/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Jip J. Dekker */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include namespace MiniZinc { GeasSolverInstance::GeasSolverInstance(Env& env, std::ostream& log, SolverInstanceBase::Options* opt) : SolverInstanceImpl(env, log, opt), _flat(env.flat()) { registerConstraints(); } void GeasSolverInstance::registerConstraint(const std::string& name, poster p) { _constraintRegistry.add("geas_" + name, p); _constraintRegistry.add(name, p); } void GeasSolverInstance::registerConstraints() { GCLock lock; /* Integer Comparison Constraints */ registerConstraint("int_eq", GeasConstraints::p_int_eq); registerConstraint("int_ne", GeasConstraints::p_int_ne); registerConstraint("int_le", GeasConstraints::p_int_le); registerConstraint("int_lt", GeasConstraints::p_int_lt); registerConstraint("int_eq_imp", GeasConstraints::p_int_eq_imp); registerConstraint("int_ne_imp", GeasConstraints::p_int_ne_imp); registerConstraint("int_le_imp", GeasConstraints::p_int_le_imp); registerConstraint("int_lt_imp", GeasConstraints::p_int_lt_imp); registerConstraint("int_eq_reif", GeasConstraints::p_int_eq_reif); registerConstraint("int_ne_reif", GeasConstraints::p_int_ne_reif); registerConstraint("int_le_reif", GeasConstraints::p_int_le_reif); registerConstraint("int_lt_reif", GeasConstraints::p_int_lt_reif); /* Integer Arithmetic Constraints */ registerConstraint("int_abs", GeasConstraints::p_int_abs); registerConstraint("int_times", GeasConstraints::p_int_times); registerConstraint("int_div", GeasConstraints::p_int_div); // registerConstraint("int_mod", GeasConstraints::p_int_mod); registerConstraint("int_min", GeasConstraints::p_int_min); registerConstraint("int_max", GeasConstraints::p_int_max); /* Integer Linear Constraints */ registerConstraint("int_lin_eq", GeasConstraints::p_int_lin_eq); registerConstraint("int_lin_ne", GeasConstraints::p_int_lin_ne); registerConstraint("int_lin_le", GeasConstraints::p_int_lin_le); registerConstraint("int_lin_eq_imp", GeasConstraints::p_int_lin_eq_imp); registerConstraint("int_lin_ne_imp", GeasConstraints::p_int_lin_ne_imp); registerConstraint("int_lin_le_imp", GeasConstraints::p_int_lin_le_imp); registerConstraint("int_lin_eq_reif", GeasConstraints::p_int_lin_eq_reif); registerConstraint("int_lin_ne_reif", GeasConstraints::p_int_lin_ne_reif); registerConstraint("int_lin_le_reif", GeasConstraints::p_int_lin_le_reif); /* Boolean Comparison Constraints */ registerConstraint("bool_eq", GeasConstraints::p_bool_eq); registerConstraint("bool_ne", GeasConstraints::p_bool_ne); registerConstraint("bool_le", GeasConstraints::p_bool_le); registerConstraint("bool_lt", GeasConstraints::p_bool_lt); registerConstraint("bool_eq_imp", GeasConstraints::p_bool_eq_imp); registerConstraint("bool_ne_imp", GeasConstraints::p_bool_ne_imp); registerConstraint("bool_le_imp", GeasConstraints::p_bool_le_imp); registerConstraint("bool_lt_imp", GeasConstraints::p_bool_lt_imp); registerConstraint("bool_eq_reif", GeasConstraints::p_bool_eq_reif); registerConstraint("bool_ne_reif", GeasConstraints::p_bool_ne_reif); registerConstraint("bool_le_reif", GeasConstraints::p_bool_le_reif); registerConstraint("bool_lt_reif", GeasConstraints::p_bool_lt_reif); /* Boolean Arithmetic Constraints */ registerConstraint("bool_or", GeasConstraints::p_bool_or); registerConstraint("bool_and", GeasConstraints::p_bool_and); registerConstraint("bool_xor", GeasConstraints::p_bool_xor); registerConstraint("bool_not", GeasConstraints::p_bool_not); registerConstraint("bool_or_imp", GeasConstraints::p_bool_or_imp); registerConstraint("bool_and_imp", GeasConstraints::p_bool_and_imp); registerConstraint("bool_xor_imp", GeasConstraints::p_bool_xor_imp); registerConstraint("bool_clause", GeasConstraints::p_bool_clause); registerConstraint("array_bool_or", GeasConstraints::p_array_bool_or); registerConstraint("array_bool_and", GeasConstraints::p_array_bool_and); registerConstraint("bool_clause_imp", GeasConstraints::p_bool_clause_imp); registerConstraint("array_bool_or_imp", GeasConstraints::p_array_bool_or_imp); registerConstraint("array_bool_and_imp", GeasConstraints::p_array_bool_and_imp); registerConstraint("bool_clause_reif", GeasConstraints::p_bool_clause_reif); /* Boolean