s address: F. Vaandrager, Institute for Computing and Information Sci-
ences, Radboud University Nijmegen, Heijendaalseweg 135, 6500 GL Nijmegen, The Netherlands.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–36.

2 · Jasper Berendsen et al.

1. INTRODUCTION

Our society increasingly depends on the correct functioning of modern communica-
tion technology. Most prominent are (mobile) phones and Internet, but there are
also networks in modern cars, trains, and airplanes, and the new generation of con-
sumer electronics allows all sorts of devices to communicate with each other. The
most important and most often used protocols that describe the operation of these
networks are standardized. Examples of this are the Internet protocol (TCP/IP),
FireWire/iLink (IEEE 1394), HAVi, WAP, CAN and BlueTooth. Due to a com-
bination of factors, the complexity of these protocol standards is often very high:
rapid changes in the capabilities of the underlying hardware, the fact that often
many (industrial) parties are involved in standardization, each with its own inter-
ests, and market demands to extend the functionality of the protocol. Since these
standards serve as a guide to implementers from many different companies, with
different backgrounds, it is vital that standards only allow for one clear interpreta-
tion, are complete, and ensure the required functionality for each implementation.
For most protocol standards this is clearly not the case. In fact, it is surprising
that protocols that are of such immense importance to our society are typically
written in informal language, with frequent ambiguities, omissions and inconsisten-
cies. They also fail to state what properties are expected of a network running the
protocol, and what it means for an implementation to conform to a standard.

By now there is ample evidence that formal (mathematical) techniques and tools
may help to improve the quality of protocol standards. Numerous publications de-
scribe the formal modeling and analysis of critical parts of protocols, and via these
case studies many previously undetected bugs have been detected (see e.g. Clarke
et al. [1993], Bruns and Staskauskas [1998], Devillers et al. [2000], Langevelde et al.
[2003], Stoelinga [2003], Holzmann [2004], Chkliaev et al. [2003], and Vaandrager
and Groot [2006]). In most cases, these studies were carried out after completion of
the standard, and involved guessing to fill in holes and resolve ambiguities. An ex-
ception is the work by Romijn [2004], who aim at applying formal methods already
during the standard development process. Their efforts have resulted, for instance,
in the discovery and correction of many errors, omissions and inconsistencies, as
well as the addition of correctness properties, in the IEEE 1394.1 FireWire Net
Update standard.

In order to avoid holes and ambiguities in standards, the obvious way to go is
to describe critical parts using formal specification languages, similar to the way
in which diagrams are used to specify the electrical circuits and mechanical parts.
There have been joint attempts of academia and industry to arrive at formal de-
scription languages for protocols. The most notable attempts at this have been the
LOTOS and SDL standardization efforts. However — to the best of our knowledge
— these languages have thus far not been used in the authoritative part of protocol
standards. Some protocol standard have extended finite state machines (EFSMs)
inside, but these are mostly illustrative, not completely formal, and sometimes con-
tain mistakes.1 Bruns and Staskauskas [1998] used (a well-defined subset of) C to
describe the SONET Automatic Protection Switching (APS) protocol and report

1See, for instance, ttp://www.inrialpes.fr/vasy/Press/firewire.tml.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 3

that developers found their C description easy to understand and superior to that
which appeared in the APS standard. However, the lack of abstraction mechanisms
is an obvious drawback of C.

The relationships between an (abstract) formal model of a protocol and the
corresponding informal standard are typically obscure. As pointed out in Brinksma
and Mader [2004],

“Current research seems to take the construction of verification models
more or less for granted, although their development typically requires
a coordinated integration of the experience, intuition and creativity of
verification and domain experts. There is a great need for systematic
methods for the construction of verification models to move on, and leave
the current stage that can be characterized as that of model hacking.
The ad-hoc construction of verification models obscures the relationship
between models and the systems that they represent, and undermines
the reliability and relevance of the verification results that are obtained.”

As a step towards the development of a systematic method, we report in this paper
on the systematic construction of a verification model of a recent protocol standard.
More specifically, we describe the use of Uppaal to model and analyze critical parts
of Zeroconf, a protocol for dynamic configuration of IPv4 link-local addresses. Our
goal has been to construct a model that (a) is easy to understand by engineers, (b)
comes as close as possible to the informal text (for each transition in the model
there is a corresponding piece of text in the standard), and (c) may serve as a basis
for formal verification.

Uppaal [Behrmann et al. 2004; Behrmann et al. 2006] is an integrated tool envi-
ronment for specification, validation and verification of real time systems modeled
as networks of timed automata [Alur and Dill 1994]. The tool is available for free
for non-profit applications at www.uppaal.com. The language for the new version
Uppaal 4.0 features a subset of the C programming language, a graphical user inter-
face for specifying networks of EFSMs, and timed automata syntax for specifying
timing constraints. Due to these extensions, Uppaal is able to support modeling
and analysis of critical parts of protocol specifications:

(1) The graphical syntax for EFSMs and the C-like syntax are easy to understand
for protocol designers and implementers, and very close to notations they use
anyway.

(2) Uppaal allows one to specify timing constraints between events, which is quite
important in many protocol specifications.

(3) The Uppaal language does have formal semantics and the transitions provide a
simple abstraction mechanism for the C-like syntax: the semantics of a program
is defined in terms of its effect on the observable state variables.

(4) The Uppaal toolset supports simulation and model checking.

Zeroconf [Cheshire and Steinberg 2005] is a protocol for dynamic configuration
of IPv4 link-local addresses that has been defined by the IETF Network Working
Group in RFC 3927 [Cheshire et al. 2005]. There are many situations in which
one would like to use the Internet Protocol for local communication, for instance

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Jasper Berendsen et al.

in the setting of in-home digital networks or to establish communication between
laptops. For these type of applications it is desirable to have a plug-and-play
network in which new hosts automatically configure an IPv4 address, without using
external configuration servers, like DHCP and DNS, or requiring users to set up each
computer by hand. The Zeroconf protocol has been proposed to achieve exactly
this. It describes how a host may automatically configure an interface with an
IPv4 address within the 169.254/16 prefix that is valid for communication with
other devices connected to the same physical (or logical) link. The most widely
adopted Zeroconf implementation is Bonjour from Apple Computer2, but several
other implementations are available.3

Contribution. The contribution of this paper is, first of all, a formal model of
(a critical part of) Zeroconf — a protocol with clear practical relevance — that is
easy to understand, faithful to the RFC, and with an extensive discussion of the
relationship between the model and the RFC. Our modeling efforts revealed several
errors (or at least ambiguities) in the RFC that no one else spotted before. We
present two proofs of the mutual exclusion property for Zeroconf for an arbitrary
number of hosts and IP addresses: a manual, operational proof, and a proof that
combines model checking with the application of a new abstraction relation that is
compositional with respect to committed locations. The model checking problem
has been solved using Uppaal and the abstractions have been checked by hand.

Related Work. Zeroconf involves a number of probabilistic aspects that are not
incorporated in our Uppaal model: hosts select IP-addresses randomly, using a
pseudo-random number generator, and at some point during the protocol they wait
for a random amount of time selected uniformly from an interval. The probabilistic
behavior of Zeroconf has been studied in Bohnenkamp et al. [2003] and Kwiatkowska
et al. [2003]. The primary goal of Bohnenkamp et al. [2003] was to investigate the
trade off between reliability and effectiveness of the protocol using a stochastic
cost model. The model of Bohnenkamp et al. [2003], which only involves a single
host, is quite appropriate in capturing the probabilistic behavior of IP address
configuration and conflict handling, but the analysis takes place at a level that
is much more abstract than the RFC. Based on an earlier version of the present
paper, a more detailed model has been presented in Kwiatkowska et al. [2003] using
the probabilistic model checker PRISM [Kwiatkowska et al. 2004]. The model
checking results reported in Kwiatkowska et al. [2003] are quite interesting, but
the precise relationship between the model and the RFC is unclear (for instance,
in the model of Kwiatkowska et al. [2003] address defense only occurs before a
host is using an IP address). Our motivation for using Uppaal instead of PRISM
was that the input language of PRISM is too primitive for our purposes (just a few
datatypes, no support of C-like syntax,..). A toolset that combines the functionality
of Uppaal and PRISM would be ideal for dealing with the Zeroconf protocol. The
compositional step simulation relations between timed transition systems that we
use to establish the correctness of our abstractions are inspired by the timed ready
simulations from Jensen et al. [2000], and use the framework described by Berendsen

2See http://developer.apple.com/networking/bonjour/.
3See http://en.wikipedia.org/wiki/Zeroconf.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 5

and Vaandrager [2008].

Outline. The organization of the paper is as follows. In Section 2, we explain
the protocol and our Uppaal model. Section 3 presents a manual correctness proof
of the protocol. Section 4 shows how arbitrary instances of our model can be
analyzed fully automatically after applying a series of abstractions. Finally, Section
5 presents some conclusions and directions for future research.

2. MODELING THE ZEROCONF PROTOCOL

In this section, we describe our Uppaal model of the Zeroconf protocol, and the
relationship between this model and RFC 3927 [Cheshire et al. 2005], the official
protocol standard.

A Zeroconf network is composed of a set of hosts on the same link. Hosts in
the network can be devices that are present at home, office, embedded systems
“plugged together” as in an automobile, or the laptops of some colleagues who are
writing a joint paper and want to share a file. The goal of Zeroconf is to enable
networking in the absence of configuration and administration services. The core
of Zeroconf is the dynamic configuration of IPv4 link-local addresses, and this is
the part on which we focus in this paper.

The basic idea of Zeroconf is trivial and easy to explain. A host that wants to
configure a new IP link-local address randomly selects an address from a specified
range and then broadcasts a few identical messages to the other hosts, separated
by some delay, asking whether someone is already using the address. If one of the
other hosts indicates that it is using the other address, the host starts all over again.
Otherwise, it will start using the address after waiting a certain amount of time.
One may view Zeroconf as a distributed mutual exclusion algorithm in which the
resources are IP addresses. A goal of Zeroconf is to prevent that two hosts use the
same IP address. The question whether (or under which circumstances) this goal
is actually achieved calls for verification and cannot be resolved by direct inspec-
tion and easy arguments. The underlying algorithm used in Zeroconf is similar to
Fisher’s mutual exclusion algorithm [Abadi and Lamport 1994; Lynch 1996] and
makes essential use of timing. However, whereas Fischer’s algorithm uses a shared
variable for communication between processes, Zeroconf uses broadcast communi-
cation. Within Zeroconf, hosts do not aim at acquiring access to a specific critical
section (IP address); it is enough to obtain access to one of the 65024 available
critical sections.

2.1 Fixing the Set of Hosts

RFC 3927 assumes a set of hosts. This set is not fixed and host may join and leave
while the protocol is running. Since Uppaal does not support dynamic process
creation, we assume a fixed positive number of hosts. It may take arbitrary long
before a host becomes active in the protocol and one may argue that in this way
creation of new hosts is being captured. A phenomenon that may occur in practice,
but which we have not modeled here, is that distinct Zeroconf networks are joined.
We also do not model host failure or termination (although it would be easy to add
this).

