From 5f8553d8cc28f6e7df97205508da75dcc3a66208 Mon Sep 17 00:00:00 2001 From: "Jip J. Dekker" Date: Wed, 3 Mar 2021 15:26:31 +1100 Subject: [PATCH] Small style fixes --- chapters/4_rewriting.tex | 15 +++++++-------- 1 file changed, 7 insertions(+), 8 deletions(-) diff --git a/chapters/4_rewriting.tex b/chapters/4_rewriting.tex index e3ff48d..1b8d609 100644 --- a/chapters/4_rewriting.tex +++ b/chapters/4_rewriting.tex @@ -952,10 +952,10 @@ technique that originates from compiler optimisation \autocite{cocke-1970-cse} and has proven to be very effective in discrete optimisation \autocite{marinov-2005-sat-optimisations, araya-2008-cse-numcsp}, including during the evaluation of constraint modelling languages such as -\minizinc \autocite{rendl-2009-enhanced-tailoring}. +\minizinc\ \autocite{rendl-2009-enhanced-tailoring}. For instance, in the constraint\\ -\mzninline{(abs(x)*2 >= 20) \/ (abs(x)+5>= 15)}\\ +\mzninline{(abs(x)*2 >= 20) \/ (abs(x)+5 >= 15)}\\ the expression \mzninline{abs(x)} is evaluated twice. Since functions in \microzinc\ are guaranteed to be pure and total, any expressions that are syntactically equal can be detected by a static compiler analysis before @@ -973,12 +973,11 @@ in the following example. Consider the fragment: \begin{mzn} - function var float: pythagoras(var float: a, - var float: b) = - let { - var float: x = pow(a, 2); - var float: y = pow(b, 2); - } in sqrt(x + y); + function var float: pythagoras(var float: a, var float: b) = + let { + var float: x = pow(a, 2); + var float: y = pow(b, 2); + } in sqrt(x + y); constraint pythagoras(i, i) >= 5; \end{mzn}