Linear Constraints */ registerConstraint("bool_lin_eq", GeasConstraints::p_bool_lin_eq); registerConstraint("bool_lin_ne", GeasConstraints::p_bool_lin_ne); registerConstraint("bool_lin_le", GeasConstraints::p_bool_lin_le); registerConstraint("bool_lin_eq_imp", GeasConstraints::p_bool_lin_eq_imp); registerConstraint("bool_lin_ne_imp", GeasConstraints::p_bool_lin_ne_imp); registerConstraint("bool_lin_le_imp", GeasConstraints::p_bool_lin_le_imp); registerConstraint("bool_lin_eq_reif", GeasConstraints::p_bool_lin_eq_reif); registerConstraint("bool_lin_ne_reif", GeasConstraints::p_bool_lin_ne_reif); registerConstraint("bool_lin_le_reif", GeasConstraints::p_bool_lin_le_reif); /* Coercion Constraints */ registerConstraint("bool2int", GeasConstraints::p_bool2int); /* Element Constraints */ registerConstraint("array_int_element", GeasConstraints::p_array_int_element); registerConstraint("array_bool_element", GeasConstraints::p_array_bool_element); registerConstraint("array_var_int_element", GeasConstraints::p_array_var_int_element); registerConstraint("array_var_bool_element", GeasConstraints::p_array_var_bool_element); /* Global Constraints */ registerConstraint("all_different_int", GeasConstraints::p_all_different); registerConstraint("alldifferent_except_0", GeasConstraints::p_all_different_except_0); registerConstraint("at_most", GeasConstraints::p_at_most); registerConstraint("at_most1", GeasConstraints::p_at_most1); registerConstraint("cumulative", GeasConstraints::p_cumulative); registerConstraint("cumulative_var", GeasConstraints::p_cumulative); registerConstraint("disjunctive", GeasConstraints::p_disjunctive); registerConstraint("disjunctive_var", GeasConstraints::p_disjunctive); registerConstraint("global_cardinality", GeasConstraints::p_global_cardinality); registerConstraint("table_int", GeasConstraints::p_table_int); /**** TODO: NOT YET SUPPORTED: ****/ /* Boolean Arithmetic Constraints */ // registerConstraint("array_bool_xor", GeasConstraints::p_array_bool_xor); // registerConstraint("array_bool_xor_imp", GeasConstraints::p_array_bool_xor_imp); /* Floating Point Comparison Constraints */ // registerConstraint("float_eq", GeasConstraints::p_float_eq); // registerConstraint("float_le", GeasConstraints::p_float_le); // registerConstraint("float_lt", GeasConstraints::p_float_lt); // registerConstraint("float_ne", GeasConstraints::p_float_ne); // registerConstraint("float_eq_reif", GeasConstraints::p_float_eq_reif); // registerConstraint("float_le_reif", GeasConstraints::p_float_le_reif); // registerConstraint("float_lt_reif", GeasConstraints::p_float_lt_reif); /* Floating Point Arithmetic Constraints */ // registerConstraint("float_abs", GeasConstraints::p_float_abs); // registerConstraint("float_sqrt", GeasConstraints::p_float_sqrt); // registerConstraint("float_times", GeasConstraints::p_float_times); // registerConstraint("float_div", GeasConstraints::p_float_div); // registerConstraint("float_plus", GeasConstraints::p_float_plus); // registerConstraint("float_max", GeasConstraints::p_float_max); // registerConstraint("float_min", GeasConstraints::p_float_min); // registerConstraint("float_acos", GeasConstraints::p_float_acos); // registerConstraint("float_asin", GeasConstraints::p_float_asin); // registerConstraint("float_atan", GeasConstraints::p_float_atan); // registerConstraint("float_cos", GeasConstraints::p_float_cos); // registerConstraint("float_exp", GeasConstraints::p_float_exp); // registerConstraint("float_ln", GeasConstraints::p_float_ln); // registerConstraint("float_log10", GeasConstraints::p_float_log10); // registerConstraint("float_log2", GeasConstraints::p_float_log2); // registerConstraint("float_sin", GeasConstraints::p_float_sin); // registerConstraint("float_tan", GeasConstraints::p_float_tan); /* Floating Linear Constraints */ // registerConstraint("float_lin_eq", GeasConstraints::p_float_lin_eq); // registerConstraint("float_lin_eq_reif", GeasConstraints::p_float_lin_eq_reif); // registerConstraint("float_lin_le", GeasConstraints::p_float_lin_le); // registerConstraint("float_lin_le_reif", GeasConstraints::p_float_lin_le_reif); /* Coercion