The behavior of a single host is modeled by three timed automata that run

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Jasper Berendsen et al.

concurrently: Config, InputHandler and Regular. Automaton Config describes the
configuration of a new IP address, InputHandler takes care of the incoming messages,
and Regular abstractly models the activity of all the other processes running on the
host. The three automata are parametrized by the unique hardware address (HA)
of the host they belong to. We introduce a scalar type to represent the set of all l
hardware addresses of hosts in the system:

typedef scalar[l] HAtype;

In Uppaal, the type scalar[l] denotes the set {0, . . . , l − 1}. On scalar types
only a few operations are permitted: assignment of the value of one variable to
another, and identity testing. As a consequence, scalar types are unordered and
fully symmetric: the behavior of a model is invariant under arbitrary permutations
of the elements of a scalar type [Ip and Dill 1993; Hendriks et al. 2004]. By using a
scalar type rather than a subrange type, we specify that within our model all the
HAs (and therefore all the hosts) play a fully symmetric role. This enables the use
of symmetry reduction during exploration of the state space.

2.2 The Underlying Network

We assume the presence of an underlying network via which nodes may communi-
cate. RFC 3927 states the following assumption about this network [page 4, section
1.3]:

“This specification applies to all IEEE 802 Local Area Networks (LANs)
[802], including Ethernet [802.3], Token-Ring [802.5] and IEEE 802.11
wireless LANs [802.11], as well as to other link-layer technologies that
operate at data rates of at least 1 Mbps, have a round-trip latency of at
most one second, and support ARP [RFC826].”

The Address Resolution Protocol (ARP) [Plummer 1982] is a widely used method
for converting protocol addresses (e.g., IP addresses) to local network (“hardware”)
addresses (e.g., Ethernet addresses). It takes care of dynamic distribution of the
information needed to build tables to translate protocol addresses to hardware
addresses. Within Zeroconf, all messages are ARP packets.

The goal of Zeroconf is to configure a link-local IP address. Altogether there are
216 − 2 × 256 = 65024 link-local addresses:

“The IPv4 prefix 169.254/16 is registered with the IANA for this pur-
pose. The first 256 and last 256 addresses in the 169.254/16 prefix are
reserved for future use and MUST NOT be selected by a host using this
dynamic configuration mechanism.”

The total number of link-local addresses occurs as a parameter m in our model.
The only IP addresses used by Zeroconf are link-local addresses and the all zeroes
IP address 0.0.0.0, which serves as a special ‘unknown’ or ‘undefined’ value in the
protocol. We represent the set of used IP addresses by a scalar type:

typedef scalar[m+1] IPtype;

Actually, because the IP address 0.0.0.0 plays a special rôle, the set of IP addresses
is not fully symmetric. We use a trick to denote the all zeroes IP address: we

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 7

introduce a special state variable zero of type IPtype, whose value is never changed,
and define this value to be the all zeroes IP address. In this way, we do not refer
directly to an element of the scalar type. But since variable zero is never changed,
it acts as a constant and thus, effectively, it refers to a fixed element of the scalar
type.

For our model, the relevant4 information in an ARP packet consists of (1) a
sender hardware address, (2) a sender IP address, (3) a target IP address, and (4)
the packet type, which can be either “request” or “reply”. Hence, an ARP packet
can be defined in Uppaal as follows:

typedef struct {

HAtype senderHA; // sender hardware address

IPtype senderIP; // sender IP address

IPtype targetIP; // target IP address

bool request; // is the packet a Request or a Reply

} ARP_packet;

Here we use the convention that the request field is true for ARP requests and false

for ARP replies.
In Zeroconf, all ARP packets are broadcast [page 13, section 2.5]:

“All ARP packets (*replies* as well as requests) that contain a Link- Lo-
cal ’sender IP address’ MUST be sent using link-layer broadcast instead
of link-layer unicast. This aids timely detection of duplicate addresses.”

A host that is looking for the hardware address of a host with IP address x, broad-
casts an ARP request packet with the target IP address set to x. A host with IP
address x will then return an ARP reply packet with the sender hardware address
set to its local network address.

We model the network as a set of n identical Network automata. Each of these
automata takes care of handling a single ARP request at a time, and is parametrized
by an element of the scalar type:

typedef scalar[n] Networktype;

The main reason for having n automata rather than just one, is that this allows
us to model round-trip latencies in Uppaal: each network automaton has its own
clock to keep track of timing. Figure 1 schematically illustrates the operation
of a Network automaton. After a request from a host comes in (send req), this is
broadcast to all hosts (receive msg). In case there is an answer (this may be a reply
or a request packet), this is transferred from the host to the network automaton
using a send answer action, and broadcast to all the hosts via subsequent receive msg

actions. All these interactions take place within 1 second. After completing this
task, a Network automaton returns to its initial location, ready to handle a new
request.

To simplify our model, we assume that hosts handle incoming ARP requests
in zero time, that is, we adopt the synchrony hypothesis that is well-known from
synchronous programming [Berry and Gonthier 1992]. A desktop computer can

4ARP packets also contain a target hardware address, but this can be ignored in our model since

Zeroconf uses broadcast for all messages.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Jasper Berendsen et al.

send_req

Host

receive_msg

receive_msg

send_answer

Host

Network

Fig. 1. Interaction between Network automaton and hosts.

realistically answer an ARP in 100µs. A device like a SitePlayer could take up
to 10ms. Neither have a significant impact on achieving a round-trip delay under
1s. By taking the conceptual view that the 1s which Network may use to do its
work includes the time needed by a host to generate a reply, we avoid cumbersome
modeling of input buffers at each host.

Before explaining our model of the Network automaton in detail, in Section 2.5,
we now turn our attention to the core part of RFC 3927, which concerns address
configuration.

2.3 Address Configuration

For each host, we introduce a state variable IP to store the IP address of that host:

IPtype IP[HAtype];

Figure 2 displays the automaton Config(h), which specifies how host h configures a
new IP address. The host starts in location INIT, where it stays until it has selected
an IP address. According to the RFC [page 9, section 2.1]:

“When a host wishes to configure an IPv4 Link-Local address, it selects
an address using a pseudo-random number generator with a uniform
distribution in the range from 169.254.1.0 to 169.254.254.255 inclusive.”

A transition from location INIT to location WAIT takes place when an address has
been selected. Via a so-called select statement guess:IPtype, we nondeterministically
bind identifier guess to a value of type IPtype. This means that there is an instance
of the transition for each element of the type. The transition is enabled if a value
different from zero has been selected, that is, a link-local address. In this way we
express that a link-local IP address is chosen nondeterministically. The selected
address is stored in state variable IP[h]. To mark the time at which the address
has been selected, we reset a local clock x.

The RFC continues [page 11, section 2.2.1]:

“When ready to begin probing, the host should then wait for a random
time interval selected uniformly in the range zero to PROBE WAIT

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 9

PRE_CLAIM
x<=ANNOUNCE_WAIT

WAIT
x<=PROBE_WAIT

COLLISION

PROBE
x <= PROBE_MAX

INIT

CLAIMED
counter < ANNOUNCE_NUM
imply
x<=ANNOUNCE_INTERVAL

reset[h]?
UseIP[h]:=false,
IP[h]:=zero,
x:=0

reset[h]?
IP[h]:=zero,
x:=0

reset[h]?
IP[h]:=zero,
x:=0

counter==PROBE_NUM
urg!
x:=0x:=PROBE_MAX,

counter:=0

ConflictNum >= MAX_CONFLICTS &&
x>=RATE_LIMIT_INTERVAL

reset[h]?
IP[h]:=zero,
x:=0

counter<PROBE_NUM &&
x>=PROBE_MIN
send_req!
packet.senderHA:=h,
packet.senderIP:=zero,
packet.targetIP:=IP[h],
packet.request:=true,
counter++,
x:=0

guess:IPtype
guess!=zero
IP[h]:=guess,
x:=0

counter < ANNOUNCE_NUM &&
x== ANNOUNCE_INTERVAL
send_req!
packet.senderHA:=h,
packet.senderIP:=IP[h],
packet.targetIP:=IP[h],
packet.request:=true,
counter++,
x:=0,
UseIP[h]:=true

x==ANNOUNCE_WAIT
ConflictNum:=0,
x:=ANNOUNCE_INTERVAL,
counter:=0

ConflictNum < MAX_CONFLICTS
urg!
ConflictNum++

Fig. 2. Automaton Config(h).

seconds, and should then send PROBE NUM probe packets, each of
these probe packets spaced randomly, PROBE MIN to PROBE MAX
seconds apart.”

The use of the word “should” in the above sentence is somewhat ambiguous. In our
model, we assume that it has the same meaning as the keyword “MUST” as defined
in RFC 2119, that is, the definition is an absolute requirement of the specification.
In Section 3, we will discuss the alternative interpretation in which “should” has the
same meaning as “SHOULD” in the sense of RFC 2119. This keyword means that
there may exist valid reasons in particular circumstances to ignore a particular
item, but the full implications must be understood and carefully weighed before
choosing a different course. We will see that the protocol may fail in case no probes
are sent at all.

The initial waiting period is modeled by by bounding the time that the host may
stay in WAIT via an invariant x <= PROBE WAIT. At any point the host may move to
location PROBE, where it starts sending probes. Probes are defined as follows:

“A host probes to see if an address is already in use by broadcasting
an ARP Request for the desired address. The client MUST fill in the
‘sender hardware address’ field of the ARP Request with the hardware
address of the interface through which it is sending the packet. The
‘sender IP address’ field MUST be set to all zeroes, to avoid polluting
ARP caches in other hosts on the same link in the case where the address
turns out to be already in use by another host. The ‘target hardware

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Jasper Berendsen et al.

address’ field is ignored and SHOULD be set to all zeroes. The ‘target
IP address’ field MUST be set to the address being probed. An ARP
Request constructed this way with an all-zero ‘sender IP address’ is
referred to as an ”ARP Probe”.”

Sending ARP Probes is modeled via an action send req! that synchronizes with a
matching action send req? of the network. The packet is communicated via a global
shared variable packet of type ARP packet. In Uppaal, assignments in an output (!)
transition are executed before assignments in a synchronizing input (?) transition,
and this allows us to assign a value to packet in a send req! transition, which is
then picked up by a matching send req? transition of the network. Lower and upper
bounds on timing are expressed with a guard x >= PROBE MIN on the sending transition
and an invariant x <= PROBE MAX on location PROBE, respectively. By setting x to
PROBE MAX in the transition from WAIT to PROBE, we express that the first probe is sent
immediately when location PROBE is entered. A local variable counter is used to record
the number of probes that have been sent. After the probing phase is completed, the
automaton immediately jumps to location PRE CLAIM. The urgent broadcast channel
urg ensures that this transition is taken as soon as it is enabled, that is, immediately
after sending the last probe. As the reader can check, the translation from the RFC
description of the probing phase to our model is straightforward.

According to the RFC:

“If, by ANNOUNCE WAIT seconds after the transmission of the last
ARP Probe no conflicting ARP Reply or ARP Probe has been received,
then the host has successfully claimed the desired IPv4 Link-Local ad-
dress.”

Clock x is used to ensure that exactly ANNOUNCE WAIT time units are spent in location
PRE CLAIM. A transition from location PRE CLAIM to location CLAIMED indicates that the
host has successfully claimed an address.

