From 63dc091a733c374b88c7cdb13dc841ea8f57f1be Mon Sep 17 00:00:00 2001 From: "Jip J. Dekker" Date: Sun, 25 Jul 2021 10:44:24 +1000 Subject: [PATCH] Slightly simplify the monotone definition --- chapters/4_half_reif.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/chapters/4_half_reif.tex b/chapters/4_half_reif.tex index 2841989..e7bc5e8 100644 --- a/chapters/4_half_reif.tex +++ b/chapters/4_half_reif.tex @@ -92,8 +92,8 @@ Since Boolean expressions in \minizinc{} can be used in, for example, integer ex \end{example} To systematically analyse whether Boolean expressions can be \gls{half-reified}, we study the \emph{monotonicity} of \constraints{} \wrt{} an expression. -A relation \( r( a_{n}, \ldots{}, a_{i}, \ldots{} , a_{m}) \) is said to be \emph{monotone} \wrt{} its argument \(a_{i}\) when given two possible values for \(a_{i}\), \(x\) and \(y\), if \(x > y\), then \(r( a_{n}, \ldots{}, x, \ldots{} , a_{m}) \geq{} r( a_{n}, \ldots{}, y, \ldots{} , a_{m})\), independent of other arguments. -Contrariwise, a relation \( r( a_{n}, \ldots{}, a_{i}, \ldots{} , a_{m}) \) is said to be \emph{antitone} \wrt{} its argument \(a_{i}\) if given two possible values for \(a_{i}\), \(x\) and \(y\), if \(x > y\), then \(r( a_{n}, \ldots{}, x, \ldots{} , a_{m}) \leq{} r( a_{n}, \ldots{}, y, \ldots{} , a_{m}) \), independent of the other arguments. +A relation \( r(\ldots{}, a, \ldots{}) \) is said to be \emph{monotone} \wrt{} its argument \(a\) when given two possible values for \(a\), \(x\) and \(y\), if \(x > y\), then \(r(\ldots{}, x, \ldots{}) \geq{} r(\ldots{}, y, \ldots{})\), independent of any other arguments. +Contrariwise, the relation is said to be \emph{antitone} \wrt{} its argument \(a\) if given two possible values for \(a\), \(x\) and \(y\), if \(x > y\), then \(r(\ldots{}, x, \ldots{}) \leq{} r(\ldots{}, y, \ldots{}) \), independent of any other arguments. Where, for clarification, we assume \( \text{false} < \text{true} \). Using these definitions, we introduce extra distinctions in the context of expressions.