git-subtree-dir: prototype git-subtree-split: 91f7db00d45e7f991b5587ee07f09977ae311ee7
40 lines
974 B
MiniZinc
40 lines
974 B
MiniZinc
% RUNS ON mzn20_fd
|
|
% RUNS ON mzn-fzn_fd
|
|
% RUNS ON mzn20_mip
|
|
|
|
% vim: ft=zinc ts=4 sw=4 et
|
|
% Ralph Becket <rafe@csse.unimelb.edu.au>
|
|
% Wed Feb 25 16:43:52 EST 2009
|
|
%
|
|
% Langford's problem (see e.g., http://www.lclark.edu/~miller/langford.html)
|
|
% ------------------
|
|
%
|
|
% Arrange k sets of 1..n such that successive occurrences of any number, k,
|
|
% are separated by k other numbers.
|
|
|
|
% There should be 26 solutions to this problem.
|
|
int: k = 2;
|
|
int: n = 7;
|
|
int: nk = n * k;
|
|
|
|
array [1..nk] of var 1..n: a; % The sequence.
|
|
array [1..n] of var 1..nk: Fst; % Fst[k] is position of first k.
|
|
|
|
% Break some symmetry.
|
|
%
|
|
constraint a[1] <= a[nk];
|
|
|
|
% Prune some domains.
|
|
%
|
|
constraint
|
|
forall ( i in 1..n ) ( Fst[i] <= nk - (k - 1) * (i + 1) );
|
|
|
|
% The nitty gritty.
|
|
%
|
|
constraint
|
|
forall ( i in 1..n, j in 0..(k - 1) ) ( a[Fst[i] + j * (i + 1)] = i );
|
|
|
|
solve :: int_search(Fst, first_fail, indomain_min, complete) satisfy;
|
|
|
|
output ["a = ", show(a), ";\n"];
|