In our model, automaton InputHandler(h) (which will be discussed in Section 2.4)
takes care of handling incoming messages. If InputHandler(h) decides that, due to
some conflict, a new address must be configured, it performs an action reset[h]!.
This triggers a reset[h]? transition in Config(h). As part of this transition, IP[h] is
set to zero and clock x is reset. According to the RFC:

“A host should maintain a counter of the number of address conflicts
it has experienced in the process of trying to acquire an address, and
if the number of conflicts exceeds MAX CONFLICTS then the host
MUST limit the rate at which it probes for new addresses to no more
than one new address per RATE LIMIT INTERVAL. This is to prevent
catastrophic ARP storms in pathological failure cases, such as a rogue
host that answers all ARP Probes, causing legitimate hosts to go into
an infinite loop attempting to select a usable address.”

Counter ConflictNum is used in our model to record the number of conflicts that have
occurred during the process of acquiring an IP address. Depending on the value of
ConflictNum, the automaton returns to location INIT immediately or first waits for
RATE LIMIT INTERVAL time units. Again, the correspondence between the RFC text
and our model is straightforward.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 11

INIT

address:IPtype
UseIP[h] && address!=zero && address!=IP[h]
send_req!
packet.senderHA:=h,
packet.senderIP:=IP[h],
packet.targetIP:=address,
packet.request:=true

Fig. 3. Automation Regular(h).

In location CLAIMED the host announces the new address that it has just claimed
[page 12, section 2.4]:

“Having probed to determine a unique address to use, the host MUST
then announce its claimed address by broadcasting ANNOUNCE NUM
ARP announcements, spaced ANNOUNCE INTERVAL seconds apart.
An ARP announcement is identical to the ARP Probe described above,
except that now the sender and target IP addresses are both set to
the host’s newly selected IPv4 address. The purpose of these ARP
announcements is to make sure that other hosts on the link do not
have stale ARP cache entries left over from some other host that may
previously have been using the same address.”

The RFC does not specify upper and lower bounds on the time that may elapse
between sending the last ARP Probe and sending the first ARP Announcement.
However, according to the protocol designers upper and lower bound both equal
ANNOUNCE WAIT [Cheshire 2006]. Also, the RFC does not specify whether a host may
immediately start using a newly claimed address (in parallel with sending the ARP
Announcements), or whether it should first send out all announcements. According
to the designers, a host should send the first ARP Announcement, and then it can
immediately start using the address [Cheshire 2006]. So the second announcement
goes out ANNOUNCE INTERVAL seconds later, but other traffic does not need to be held up
waiting for that. Finally, the RFC does not specify the tolerance that is permitted
on the timing of ARP Announcements. Since no physical device can consistently
send messages spaced exactly ANNOUNCE INTERVAL seconds apart, strictly speaking it
is impossible for an implementation to conform to the RFC. According to the
designers, the RFC does not specify accuracy requirements, partly because the
protocol is robust to a wide range of variations, so it does not matter [Cheshire
2006]. We decided to follow the RFC and not specify accuracy requirements, but
in order to use our model for automatic generation of tests, for instance using the
Uppaal-Tron toolset [Larsen et al. 2005], one would have to modify our model at
this point.

With this additional information, the modeling of the announcement phase is
straightforward and analogous to that of the probing phase. After sending the first
announcement, a Boolean variable UseIP[h] is set to true. This enables automaton
Regular(h), displayed in Figure 3, to start sending regular ARP requests packets
with the senderIP field set to IP[h] and the targetIP field set to an arbitrary link-
local address. Even when a host is using an IP address, a conflict may arise at any
time. When this happens automaton Config(h) returns to its initial location and
UseIP[h] is set to false again.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Jasper Berendsen et al.

BUSY

INIT IDLE

answer.senderIP==zero
&& do_reset
reset[h]!
do_reset:=false

answer.senderIP!=zero
send_answer[network]!
packet:=answer,
initialize(answer)

answer.senderIP==zero
&& !do_reset

w:Networktype
receive_msg[w][h]?
ihandler(false),
network:=w

y:=DEFEND_INTERVAL+1,
initialize(answer) w:Networktype

y>DEFEND_INTERVAL
receive_msg[w][h]?
ihandler(true),
network:=w

Fig. 4. Automaton InputHandler(h).

2.4 The Input Handler

For each host h, automaton InputHandler(h) receives incoming ARP packets and
decides what to do with them. Input handling is described at various places in
RFC 3937, which makes it nontrivial to determine the reaction to an arbitrary ARP
packet, also because Zeroconf runs on top of the ARP protocol, which it sometimes
follows but sometimes overrules. Conceptually, we think it is natural to describe
input handling in terms of a single component or function. Implementations of the
protocol will typically also do this.

Automaton InputHandler(h) is displayed in Figure 4. The automaton starts with
a transition to initialize its local variables: clock y is set to a large value, and
packet variable answer is set to the undefined value. When a new packet arrives,
that is, when a receive msg[w][h]? transition occurs, the automaton calls a function
ihandler, which does the real work. The definition of ihandler is listed in Figure 5.
The Boolean parameter defend indicates whether the host will defend its IP address
in case of a conflicting ARP request. The host may only defend its address if
there has been no other conflict during the last DEFEND INTERVAL time units. Clock
y measures the time since the last conflict. The input handler must distinguish
between 9 scenarios:

Scenario A. If a packet comes in when a host has not yet selected an IP address
then it should be ignored. This scenario is not listed explicitly in the RFC but it
is obvious.

Scenario B. Incoming packets sent by the host itself can be ignored. Also this
scenario is implicit in the RFC.

Scenario C. A conflict may arise when another host sends a packet with the
senderIP field set to IP[h]. This scenario is described in the RFC as follows [page
11, section 2.2.1]:

“If during this period, from the beginning of the probing process until
ANNOUNCE WAIT seconds after the last probe packet is sent, the host
receives any ARP packet (Request *or* Reply) on the interface where
the probe is being performed where the packet’s ‘sender IP address’ is
the address being probed for, then the host MUST treat this address as

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 13

void ihandler(bool defend)
{

if (IP[h]==zero) // Scenario A: I have not selected an IP address
;

else if (packet.senderHA==h) // Scenario B: I have sent the packet myself
;

else if (packet.senderIP==IP[h]) //There is a conflict: somebody else is using my address!
{

if (not UseIP[h]) // Scenario C: select a new address
do_reset:=true;

else if (defend) // Scenario D: I am going to defend my address
{

answer.senderHA:=h;
answer.senderIP:=IP[h];
answer.targetIP:=IP[h];
answer.request:=true;
y:=0;

}
else // Scenario E: I will not defend my address

do_reset:=true;
}
else if (not UseIP[h])
{

if (packet.targetIP==IP[h] && packet.request && packet.senderIP==zero)
// Scenario F: conflicting probe

do_reset:=true;
else //Scenario G: Packet is not conflicting with IP address that I want to use

;
}
else // Packet is not conflicting with IP address that I am using
{

if (packet.targetIP==IP[h] && packet.request) // Scenario H: answer regular ARP request
{

answer.senderHA:=h;
answer.senderIP:=IP[h];
answer.targetIP:=packet.senderIP;
answer.request:=false;

}
else // Scenario I: no reply message required

;
}

}

Fig. 5. Function ihandler.

being in use by some other host, and MUST select a new pseudo-random
address and repeat the process.”

Scenarios D and E. In the previous scenario, UseIP[h]==false. The case with
UseIP[h]==true is also described in the RFC [page 12, section 2.5]:

“Address conflict detection is not limited to the address selection phase,
when a host is sending ARP Probes. Address conflict detection is an
ongoing process that is in effect for as long as a host is using an IPv4
Link-Local address. At any time, if a host receives an ARP packet
(request *or* reply) on an interface where the ‘sender IP address’ is
the IP address the host has configured for that interface, but the ‘sender
hardware address’ does not match the hardware address of that interface,
then this is a conflicting ARP packet, indicating an address conflict.
A host MUST respond to a conflicting ARP packet as described in either
(a) or (b) below:
(a) Upon receiving a conflicting ARP packet, a host MAY elect to im-

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Jasper Berendsen et al.

mediately configure a new IPv4 Link-Local address as described above,
or

(b) If a host currently has active TCP connections or other reasons to
prefer to keep the same IPv4 address, and it has not seen any other
conflicting ARP packets within the last DEFEND INTERVAL seconds,
then it MAY elect to attempt to defend its address by recording the time
that the conflicting ARP packet was received, and then broadcasting one
single ARP Announcement, giving its own IP and hardware addresses
as the sender addresses of the ARP. Having done this, the host can
then continue to use the address normally without any further special
action. However, if this is not the first conflicting ARP packet the host
has seen, and the time recorded for the previous conflicting ARP packet
is recent, within DEFEND INTERVAL seconds, then the host MUST
immediately cease using this address and configure a new IPv4 Link-
Local address as described above. This is necessary to ensure that two
hosts do not get stuck in an endless loop with both hosts trying to defend
the same address.

A host MUST respond to conflicting ARP packets as described in either
(a) or (b) above. A host MUST NOT ignore conflicting ARP packets.”

Case (a) corresponds to our scenario E. This scenario may occur when the top-
most receive msg transition in the automaton has been taken, which sets defend to
false, Case (b) corresponds to scenario D. This scenario may occur when the lower
receive msg transition in the automaton has been taken, which sets defend to true.

The interpretation of the sentence “and it has not seen any other conflicting ARP
packets within the last DEFEND INTERVAL seconds” in the above quotation is
not entirely clear. Is a host allowed to defend its address if there has been a recent
conflict concerning a different address (but no previous conflict concerning the cur-
rent address)? Strictly speaking, the host has seen a conflicting packet and it may
not defend. However, the conflict concerned a different address, and the motivation
for recording the time since the last conflict has been to rule out a scenario in which
two hosts get stuck in an endless loop trying to defend the same address. Thus
one could also argue that in this situation a host may defend its address. To model
this interpretation, one has to add an assignment y := DEFEND INTERVAL+1 to the reset
transition of the input handler.

Scenarios F and G. The RFC specifies one more conflict scenario [page 11, sec-
tion 2.2.1]:

“In addition, if during this period [from the beginning of the probing
process until ANNOUNCE WAIT seconds after the last probe packet
is sent] the host receives any ARP Probe where the packet’s ‘target
IP address’ is the address being probed for, and the packet’s ‘sender
hardware address’ is not the hardware address of the interface the host
is attempting to configure, then the host MUST similarly treat this as
an address conflict and select a new address as above. This can occur
if two (or more) hosts attempt to configure the same IPv4 Link-Local
address at the same time.”

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 15

BUSY
z<=1

IDLE

send_answer[w]?
a_buffer.senderIP==zero
send_answer[w]?
a_buffer:=packet,
set(answer)

a:HAtype
answer[a]==true
receive_msg[w][a]!
answer[a]:=false,
packet:=a_buffer

a:HAtype
send[a]==true
receive_msg[w][a]!
send[a]:=false,
packet:=s_buffer

forall (a:HAtype) !send[a] && !answer[a]
urg!

initialize(s_buffer),
initialize(a_buffer)

send_req?
s_buffer:=packet,
set(send),
z:=0

Fig. 6. Automaton Network(w).

In the ihandler code, this corresponds to scenario F. Scenario G, which is implicit
in the RFC, occurs when the incoming packet is not conflicting and the host is not
yet using an IP address. In this case the incoming packet is ignored.

