% RUNS ON mzn20_fd % RUNS ON mzn-fzn_fd % RUNS ON mzn20_mip %-----------------------------------------------------------------------------% % Template design % Problem 002 in CSPLib %-----------------------------------------------------------------------------% % Based on "ILP and Constraint Programming Approaches to a Template % Design Problem", Les Proll and Barbara Smith, School of Computing % Research Report 97.16, University of Leeds, May 1997. %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% % Instance S = 9; t = 2; n = 7; d = [250, 255, 260, 500, 500, 800, 1100]; %-----------------------------------------------------------------------------% include "globals.mzn"; int: S; % Number of slots per template. int: t; % Number of templates. int: n; % Number of variations. array[1..n] of int: d; % How much of each variation we must print? % Lower and upper bounds for the total production. % int: llower = ceil(sum(i in 1..n)(int2float(d[i]))/int2float(S)); int: lupper = 2*llower; % If t>1, this should be the optimal Production_{t-1}-1. % # Slots allocated to variation i in template j. % array[1..n,1..t] of var 0..S: p; % # Pressings of template j. % array[1..t] of var 1..lupper: R; var llower..lupper: Production; % Sum of all Rj. var 0..lupper-llower: Surplus; % Production x S - sum(d[i]) % First, set up Production to be the sum of the Rj constraint Production = sum(i in 1..t)(R[i]); % the limits on production constraint Production >= llower /\ Production <= lupper; % The number of slots occupied in each template is S. constraint forall(j in 1..t) (sum(i in 1..n)(p[i,j]) = S); % Enough of each variation is printed. constraint forall(i in 1..n) (sum(j in 1..t)(p[i,j]*R[j]) >= d[i]); % Symmetry constraints. % Variations with the same demand are symmetric. constraint forall (i in 1..n-1) ( if d[i] == d[i+1] then lex_lesseq([p[i, j] | j in 1..t], [p[i+1,j] | j in 1..t]) else true endif ); % pseudo symmetry constraint forall(i in 1..n-1) ( if d[i] < d[i+1] then sum (j in 1..t) (p[i,j]*R[j]) < sum (j in 1..t) (p[i+1,j]*R[j]) else true endif ); % implied constraints on the surplus % These are presented in the paper as necessary to get good % performance for this model, but I think bounds consistency on the % sum(R[i]) constraint would produce the same amount of propagation % Set up surplus, which is bounded as production is bounded. constraint Surplus = Production*S - sum(i in 1..n)(d[i]); % The surplus of each variation is also limited by the surplus. constraint forall(k in 1..n) (sum(j in 1..t)(p[k,j]*R[j]-d[k]) <= Surplus); % The surplus of the first k variations is limited by the surplus. constraint forall(k in 2..n-1) (sum(j in 1..t, m in 1..k)( p[m,j]*R[j]-d[m] ) <= Surplus); % Implied constraints on the run length. constraint if t=2 then ( R[1] <= Production div 2 /\ R[2] >= Production div 2 ) else true endif; constraint if t=3 then ( R[1] <= Production div 3 /\ R[2] <= Production div 2 /\ R[3] >= Production div 3 ) else true endif; % Minimize the production. solve :: int_search(array1d(1..n*t,p) ++ R, input_order, indomain_min, complete) minimize Production; output [ if v = 1 then "template #" ++ show(i) ++ ": [" else "" endif ++ show(p[v, i]) ++ if v = n then "], pressings: " ++ show(R[i]) ++ "\n" else ", " endif | i in 1..t, v in 1..n] ++ ["Total pressings: ", show(Production), "\n"]; %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------%