include "regular.mzn"; int: X; int: Y; int: maxlen; array [1..Y,1..maxlen] of int: rows; array [1..X,1..maxlen] of int: cols; array[1..2, 1..2, 1..2] of 0..1: nonmul = array3d(1..2, 1..2, 1..2, [0, 0, 1, 1, 1, 0, 0, 1] ); array[1..2, 1..2, 1..2] of 0..1: nonadd = array3d(1..2, 1..2, 1..2, [0, 0, 0, 1, 1, 0, 0, 1] ); % variables % array[1..Y, 1..X] of var 1..2: A; % All variables in a region must be different % Ordering to ensure each variable is handled exactly once predicate nonogram_row( array[1..Y, 1..X] of var 1..2: A, array[int] of 0..1: cons, int: row) = nonogram([A[row, v] | v in 1..X], cons); predicate nonogram_col( array[1..Y, 1..X] of var 1..2: A, array[int] of 0..1: cons, int: col) = nonogram([A[v,col] | v in 1..Y], cons); predicate nonogram(array[int] of var 1..2: A, array [int] of int: cons) = let { int: n = if cons[1] = 0 then 0 else max(index_set(cons)) endif, array [1..n + 1, 1..2] of int: consarr = if cons[1] = 0 then [|1, 0|] else array2d(1..n + 1, 1..2, [1, 2] ++ [ i * nonmul[cons[i - 1] + 1, cons[i] + 1, s] + nonadd[cons[i - 1] + 1, cons[i] + 1, s] | i in 2..n, s in 1..2 ] ++ [n+1,0] ) endif } in ( regular(A, n + 1, 2, consarr, 1, {n + 1}) ); constraint forall(i in 1..Y) ( nonogram_row(A, [rows[i, j] | j in 1..maxlen where rows[i, j] >= 0], i) ); constraint forall(i in 1..X) ( nonogram_col(A, [cols[i, j] | j in 1..maxlen where cols[i, j] >= 0], i) ); solve :: int_search(array1d(1..X*Y,A),input_order,indomain_max,complete) satisfy; output [ if fix(A[r, c]) = 1 then " " else "." endif ++ if c = Y then "\n" else " " endif | r in 1..X, c in 1..Y ];