Scenario H and I. The Address Resolution Protocol (RFC 826) [Plummer 1982]
specifies that if a host receives an ARP request packet, it should return an ARP
reply packet if it uses an IP address that equals the target protocol address of this
request. In the reply packet the sender fields contain the local hardware address
and local IP address, and the target field contains the value of the sender field of
the received packet. Zeroconf (RFC 3927) is not explicit about conformance to
RFC 826 (it assumes a link-layer technology that “supports ARP”), but in our
model we take the view that once a host is using an IP address, it answers regular
ARP requests in agreement with RFC 826 except when (a) the request has been
broadcast by the host itself, or (b) there is a conflict. This is scenario H in our
model. The final Scenario I occurs when the incoming packet is not conflicting with
the IP address that the host is using, and no reply packet needs to be sent.

2.5 The Network Automaton

As explained in Section 2.2, we model the underlying network as a set of n identical
Network automata. For index w, the automaton Network(w) is shown in Figure 6.
Initially the automaton is in its IDLE location. As soon as it receives a packet via
a send req? transition, it jumps to location BUSY. A local clock z is set to zero and
an invariant z <= 1 ensures that within 1 second the network broadcasts the packet
(as well as the answer if there is one) to all hosts. We assume no lower bound on
message delivery time, but we do assume that there is at most one host that answers
any given request, and that an answer does not induce subsequent answers. It is
possible to model multiple and successive anwers, but this will require additional
state variables and more complicated data structures.

Our Network automaton maintains two local variables for storing packets: s buffer

holds the packet that was sent by the host and a buffer holds an answer to a
request when it arrives. In addition, Network maintains Boolean arrays send and
answer to record to which hosts packets still need to be delivered. The function set

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Jasper Berendsen et al.

is used to set all entries of a Boolean array to true. Via a select statement on the
receive msg[w][a]! transitions, the automaton nondeterministically selects in which
order packets are delivered to the different hosts. The upper transition labeled with
send answer[w]? occurs when a host returns an answer upon receipt of a request, as
explained in Subsection 2.4. The lower transition labeled with receive msg[w][a]! is
enabled as soon as there is an answer packet in answer buffer. The network returns to
its IDLE location and resets the buffers to their initial value, as soon as all messages
have been delivered.

2.6 Dimensioning the Model

The RFC [page 25, section 9] specifies the following values for the different timing
constants. These definitions are copied verbatim in the declaration section of our
Uppaal model:

"PROBE_WAIT 1 second (initial random delay)
PROBE_NUM 3 (number of probe packets)
PROBE_MIN 1 second (minimum delay till repeated probe)
PROBE_MAX 2 seconds (maximum delay till repeated probe)
ANNOUNCE_WAIT 2 seconds (delay before announcing)
ANNOUNCE_NUM 2 (number of announcement packets)
ANNOUNCE_INTERVAL 2 seconds (time between announcement packets)
MAX_CONFLICTS 10 (max conflicts before rate limiting)
RATE_LIMIT_INTERVAL 60 seconds (delay between successive attempts)
DEFEND_INTERVAL 10 seconds (minimum interval between defensive ARPs)."

In general, a Zeroconf network has 65024 IP addresses available and it is suitable
for up to 1300 hosts [Cheshire et al. 2005]. These values are too big for automatic
verification: with 3 hardware addresses and 65024 IP addresses even the simulator
runs out of memory.

A next issue regarding the dimensioning of the model is the number n of Network

automata, i.e., the maximal number of ARP packets that may be in transit at any
given point. In our model, a host may select an IP address, send a probe, and
return to its initial location via a reset in zero time. In fact, this behavior may
be repeated MAX CONFLICTS times in a row in zero time. Once a host is using an
IP address, the number of messages in transit may increase even further (in fact
unboundedly) since there is no lower bound on the time between successive ARP
requests. Uppaal forces us to bound the number of Network automata to some small
number n.

3. MANUAL VERIFICATION

The RFC does not specify what properties the protocol must satisfy. However, it
is clear that at least the following two correctness properties are desirable:5

(1) Mutual exclusion, that is, two hosts may not use the same IP address. This
can be specified in Uppaal as follows:

ME = A[] forall (i: HAtype) forall (j: HAtype)

(UseIP[i] && UseIP[j] && IP[i]==IP[j]) imply i==j

5Mutual exclusion will not hold in an extension of our model in which Zeroconf networks can be
merged. In such an extension the specification should be weakened: mutual exclusion may be
violated after a join, but as soon as the violation is detected mutual exclusion will be restored

within a specified amount of time, provided no further joins occur.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 17

(2) Absence of deadlock, that is, in each reachable state a transition is possible. In
Uppaal syntax:

DL = A[] not deadlock

The model described in the previous section is very close to the RFC definition
of the protocol, but too big for Uppaal to do a complete state space exploration
for nontrivial instances without some drastic abstractions. Using the latest version
of Uppaal (4.0), we only managed to establish ME and DL for the instance with 2
hardware addresses, 1 link-local IP address and 2 network automata. Nevertheless,
it is not too hard to see that Zeroconf satisfies mutual exclusion and absence of
deadlock. In the remainder of this section, we sketch a manual proof of mutual
exclusion. We claim that our model has no deadlocks but do not present the (long
and tedious) proof here.

Theorem 3.1. For each instance of the Zeroconf model (i.e., any number of
hardware addresses, IP addresses and network automata), the mutual exclusion
property ME holds.

Proof. (Sketch) Suppose that i and j are distinct hardware addresses and
suppose that in some reachable state s, UseIP[i] ∧ UseIP[j] ∧ (IP[i] = IP[j]). We
derive a contradiction. Consider an execution α leading up to state s, that is,
a finite sequence of delay and action transitions in the timed transition system
semantics of the model leading from the start state to s. Observe that before a
host enters the “critical section” (where it may use its IP address) it resides at least

PROBE_MIN + PROBE_MIN + ANNOUNCE_WAIT = 1 + 1 + 2 = 4

time units in the “trying region” (where it has selected an IP address but is not yet
using it). Formally, the trying region of host i is characterized by the predicate

Config(i).WAIT || Config(i).PROBE || Config(i).PRE_CLAIM ||

(Config(i).CLAIMED && !UseIP[i])

and the critical section is defined by

UseIP[i]

Moreover, exactly ANNOUNCE WAIT=2 time units before entering the critical section, a
host sends a (in fact, the last) probe packet.

Assume that host i is in its critical section from time t0 onwards, and is in its
trying region from time t1 to t0. Similarly, host j is in its critical section from
time u0 onwards, and is in its trying region from time u1 to u0. Let t be the time
at which host i sends its last probe and let u be the time at which this probe is
received by the input handler of host j. Without loss of generality, assume that
host j enters the critical section before (but possibly at the same time as) i. Then

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Jasper Berendsen et al.

u0

t0

t u

Host i Host j

u1

t1

Fig. 7. Probe arrives at j before it enters critical section.

we have the following (in)equalities:

t0 ≥ u0

t0 − t1 ≥ 4

u0 − u1 ≥ 4

t = t0 − 2

u ≥ t

u ≤ t + 1.

We consider two cases:

(1) See Figure 7. The probe arrives at host j before j enters the critical section.
At this moment, j must be in its trying region since:

u ≥ t = t0 − 2 ≥ u0 − 2 > u0 − 4 ≥ u1.

But this means that host j’s input handler, upon receipt of the conflicting
probe, will generate a reset (Scenario F) and immediately drive Config(j) back
to its initial state, i.e, out of the trying region. Contradiction.

(2) See Figure 8. The probe arrives at host j after j has entered the critical
section. But this means that host j’s input handler, upon receipt of the probe,
will return a reply message (Scenario H). Since we assume a roundtrip delay
of at most 1 time unit, this reply message will arrive at i at some time t′ with
t′ ≤ t + 1. At time t′ host i is still in its trying region since

t0 = t + 2 > t + 1 ≥ t′ ≥ t = t0 − 2 > t0 − 4 ≥ t1.

Hence, the input handler will generate a reset upon receipt of this reply message
(Scenario C) and drive Config(i) back to its initial state, i.e, out of its trying

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 19

u0

t0

t1

t

Host i Host j

u1

u

t’

Fig. 8. Probe arrives at j after it enters critical section.

region. Contradiction. QED

We expect that formalization/mechanization of the proof of Theorem 3.1, for in-
stance in PVS using the basic setup of Vaandrager and Groot [2006], will be routine
although it will involve a significant amount of work.

Inspection of the proof indicates that Zeroconf is extremely robust: the protocol
has been designed to handle all kinds of error scenarios (loss of messages, fail-
ure of hosts, merge of networks) which do not occur within our idealized model.
Without these errors, it suffices (for mutual exclusion) to send out a single probe
(PROBE NUM=1), there is no need for sending announcements (ANNOUNCE NUM=0), and a
host may start using an address after waiting any time longer than the maximal
communication delay. For a model of this simplified protocol with 3 hosts, Uppaal
can verify ME and DL in a few seconds on a standard PC.

4. VERIFICATION BY MODEL CHECKING AND ABSTRACTION

Next to the operational proof of mutual exclusion (Theorem 3.1) described in the
previous section, we also would like to have a proof that is obtained in a more
automatic and structured way. Model checking is of course such an automatic
way, but it suffers from state space explosion. Moreover, model checking usually
can only verify a single instance of a protocol, whereas one would like to establish
correctness for all (possibly infinitely many) instantiations of its parameters (l, m).
We will show that abstractions are a remedy to both problems.

We use an abstraction relation that is sound for the property to be verified,
meaning that when the property holds in the (simple) abstract model, then it
also holds in the (more complex) concrete model. We will apply abstractions in a

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Jasper Berendsen et al.

compositional way, which means that in a parallel composition of a set of automata,
a subset is replaced by an abstraction, thereby obtaining a new full model that in
turn is an abstraction of the original full model.

Section 4.1 introduces our compositional abstraction framework. Section 4.2
establishes soundness of an abstraction that only uses two hosts. Section 4.3 derives
an even more abstract system that can effectively be verified by Uppaal. Section 4.4,
finally, presents our model checking results.

4.1 Compositional Abstraction

The standard operational semantics of a Uppaal model is defined on the model as
a whole, see Behrmann et al. [2004] or the Uppaal help menu. For compositional
verification we use the approach described in Berendsen and Vaandrager [2008],
in which a timed transition systems (TTSs) is associated to each individual timed
automaton. TTSs can be composed in parallel and a compositional abstraction
relation is defined that is sound for invariant properties.

Basically, TTSs are labeled transition systems equipped with some additional
structure to support shared variables and committed transitions: states are de-
fined as valuations of variables, and transitions may be committed, which gives
them priority in a parallel composition. TTSs can be composed in parallel and
may communicate by means of shared variables and synchronization of actions.
Like in CCS [Milner 1989], two transitions may synchronize when their actions are
complementary, leading to an internal transition in the composition.

Below we write R≥0 for the set of nonnegative real numbers, N for the set of
natural numbers, and B = {1, 0} for the set of Booleans. We let d range over R≥0,
i, j, k, n over N, and b, b′, . . . over B.

We consider three different types of state transitions, corresponding to three
different types of actions. We assume a set C of channels and let c range over C.
The set of external actions is defined as E , {c!, c? | c ∈ C}. Actions of the form c!
are called output actions and actions of the form c? input actions. We assume the
existence of a special internal action τ , and write Eτ for E ∪ {τ}, the set of discrete
actions. Finally, we assume a set of durations or time-passage actions, which in
this paper is just R≥0. We write Act for Eτ ∪ R≥0, the set of actions.

TTSs are capable of communication over a universal set V of typed variables,
with a subset X ⊆ V of clock variables or clocks. Clocks have domain R≥0. A
valuation for a set V ⊆ V is a function that maps each variable in V to an element
in its domain. We let u, v, w, . . . range over valuations, and write Val(V) for the
set of valuations for V . For valuation v ∈ Val(V) and duration d ∈ R≥0, we define
v⊕ d to be the valuation for V that increments clock variables by d, and leaves the
other variables untouched, that is, for all y ∈ V ,

(v ⊕ d)(y) ,

{

v(y) + d if y ∈ X

v(y) otherwise.

We write dom(f) to denote the domain of a function f (in our case a valuation).
For functions f and g, we let f �g denote the combined function where f overrides
g for all elements in the intersection of their domains. Formally, f �g is the function

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 21

with dom(f � g) = dom(f) ∪ dom(g) satisfying, for all z ∈ dom(f � g),

(f � g)(z) ,

{

f(z) if z ∈ dom(f)

g(z) if z ∈ dom(g) − dom(f).

We define the dual operator by f �g , g�f . Two functions f and g are compatible,
notation f♥g, if they agree on the intersection of their domains, that is, f(z) =
g(z) for all z ∈ dom(f) ∩ dom(g). For compatible functions f and g, we define
f‖g , f � g. Whenever we write f‖g, we implicitly assume f♥g. We write f [g] for
the update of function f according to g, that is ∀z ∈ dom(f) : f [g](z) = (f � g)(z).

The state variables of a TTS are partitioned into external and internal variables.
Internal variables may only be updated by the TTS itself and not by its environ-
ment. This in contrast to external variables, which may be updated by both the
TTS and its environment. Transitions are classified as either committed or uncom-
mitted. Committed transitions have priority over time-passage transitions and over
internal transitions that are not committed.

Definition 4.1 TTS. A timed transition system (TTS) is a tuple

T = 〈E,H, S, s0,−→1,−→0〉,

where E,H ⊆ V are disjoint sets of external and internal variables, respectively,
V = E ∪ H, S ⊆ Val(V) is the set of states, s0 ∈ S is the initial state, and the
transition relations −→1 and −→0 are subsets of S × Act × S.

We write r
a,b
−−→ s if (r, a, s) ∈−→b. The value b determines whether or not a

transition is committed. We often omit b when it equals 0. A state s is called
committed, notation Comm(s), iff it enables an outgoing committed transition,

that is, s
a,1
−−→ for some a. We require the following axioms to hold, for all s, t ∈ S,

a, a′ ∈ Act , b ∈ B, d ∈ R≥0 and u ∈ Val(E),

s
a,1
−−→ ∧s

a′,b
−−→ ⇒ a′ ∈ E ∨ (a′ = τ ∧ b) (Axiom I)

s[u] ∈ S (Axiom II)

s
c?,b
−−→ ⇒ s[u]

c?,b
−−→ (Axiom III)

s
d
−→ t ⇒ t = s ⊕ d. (Axiom IV)

Axiom I states that in a committed state neither time-passage steps nor uncom-
mitted τ ’s may occur. The axiom implies that committed transitions always have
a label in Eτ . Note that a committed state may have outgoing uncommitted tran-
sitions with a label in E . The reason is that, for instance, an uncommitted c?-
transition may synchronize with a committed c!-transition from another compo-
nent, and thereby turn into a committed τ -transition. Axiom II states that if the
external variables of a state are changed, the result is again a state. Axiom III
states that enabledness of input transitions is not affected by changing the external
variables. This is a key property that we need in order to obtain compositionality.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Jasper Berendsen et al.

r
e,b
−−→i r′

r‖s
e,b
−−→ r′ � s

EXT

r
τ,b
−−→i r′ Comm(s) ⇒ b

r‖s
τ,b
−−→ r′ � s

TAU

r
c!,b
−−→i r′ s[r′]

c?,b′

−−−→j s′ i 6= j

Comm(r) ∨ Comm(s) ⇒ b ∨ b′

r‖s
τ,b∨b′

−−−−→ r′ � s′
SYNC

r
d
−→i r′ s

d
−→j s′ i 6= j

r‖s
d
−→ r′‖s′

TIME

Fig. 9. Rules for parallel composition of TTSs

Axiom IV, finally, asserts that if time advances with an amount d, all clocks also
advance with an amount d, and the other variables remain unchanged.

In our setting, parallel composition is a partial operation that is only defined
when TTSs are compatible: the initial states must be compatible functions and the
internal variables of one TTS may not intersect with the variables of the other.

Definition 4.2 Parallel composition. Two TTSs T1 and T2 are compatible if H1∩
V2 = H2 ∩ V1 = ∅ and s0

1♥s0
2. In this case, their parallel composition T1‖T2 is the

tuple T = 〈E,H, S, s0,−→1,−→0〉, where E = E1 ∪ E2, H = H1 ∪ H2, S = {r‖s |
r ∈ S1 ∧ s ∈ S2 ∧ r♥s}, s0 = s0

1‖s
0
2, and −→1 and −→0 are the least relations that

satisfy the rules in Figure 9. Here i, j range over {1, 2}, r, r′ range over Si, s, s′

range over Sj , b, b′ range over B, e ranges over E and c over C.

The external and internal variables of the composition are simply obtained by
taking the union of the external and internal variables of the components, respec-
tively. The states (and start state) of a composed TTS are obtained by merging the
states (resp. start state) of the components. The interesting part of the definition
consists of the rules in Figure 9. Rule EXT states that an external transition of a
component induces a corresponding transition of the composition. The component
that takes the transition may override some of the shared variables. Similarly, rule
TAU states that an internal transition of a component induces a corresponding
transition of the composition, except that an uncommitted transition may only oc-
cur if the other component is in an uncommitted state. Rule SYNC describes the
synchronization of components. If Ti has an output transition from r to r′, and if Tj

has a corresponding input transition from s, updated by r′, to s′, the composition
has a τ transition to r′ �s′. The synchronization is committed iff one of the partic-
ipating transitions is committed. However, an uncommitted synchronization may

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 23

only occur if both components are in an uncommitted state. Rule TIME, finally,
states that a time step d of the composition may occur when both components
perform a d-step. We refer to Berendsen and Vaandrager [2008] for proofs that the
composition of two TTSs is indeed a TTS, and that parallel composition is both
commutative and associative modulo structure isomorphism.

Uppaal models can be mapped to TTSs in a straightforward manner [Berendsen
and Vaandrager 2008]. Each variable in a Uppaal model corresponds to a variable
in a TTS. We treat each element in a Uppaal array as a distinct variable. For each
timed automaton A we introduce a fresh variable A.loc to record the location. The
location and local variables of an automaton A are always classified as internal. If
v is a local variable of automaton A then A.v becomes an internal variable of the
TTS associated to A. Each global variable in a Uppaal model becomes an external
variable of all automata. A discrete transition is committed if and only if it starts
from a state with a committed location.

For the axioms of a TTS to hold we need timed automata to comply with the
following rules as defined in Berendsen and Vaandrager [2008]:

—Location invariants do not depend on external variables.

—Satisfaction of guards on input transitions does not depend on the external vari-
ables.

—In a committed location always at least one edge is enabled.

—Urgent edges do not synchronize and their guards do not depend on the values
of clocks.

It is easy to see that all these rules hold for the Zeroconf model. The urgent action
urg! can be viewed as an urgent internal action. Because urg? is used nowhere, this
broadcast synchronization will only involve a single automaton.

Given a timed automaton A, we write TTS(A) to denote its TTS semantics.
The semantics of a complete Uppaal model A1, . . . , An is obtained by associating
a TTS to each individual automaton in the model, taking the composition of all
these TTSs, and then removing all synchronization transitions from the resulting
TTS using the restriction operator \E from CCS [Milner 1989]:

(TTS(A1)‖ · · · ‖TTS(An))\E .

We claim that, modulo the “committed” Booleans that label transitions, the re-
sulting TTS is equal to the semantics for Uppaal models as defined in Behrmann
et al. [2004]. For a proof we refer to Berendsen and Vaandrager [2008].

Abstractions on TTSs can be defined by timed step simulations, which are rela-
tions on the states of TTSs. Timed step simulation requires that (a) both TTSs
have the same external variables, (b) the initial states are related, (c) related states
have the same values for external variables, and (d) if these values are changed
by the environment the resulting states are again related, (e) if an abstract state
is committed then so is every related concrete state, and (f) each transition in
the concrete TTS can be mimicked by a transition between related states in the
abstract TTS, except τ , which may be simulated by “doing nothing”.

Definition 4.3 Timed step simulation. Two TTSs T1 and T2 are comparable if
they have the same external variables, that is E1 = E2. Given comparable TTSs

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Jasper Berendsen et al.

T1 and T2, we say that a relation R ⊆ S1 × S2 is a timed step simulation from T1

to T2, provided that s0
1 R s0

2 and if sR r then

(1) ∀y ∈ E1 : s(y) = r(y),

(2) ∀u ∈ Val(E1) : s[u] R r[u],

(3) if Comm(r) then Comm(s),

(4) if s
a,b
−−→ s′ then either there exists an r′ such that r

a,b
−−→ r′ and s′ R r′, or a = τ

and s′ R r.

We write T1 � T2 when there exists a timed step simulation from T1 to T2.

The following two theorems play a key role in our approach. Theorem 4.4 states
that invariants for an abstract system are also invariants for a related concrete
system, Theorem 4.5 establishes that timed step simulations are compositional.

Theorem 4.4. Let T1 and T2 be comparable TTSs such that T1 � T2. Let φ be
an invariant over the external variables of T1 (and T2), then

φ holds in T2 ⇒ φ holds in T1.

Theorem 4.5. Let T1, T2, T3 be TTSs such that T1 and T2 are comparable, and
both T1 and T2 are compatible with T3. If T1 � T2 then T1‖T3 � T2‖T3.

4.2 An Abstraction with Two Hosts

In this section we will establish that, for the purpose of proving mutual exclusion,
a model with just two hosts is a sound abstraction of the model with l hosts that
we presented in Section 2. Figure 10 presents an overview of all the abstraction
steps that we are going to make as part of our verification effort. The figure will
be explained in the next paragraphs.

Step 1: Reorder. The first row of Figure 10 shows the situation of the original,
unabstracted model. A box Hostx denotes the host with hardware address x. Alto-
gether there are l hosts with addresses {0, . . . , l− 1}. Each host consists of three
automata Config, InputHandler and Regular, as illustrated for Host0. In addition there
are the network automata. We write

Net = ‖i∈Networktype Network(i).

Whenever Config or Regular sends a message, an automaton Network(i) is activated,
for some i. To simplify reasoning, we associate network automata to specific hosts
in the system. More specifically, we introduce one copy of Net for each Config(j) and
each Regular(j) automaton in the system. Let Networktype′ denote the set of indices
of Network automata in the modified system. Then we have an injective mapping

〈·〉 : {C,R} × Networktype× HAtype → Networktype
′,

where 〈C, i, j〉 refers to the copy of Network(i) for use by Config(j), and 〈R, i, j〉 refers
to the copy of Network(i) for use by Regular(j). We also have projections

HA : Networktype′ → HAtype

Comp : Networktype′ → {C,R},

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 25

Host0

InpH3

Chaos2

Chaos2

InpH

Host0

InpH

Host0

Conf2

Network2Conf2 \send_req

Host0

InpH4

Chaos2

Host0

InpH4

Chaos2

Network4Conf3

Network4

Network5

Conf4

Conf4

InpH

Host0

Host0

InpH

CNetConf

Net

Hostl−1

RegConf

\send_req

\reset

InpH

Host0

RNetReg

\send_req Host2 Hostl−1

step1: reorder

Host1

Host1

\send_req

Conf CNet \reset Chaos

CNet ChaosRec_msg

Host1\send_req

Host1

Host1

Host1

Host1

Host1

Chaos

Chaos

step5: eliminate
Networktype

step6: simplify
Network

step8: reduce

step4: one Network
per host

step2: make

step3: only
last probe

step7: weakening
and dead variable
reduction

chaos

Network3Conf3InpH2

Host0

broadcast

Fig. 10. Overview of abstractions

that assign to each Network automaton in the new system the corresponding hard-
ware address and component, that is, for all c, i and j, HA(〈c, i, j〉) = j and
Comp(〈c, i, j〉) = c. We define, for j ∈ HAtype,

CNet(j) = ‖i∈Networktype Network[〈C, i, j〉]

RNet(j) = ‖i∈Networktype Network[〈R, i, j〉].

The modified system is now obtained by first removing automaton Net, replacing
each automaton Config(j) by

(Config(j)‖CNet(j))\send req,

and similarly replace each automaton Regular(j) by

(Regular(j)‖RNet(j))\send req.

The proof that this is a proper abstraction is simple though not compositional.
Observe that when an automaton Network(i) in the original system is in location

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Jasper Berendsen et al.

r:HAtype,
ha:HAtype,
ip1:IPtype,
ip2:IPtype,
b:BOOL
!isConcreteHA[ha]
send_answer[r]!
packet.senderHA:=ha,
packet.senderIP:=ip1,
packet.targetIP:=ip2,
packet.request:=b

r:HAtype,
s:HAtype
!isConcreteHA[r]
receive_msg[s][r]?

r:HAtype
!isConcreteHA[r]
send_answer[r]?r:HAtype,

ha:HAtype,
ip1:IPtype,
ip2:IPtype,
b:BOOL,
s:HAtype
receive_msg[s][r]!
packet.senderHA:=ha,
packet.senderIP:=ip1,
packet.targetIP:=ip2,
packet.request:=b

Fig. 11. Chaos

BUSY, we may infer from the value of variable s buffer.senderHA which host has sent
the message that is currently being broadcast. Moreover, if s buffer is a probe or
announcement then we know that it has been sent by Config; otherwise it has been
sent by Regular. This allows us to map each state of the old model to a state of the
new model: if Network(i) is busy transmitting a message from Config(j), we map the
substate of Network(i) to the identical substate of Network[〈C, i, j〉], and if Network(i)
is busy transmitting a message from Regular(j), we map the substate of Network(i) to
the identical substate of Network[〈R, i, j〉]. The substates of the Config and Regular

automata remain unchanged. The substates of InputHandler remains unchanged,
except that local variable network is mapped to the index of the network automaton
to which Network[network] is mapped. It is straightforward to prove that this map
in fact determines a timed step simulation. Note that the modified model contains
more Network automata (and therefore has more behaviors) than the original model.
Hence our first abstraction adds to the number of states rather than reducing it.
Using the standard CCS distributive laws for the restriction operator [Milner 1989],
we may push the restriction \reset inside. Thus we obtain subexpressions

(InputHandler(j)‖(Config(j)‖CNet(j))\send req)\reset.

The second row of Figure 10 illustrates the new situation.

Step 2: Introducing chaos. The mutual exclusion property ME that we want to
prove states that two hosts may not use the same IP address. Since all hosts in the
network are fully symmetrical, this is equivalent to proving that two specific hosts,
say those with HAs 0 and 1, may not use the same IP address:

A[] (UseIP[0] && UseIP[1]) imply IP[0]!=IP[1].

It turns out that in order to prove the mutual exclusion property for two specific
hosts, the behavior of all the other hosts is completely irrelevant. Thus we may
over-approximate the behavior of these hosts with a drastic abstraction Chaos, an au-
tomaton that is able to do all externally visible actions of the abstracted automata
in any order and with any timing (cf. the CHAOS process in CSP [Hoare 1985]).
Automaton Chaos, depicted in Figure 11, can do both input and output actions on
channels receive msg and send answer in arbitrary order and with arbitrary timing.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 27

The shared variable packet, which is used for value passing, is set arbitrarily when-
ever an output action is performed. For h ∈ HAtype, predicate isConreteHA(h) holds
if and only if h ∈ {0, 1}. For r ∈ Networktype′, predicate isUsedByConcreteConfig[r]
holds if and only if HA(r) ∈ {0, 1} and Comp(r) = C.

It is straightforward to prove that Chaos is an abstraction of all hosts with a HA
different from 0 or 1. Moreover, Chaos is an abstraction of all the Regular automata.
Finally, Chaos is an abstraction of the composition of two Chaos automata. Formally,
the following abstraction relations can be shown to hold:

(InputHandler(j)‖(Config(j)‖CNet(j))\send req)\reset � Chaos if j 6∈ {0, 1}

(Regular(j)‖RNet(j))\send req � Chaos

Chaos‖Chaos � Chaos.

Since abstractions are compositional (Theorem 4.5), we can replace hosts 2 to l− 1
as well as Regular(0) and Regular(1) and their associated network automata with a
single Chaos automaton, and obtain a new system as depicted on the third row of
Figure 10, where the arrows denote existence of timed step simulations.

Step 3: Only send last probe. The proof of Theorem 3.1 only considers the last
probe sent by a host. Here we take a similar approach by over-approximating all the
other probes with the chaos automaton. As illustrated in Figure 10, new automata
Config2 and ChaosRec msg are constructed in such a way that:

(Config(h)‖CNet(h))\send req � (Config2(h)‖Cnet(h))\send req‖ChaosRec msg(h).

Config2 is obtained from Config by replacing all send req transitions, except for the
last probe, by an internal transition. The upper four locations of Figure 13 il-
lustrate the changes. Automaton ChaosRec msg(h) is able to do all possible actions
receive msg[s][r]! just like Chaos. Therefore ChaosRec msg(h) � Chaos as indicated by
the arrow in Figure 10, and the ChaosRec msg automata can be abstracted away in
the next step.

In order to prove the correctness of this abstraction, we establish a timed step
simulation from the LHS network to the RHS network. Each state of the original
model is related to a state of the modified model iff (1) the substate of Config is
exactly matched by that of Config2, and (2) for each automaton Network(w), either
the substates in LHS and RHS match, or the RHS automaton is in location IDLE.
Note that also the values of external variables IP and UseIP are matched by the
simulation. If in the LHS model there is a synchronization on send req to send
the last probe, the RHS model can do exactly the same, and also the substates of
the involved Network in the original and modified model match. If in the original
model there is a synchronization on send req different from the last probe, Config2 can
perform a τ -transition to preserve the simulation relation. If some Network(w) of the
LHS model is in location BUSY and this is not the case in the RHS model, the actions
receive msg[s][r]! can be mimicked by ChaosRec msg. The actions send answer[r]? are
mimicked by Network(w) in the modified model, since these are also possible from
the location IDLE.

Step 4: Only one network automaton per host. Let automaton Network2 be equal
to Network, except that its parameter j has become a local variable j. In addition,

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Jasper Berendsen et al.

Network2 has a self-loop in location IDLE that non-deterministically updates j to any
value from Networktype′ that is in use by the host. We claim that6

(Config2(h)‖CNet(h))\send req � (Config2(h)‖Network2)\send req.

Suppose Config2 sends a message (which can only be a last probe) to the Network

automaton A, by synchronizing on send req. It is easy to see that a next message
can only be sent after resetting the host, that is, after more at least 2 seconds of
delay. At that point, A will surely be back in its IDLE location. Thus, from all
Network automata in CNet at most one is in location BUSY. Hence the new automaton
Network2 is able to simulate the behavior of CNet in the given context.

Step 5: Eliminate Networktype. Since only one Network automaton per host is
needed, we can get rid of Networktype′ and use HAtype instead. To make sure that
a network automaton only serves one designated host, we parametrize channel
send req with HAtype. Given some hardware address h, automata Config(h) and
Network(h) will synchronize on send req[h]. We adapt our model in the obvious way
to use channel types

send req[HAtype],

receive msg[HAtype][HAtype],

send answer[HAtype].

Let InputHandler2, Config3, Network3 and Chaos2 denote the new automata in the
model. In Chaos2, the predicate isUsedByConcreteConfig has been replaced by the
predicate isConcreteHA, since the Network automata that are used by concrete hosts
now have a concrete hardware address. We also move the restriction operators
for send req to the outside again. Correctness of this transformation step can be
established via a routine simulation proof.

4.3 Further Reduction of the State Space

With the reductions carried out thus far, in theory model checking arbitrary in-
stances of the model is possible. However, it turns out that the state space of our
model is too big to be fully explored by Uppaal. Therefore we need some further
abstractions to make the model checking problem tractable.

Step 6: Simplifying the Network automata. The Chaos2 automaton may generate
almost arbitrary send answer[r] messages at any time. In particular, it may gen-
erate send answer[0] and send answer[1] messages that are picked up by the network
automata of hosts 0 and 1. The corresponding packets are stored by these net-
work automata, thus contributing to the total number of reachable states of the
system. To reduce the state space, we replace the automaton Network3 by an au-
tomaton Network4 that is identical, except that incoming send answer messages from
non-concrete hosts (that is, from Chaos2) are ignored. The template Network4 is
displayed in Figure 12. Here function handle answer is defined by

void handle_answer() {

if (isConcreteHA[packet.senderHA])

6In fact, there exists a bisimulation between the two networks.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 29

BUSY
z<=1IDLE

isConcreteHA[w]
urg!

send_answer[w]?
a_buffer.senderIP==zero
send_answer[w]?
handle_answer()

a:HAtype
answer[a]==true
receive_msg[w][a]!
answer[a]:=false,
packet:=a_buffer

a:HAtype
send[a]==true
receive_msg[w][a]!
send[a]:=false,
packet:=s_buffer

forall (a:HAtype) !send[a] && !answer[a]
urg!

initialize(s_buffer),
initialize(a_buffer)

send_req[w]?
s_buffer:=packet,
set(send,true),
z:=0

Fig. 12. Timed automaton Network4(w).

{a_buffer:=packet; set(answer,true); }

}

Then clearly, for arbitrary j ∈ HAtype,

Network3(j) � Network4(j)‖Chaos2.

Thus, we may replace the Network3 by Network4.

Step 7: Weakening, dead variable reduction and state merging. By weakening
guards, weakening invariants, or by making an urgent channel non-urgent, we add
behavior to a timed automaton. The old behavior with the same values for the
variables is still present. Adding more behavior to an automaton A using these
methods will give an automaton B which simulates A, that is A � B, in the sense
of Definition 4.3 (timed step simulation).

If, as a result of weakening, a variable is tested in none of the transitions and it
is also not read by the environment, it can be safely omitted from the model, an
abstraction which can again be justified as a timed step simulation. In the case of
Zeroconf, overapproximation and subsequent variable elimination can be applied in
the following two situations:

(1) We may weaken the guards of the two transitions from COLLISION to INIT in
Config(h) to true, and remove the transition label urg!. In the resulting model
local variable ConflictNum is no longer used and so we can eliminate it. But
now, since COLLISION only has outgoing transitions to INIT with no guards and
no effect on the state, we may just as well merge these two locations.

(2) We may weaken the guard of the lower receive msg[w]? transition in automaton
InputHandler(h) to true. In the resulting model local clock y is no longer used
and it can be eliminated.

The basic idea behind abstractions (1) and (2) is that Zeroconf ensures mutual
exclusion even when a host is allowed to always immediately select a new IP address
after a reset, and to always defend the IP address that it is using.

Dead variable reduction is a well known static analysis technique that has, for
instance, been studied in the PhD thesis of Yorav [2000]. In Yorav’s terminology,
a variable v is used in a transition if it appears in the guard or in the right hand

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Jasper Berendsen et al.

PRE_CLAIM
x<=ANNOUNCE_WAIT

WAIT
x<=PROBE_WAIT

PROBE
x <= PROBE_MAX

INIT

CLAIMED
counter < ANNOUNCE_NUM
imply
x<=ANNOUNCE_INTERVAL

counter<PROBE_NUM-1 &&
x>=PROBE_MIN
counter++,
x:=0

isConcreteHA[h]
urg!

reset[h]?
UseIP[h]:=false,
IP[h]:=zero,
x:=0,
counter:=0

reset[h]?
IP[h]:=zero,
x:=0 reset[h]?

IP[h]:=zero,
x:=0

counter==PROBE_NUM
urg!
x:=0,
counter:=0

x:=PROBE_MAX,
counter:=0

reset[h]?
IP[h]:=zero,
x:=0,
counter:=0

counter==PROBE_NUM-1 &&
x>=PROBE_MIN
send_req[h]!
packet.senderHA:=h,
packet.senderIP:=zero,
packet.targetIP:=IP[h],
packet.request:=true,
counter++,
x:=0

guess:IPtype
guess!=zero
IP[h]:=guess,
x:=0

counter < ANNOUNCE_NUM &&
x== ANNOUNCE_INTERVAL
counter++,
x:=0,
UseIP[h]:=true

x==ANNOUNCE_WAIT
x:=ANNOUNCE_INTERVAL,
counter:=0

Fig. 13. Final abstract timed automaton Config4(h).

side of an assignment. A variable is used in a location if it appears in the invariant
of that location. Variable v is defined in a transition if it is in the left hand side of
an assignment. Notice that in an assignment v := v + 1, v is first used, and then it
is defined. A variable v is said to be dead at a location l if on every execution path
from l, v is defined before it is used, or is never used at all.

Clearly, automata that only differ in the values of dead variables are equivalent
in a very strong sense, that is, they are strongly bisimilar, which in turn implies
they simulate each other via timed step simulation. Setting variables to a default
value as soon as they become dead will reduce the state space, since states that
only differ in their dead variables will now become identical.

In our Zeroconf model, variable counter of Config(h) is dead in locations PRE CLAIM

and INIT. Hence, setting counter:=0 upon entering these locations will not affect
whether the ME property holds or not. Another example is the variable network,
which is dead in location IDLE of InputHandler(h), and can be reset to a standard
value. To make a standard value available we introduce a global constant HAtype

ha0. The final abstractions of the configuration and input handler automata are
displayed in Figure 13 and Figure 14, respectively.

Step 8: Reduced broadcast. There is no real need for Network4(w) to do
receive msg[w][a]! actions for a’s that are not concrete: the only effect of these
actions is that they update elements of the send and answer arrays. Let Network5(w)

be obtained from Network4(w) by slightly altering the set function: it only sets the
elements to true that correspond to concrete HAs. Via a trivial simulation relation
we can show that Network4(0) and Network4(1) can be replaced by Network5(0) and
Network5(1), respectively.

4.4 Verification Results

We have been able to establish mutual exclusion for a system with an arbitrary
number of hosts, an arbitrary number of HA addresses, and an arbitrary number of

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 31

BUSY
IDLE

isConcreteHA[h]
urg!

answer.senderIP==zero
&& do_reset
reset[h]!
do_reset:=false

answer.senderIP!=zero
send_answer[network]!
packet:=answer,
initialize(answer),
network:=ha0

answer.senderIP==zero
&& !do_reset

b:BOOL,
s:HAtype
receive_msg[s][h]?
ihandler(b),
network:=s

Fig. 14. Final abstract timed automaton InputHandler4(h).

IP addresses. We can handle an arbitrary number of hosts since, as we have shown
above, all but 2 automata can be abstracted away by a chaos automaton.

We can handle an arbitrary number of HAs since any instance of Zeroconf with
more than 3 HAs can be simulated by the same instance but then with 3 HAs:
we just abstract all HAs to 2, except the concrete HAs 0 and 1. This is a sound
abstraction since, apart from a number of transitions which test whether a HA is
concrete, the only places where HAs are tested are in the input handlers: the input
handler of Host0 may test whether the hardware address of an incoming message is
equal to 0, and the input handler of Host1 may test whether the hardware address
of an incoming message is equal to 1. The outcomes of these tests (and hence the
behavior of the protocol) is not affected by an abstraction that identifies all HAs
≥ 2.

We can handle an arbitrary number of IP addresses, due to a result of Ip and Dill
[1993] on data saturation. This result (which was proven in the setting of Murphi
but carries over to Uppaal) states that for certain (“data”) scalar types, the state
graph does not grow any further once the number of possible values in some scalar
type grows beyond the number of places in the system where that scalar type is
used. Places consist of variables, but also each select statement on a single edge
offers a ‘place’ for a new value to be chosen. This makes model checking with scalar
types of arbitrary size possible.

For IP addresses, at the global level 1 is in use as zero, and per (concrete) host:

—1 is in use in global array IP

—2 are in use by InputHandler in packet answer.

—4 IP addresses are in use by Network, namely 2 in each of the 2 packets.

In InputHandler, the 2 IPs of answer are only assigned when entering the committed
location. Some committed locations are used for initialization, but after the total
system is initialized, only the 2 committed locations of the concrete InputHandler

automata play a role. It is easy to see these are never visited at the same time,
and therefore there will be no interleaving until InputHandler has left its committed
location. The IP values are passed to other automata, and are after that not used
anymore. Moreover they are never tested for their contents. Therefore we do not
have to count these variables as extra places where an IP is used.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Jasper Berendsen et al.

IPs selected by an select statement are never tested to be different from all other
used IPs. Therefore we do not need an extra IP for the select statements, leading
to a total of 11 IPs.

Summarizing, all instances of the model are all possible combinations of l ∈
{1, . . . , 3} HAs, and m ∈ {1, . . . , 11} IP addresses. Model checking all instances
took approximately 10 hours on the following hardware: 2 x Dual-Core Opteron
280 2.4 GHz, 8 GB RAM. Note that we used 4 processing cores to work parallel on
different instances. The biggest instance (l = 3,m = 11) takes the full time of 10
hours, using 140 MB of memory, exploring 1.754 · 106 symbolic states.

5. CONCLUSIONS

Our goal has been to construct a model of Zeroconf that (a) is easy to understand
by engineers, (b) comes as close as possible to RFC 3927, and (c) may serve as a
basis for formal verification. Did we succeed?

Understandability. Of course, it is not to us to judge whether our model is un-
derstandable for others. The present paper aims to place the cards on the table
as a basis for a discussion. The Uppaal syntax, which combines extended finite
state machines, C-like syntax and concepts from timed automata, will certainly be
familiar to protocol engineers, except maybe for the use of clock variables. How-
ever, our experience is that timed automata notation is easy to explain, also to
people without expertise in theoretical computer science. Clocks provide a simple
and intuitive means to specify the various timing constraints in Zeroconf.

There are a number of extensions of the Uppaal syntax that would help to further
improve the readability of our model:

(1) A richer syntax for datatypes and functions, in particular a notion of enumer-
ated types.

(2) The ability to initialize clock and structure variables, allowing us to eliminate
the initial transition in the InputHandler(h) automaton.

(3) The ability to test the value of clocks within the body of functions, allowing
us to move the test y>DEFEND interval into the definition of ihandler, where it
belongs conceptually.

(4) The introduction of urgent transitions (or deadlines) in Uppaal, as advocated
in Gebremichael and Vaandrager [2005], Sifakis [1999] and Sifakis and Yovine
[1996]. This would allow us to eliminate the urgent channel urg, which is a
modeling trick that is hard to explain to non-specialists. Also, it would allow
us to replace the invariant counter < ANNOUNCE NUM imply x <= ANNOUNCE INTERVAL in
automaton Config by an urgency predicate x <= ANNOUNCE INTERVAL. In our opinion,
urgency predicates are more intuitive than location invariants.

Once these extensions have been implemented, a good case can be made for inclusion
of the Config and InputHandler automata (with the ihandler code) in the Zeroconf
standard. These models will help to clarify the RFC and to prevent incorrect
interpretations due to ambiguity in the text. The Uppaal simulator is also very
useful to obtain insight in the operation of the protocol.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 33

Faithfulness and Traceability. We have shown that Uppaal is able to model Ze-
roconf faithfully. Basically, for each transition in the model we can point towards a
corresponding piece of text in the RFC. The relationships between our model and
the RFC have been described in great detail in this paper, including the design
choices and abstractions that we made. Following Brinksma and Mader [2004], our
aim has been to make the model construction transparent, so that our model may
be more easily understood and checked by others, making its quality measurable in
(at least) an informal sense.

We see at least two ways in which Uppaal can be improved to allow for even
more faithful/realistic modeling of Zeroconf and better traceability:

—Zeroconf involves a number of probabilistic aspects that are not incorporated in
our Uppaal model. An extension with probabilities, along the lines of PRISM
[Kwiatkowska et al. 2004], is clearly desirable.

—Uppaal supports modeling of systems that are described as networks of a fixed
number of automata with a fixed communication structure. This modeling ap-
proach, although very convenient as a starting point for verification, does not fit
very well with the highly dynamic structure of Zeroconf networks where hosts
may join and leave, subnetworks may be joined, etc. Support for a more object-
oriented specification style appears to be desirable.

Verification. Our modeling efforts revealed six places where RFC 3927 [Cheshire
et al. 2005] is incomplete/unclear:

(1) It is not clear whether a host “MUST” or “SHOULD” send ARP Probes before
using a new address.

(2) It does not specify upper and lower bounds on the time that may elapse between
sending the last ARP Probe and sending the first ARP Announcement.

(3) It does not specify whether a host may immediately start using a newly claimed
address or whether it must first send out all ARP Announcements.

(4) It does not specify the tolerance that is permitted on the timing of ARP An-
nouncements.

(5) Although it states that Zeroconf requires an underlying network that supports
ARP (RFC 826), we identified some cases where Zeroconf does not conform to
RFC 826.

(6) It is not exactly clear in which situations a host may defend its address.

The model of Zeroconf that we presented in Section 2 cannot be analyzed by Uppaal
for interesting instances with 3 or more hosts. We presented a simple manual proof
of mutual exclusion for the model of Section 2. In order to verify the general
system automatically, we had to apply some drastic abstractions. The soundness
of these abstractions has been proven manually. In our view, it is highly desirable
to further extend Uppaal with (semi-)automatic support for proving correctness of
abstractions. Only abstractions can bridge the gap between realistic and tractable
models.

Future Work. In this study, we have modeled and analyzed a fragment of Zero-
conf in a restrictive setting without faulty nodes, merging of subnetworks, etc. In

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Jasper Berendsen et al.

order to deal with dynamically changing network topologies, a more sophisticated
use of abstractions will be required, for instance along the lines of Bauer [2006]. An
obvious challenge is to mechanize all these abstractions using either (an extension
of) Uppaal-Tiga [Cassez et al. 2005] or a general purpose theorem prover. The
timing behavior of Zeroconf becomes really interesting when studied within a set-
ting in which also the probabilistic behavior is modeled. The performance analysis
of Zeroconf reported in Bohnenkamp et al. [2003] and Kwiatkowska et al. [2003]
has been carried out for an abstract probabilistic model of Zeroconf. A challenging
question is whether these results also hold for a (probabilistic extension) of our
more realistic model.

ACKNOWLEDGMENTS

We thank Peter van der Stok (Philips Research) for suggesting the problem to us,
Stuart Cheshire (Apple Computer, Inc.) and Boris Cobelens (Free University, Am-
sterdam) for answering all our questions about Zeroconf. Martijn Hendriks, Jozef
Hooman and the students of the Analysis of Embedded Systems course in Nijmegen
commented on earlier versions and came with modeling suggestions. Martijn also
helped with Uppaal and noted the occurrence of data saturation. Guy Leduc,
Hubert Garavel, Judi Romijn and Ken Turner commented on the use of formal
description languages within protocol standards. Finally, we thank the anonymous
reviewers for some insightful comments.

REFERENCES

Abadi, M. and Lamport, L. 1994. An old-fashioned recipe for real time. ACM Trans. Program.
Lang. Syst. 16, 5 (Sept.), 1543–1571.

Alur, R. and Dill, D. 1994. A theory of timed automata. Theoretical Computer Science 126,
183–235.

Bauer, J. 2006. Analysis of communication topologies by partner abstraction. Ph.D. thesis,

Universität des Saarlandes, Saarbrücken, Germany.

Behrmann, G., David, A., and Larsen, K. 2004. A tutorial on Uppaal. In Formal Methods for

the Design of Real-Time Systems, International School on Formal Methods for the Design of
Computer, Communication and Software Systems, SFM-RT 2004, Bertinoro, Italy, September
13-18, 2004, Revised Lectures, M. Bernardo and F. Corradini, Eds. Lecture Notes in Computer
Science, vol. 3185. Springer, 200–236.

Behrmann, G., David, A., Larsen, K. G., Håkansson, J., Pettersson, P., Yi, W., and Hen-

driks, M. 2006. Uppaal 4.0. In Third International Conference on the Quantitative Evaluation
of SysTems (QEST 2006), 11-14 September 2006, Riverside, CA, USA. IEEE Computer Soci-

ety, 125–126.

Berendsen, J. and Vaandrager, F. 2008. Compositional abstraction in real-time model check-
ing. In Proceedings Sixth International Conference on Formal Modeling and Analysis of Timed

Systems (FORMATS 2008), September 15-17, 2008, Saint-Malo, France. Lecture Notes in Com-
puter Science, vol. 5215. Springer Berlin / Heidelberg, 233–249.

Berry, G. and Gonthier, G. 1992. The Esterel synchronous programming language: design,

semantics, implementation. Sci. Comput. Program. 19, 2 (Nov.), 87–152.

Bohnenkamp, H., Stok, P. v. d., Hermanss, H., and Vaandrager, F. 2003. Cost-optimisation
of the IPv4 zeroconf protocol. In Proceedings of the International Conference on Dependable

Systems and Networks (DSN2003). IEEE Computer Society, Los Alamitos, California, 531–540.

Brinksma, E. and Mader, A. 2004. On verification modelling of embedded systems. Tech.
Rep. TR-CTIT-04-03, Centre for Telematics and Information Technology, Univ. of Twente,

The Netherlands. January.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Formal Specification and Analysis of Zeroconf Using Uppaal · 35

Bruns, G. and Staskauskas, M. 1998. Applying formal methods to a protocol standard and its

implementations. In Proceedings International Symposium on Software Engineering for Parallel
and Distributed Systems (PDSE 1998), 20-21 April, 1998, Kyoto, Japan. IEEE Computer
Society, 198–205.

Cassez, F., David, A., Fleury, E., Larsen, K., and Lime, D. 2005. Efficient on-the-fly al-
gorithms for the analysis of timed games. In CONCUR 2005 - Concurrency Theory, 16th

International Conference, CONCUR 2005, San Francisco, CA, USA, August 23-26, 2005,
Proceedings, M. Abadi and L. de Alfaro, Eds. Lecture Notes in Computer Science, vol. 3653.
Springer, 66–80.

Cheshire, S. 2006. Personal communication.

Cheshire, S., Aboba, B., and Guttman, E. 2005. Dynamic configuration of IPv4 link-local
addresses (RFC 3927). http://www.ietf.org/rfc/rfc3927.txt.

Cheshire, S. and Steinberg, D. 2005. Zero Configuration Networking: The Definite Guide.

O’Reilly Media, Inc.

Chkliaev, D., Hooman, J., and de Vink, E. 2003. Verification and improvement of the sliding
window protocol. In Proceedings TACAS’03. Lecture Notes in Computer Science 2619, Springer-
Verlag, 113–127.

Clarke, E. M., Grumberg, O., Hiraishi, H., Jha, S., Long, D. E., McMillan, K. L., and

Ness, L. A. 1993. Verification of the Futurebus+ cache coherence protocol. In Proc. CHDL.

15–30.

Devillers, M., Griffioen, W., Romijn, J., and Vaandrager, F. 2000. Verification of a leader
election protocol: Formal methods applied to IEEE 1394. Formal Methods in System De-
sign 16, 3 (June), 307–320.

Gebremichael, B. and Vaandrager, F. 2005. Specifying urgency in timed I/O automata. In
Proceedings of the 3rd IEEE International Conference on Software Engineering and Formal

Methods (SEFM 2005), Koblenz, Germany, September 5-9, 2005. IEEE Computer Society,
64–73.

Gebremichael, B., Vaandrager, F., and Zhang, M. 2006. Analysis of the Zeroconf protocol
using Uppaal. In Proceedings 6th Annual ACM & IEEE Conference on Embedded Software
(EMSOFT 2006), Seoul, South Korea, October 22-25, 2006. ACM Press, 242–251.

Hendriks, M., Behrmann, G., Larsen, K., Niebert, P., and Vaandrager, F. 2004. Adding

symmetry reduction to Uppaal. In Proceedings First International Workshop on Formal Model-
ing and Analysis of Timed Systems (FORMATS 2003), September 6-7 2003, Marseille, France.
Lecture Notes in Computer Science, vol. 2791. Springer-Verlag.

Hoare, C. 1985. Communicating Sequential Processes. Prentice-Hall International, Englewood
Cliffs.

Holzmann, G. 2004. The SPIN Model Checker: Primer and Reference Manual. Addison Wesley.

Ip, C. and Dill, D. 1993. Better verification through symmetry. In Proceedings of the 11th IFIP

WG10.2 International Conference on Computer Hardware Description Languages and their
Applications - CHDL ’93, Ottawa, Ontario, Canada, 26-28 April, 1993, D. Agnew, L. J. M.
Claesen, and R. Camposano, Eds. IFIP Transactions, vol. A-32. North-Holland, 97–111.

Jensen, H., Larsen, K., and Skou, A. 2000. Scaling up Uppaal: Automatic verification of real-
time systems using compositionality and abstraction. In Formal Techniques in Real-Time and

Fault-Tolerant Systems, 6th International Symposium, FTRTFT 2000, Pune, India, September
20-22, Proceedings, M. Joseph, Ed. Lecture Notes in Computer Science, vol. 1926. Springer, 19–
30.

Kwiatkowska, M., Norman, G., and Parker, D. 2004. PRISM 2.0: A tool for probabilistic

model checking. In Proceedings of the 1st International Conference on Quantitative Evaluation
of Systems (QEST04). IEEE Computer Society, 322–323.

Kwiatkowska, M., Norman, G., Parker, D., and Sproston, J. 2003. Performance analysis of
probabilistic timed automata using digital clocks. In Proc. Formal Modeling and Analysis of
Timed Systems (FORMATS’03), K. Larsen and P. Niebert, Eds. LNCS, vol. 2791. Springer-

Verlag, 105–120.

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · Jasper Berendsen et al.

Langevelde, I. v., Romijn, J., and Goga, N. 2003. Founding FireWire bridges through Promela

prototyping. In 8th International Workshop on Formal Methods for Parallel Programming:
Theory and Applications (FMPPTA). IEEE Computer Society Press.

Larsen, K., Mikucionis, M., and Nielsen, B. 2005. Testing real-time embedded software us-
ing UPPAAL-TRON: an industrial case study. In the 5th ACM International Conference on
Embedded Software. ACM Press New York, NY, USA, 299 – 306.

Lynch, N. 1996. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Fransisco,
California.

Milner, R. 1989. Communication and Concurrency. Prentice-Hall International, Englewood
Cliffs.

Plummer, D. 1982. An Ethernet address resolution protocol (RFC 826).
http://www.ietf.org/rfc/rfc826.txt.

Romijn, J. 2004. Improving the quality of protocol standards: Correcting IEEE 1394.1 FireWire
net update. Nieuwsbrief van de Nederlandse Vereniging voor Theoretische Informatica 8, 23–
30. Available at http://www.win.tue.nl/oas/index.html?iqps/.

Sifakis, J. 1999. The compositional specification of timed systems - a tutorial. In Proceedings of
the 11th International Conference on Computer Aided Verification, Trento, Italy, N. Halbwachs

and D. Peled, Eds. Lecture Notes in Computer Science, vol. 1633. Springer-Verlag, 2–7.

Sifakis, J. and Yovine, S. 1996. Compositional specification of timed systems (extended ab-

stract). In STACS, C. Puech and R. Reischuk, Eds. Lecture Notes in Computer Science, vol.
1046. Springer, 347–359.

Stoelinga, M. 2003. Fun with FireWire: A comparative study of formal verification methods

applied to the IEEE 1394 root contention protocol. Formal Aspects of Computing Journal 14, 3,
328–337.

Vaandrager, F. and Groot, A. d. 2006. Analysis of a biphase mark protocol with Uppaal and
PVS. Formal Aspects of Computing Journal 18, 4 (December), 433–458.

Yorav, K. 2000. Exploiting syntactic structure for automatic verification. Ph.D. thesis, The
Technion, Israel Insitute of Technology.

ACM Journal Name, Vol. V, No. N, Month 20YY.