Constraints */ // registerConstraint("int2float", GeasConstraints::p_int2float); } void GeasSolverInstance::processFlatZinc() { auto _opt = static_cast(*_options); // Create variables zero = _solver.new_intvar(0, 0); for (auto it = _flat->vardecls().begin(); it != _flat->vardecls().end(); ++it) { if (!it->removed() && it->e()->type().isvar() && it->e()->type().dim() == 0) { VarDecl* vd = it->e(); if (vd->type().isbool()) { if (vd->e() == nullptr) { Expression* domain = vd->ti()->domain(); long long int lb; long long int ub; if (domain != nullptr) { IntBounds ib = compute_int_bounds(_env.envi(), domain); lb = ib.l.toInt(); ub = ib.u.toInt(); } else { lb = 0; ub = 1; } if (lb == ub) { geas::patom_t val = (lb == 0) ? geas::at_False : geas::at_True; _variableMap.insert(vd->id(), GeasVariable(val)); } else { auto var = _solver.new_boolvar(); _variableMap.insert(vd->id(), GeasVariable(var)); } } else { Expression* init = vd->e(); if (init->isa() || init->isa()) { GeasVariable& var = resolveVar(init); assert(var.isBool()); _variableMap.insert(vd->id(), GeasVariable(var.boolVar())); } else { auto b = init->cast()->v(); geas::patom_t val = b ? geas::at_True : geas::at_False; _variableMap.insert(vd->id(), GeasVariable(val)); } } } else if (vd->type().isfloat()) { if (vd->e() == nullptr) { Expression* domain = vd->ti()->domain(); double lb; double ub; if (domain != nullptr) { FloatBounds fb = compute_float_bounds(_env.envi(), vd->id()); lb = fb.l.toDouble(); ub = fb.u.toDouble(); } else { std::ostringstream ss; ss << "GeasSolverInstance::processFlatZinc: Error: Unbounded variable: " << vd->id()->str(); throw Error(ss.str()); } // TODO: Error correction from double to float?? auto var = _solver.new_floatvar(static_cast(lb), static_cast(ub)); _variableMap.insert(vd->id(), GeasVariable(var)); } else { Expression* init = vd->e(); if (init->isa() || init->isa()) { GeasVariable& var = resolveVar(init); assert(var.isFloat()); _variableMap.insert(vd->id(), GeasVariable(var.floatVar())); } else { double fl = init->cast()->v().toDouble(); auto var = _solver.new_floatvar(static_cast(fl), static_cast(fl)); _variableMap.insert(vd->id(), GeasVariable(var)); } } } else if (vd->type().isint()) { if (vd->e() == nullptr) { Expression* domain = vd->ti()->domain(); if (domain != nullptr) { IntSetVal* isv = eval_intset(env().envi(), domain); auto var = _solver.new_intvar(static_cast(isv->min().toInt()), static_cast(isv->max().toInt())); if (isv->size() > 1) { vec vals(static_cast(isv->card().toInt())); int i = 0; for (int j = 0; j < isv->size(); ++j) { for (auto k = isv->min(j).toInt(); k <= isv->max(j).toInt(); ++k) { vals[i++] = static_cast(k); } } assert(i == isv->card().toInt()); auto res = geas::make_sparse(var, vals); assert(res); } _variableMap.insert(vd->id(), GeasVariable(var)); } else { std::ostringstream ss; ss << "GeasSolverInstance::processFlatZinc: Error: Unbounded variable: " << vd->id()->str(); throw Error(ss.str()); } } else { Expression* init = vd->e(); if (init->isa() || init->isa()) { GeasVariable& var = resolveVar(init); assert(var.isInt()); _variableMap.insert(vd->id(), GeasVariable(var.intVar())); } else { auto il = init->cast()->v().toInt(); auto var = _solver.new_intvar(static_cast(il), static_cast(il)); _variableMap.insert(vd->id(), GeasVariable(var)); } } } else { std::stringstream ssm; ssm << "Type " << *vd->ti() << " is currently not supported by Geas."; throw InternalError(ssm.str()); } } } // Post constraints for (ConstraintIterator it = _flat->constraints().begin(); it != _flat->constraints().end(); ++it) { if (!it->removed()) { if (auto* c = it->e()->dynamicCast()) { _constraintRegistry.post(c); } } } // Set objective SolveI* si = _flat->solveItem(); if (si->e() != nullptr) { _objType = si->st(); if (_objType == SolveI::ST_MIN) { _objVar = std::unique_ptr(new GeasTypes::Variable(resolveVar(si->e()))); } else if (_objType == SolveI::ST_MAX) { _objType = SolveI::ST_MIN; _objVar = std::unique_ptr(new GeasTypes::Variable(-asIntVar(si->e()))); } } if (!si->ann().isEmpty()) { std::vector flatAnn; flattenSearchAnnotations(si->ann(), flatAnn); for (auto& ann : flatAnn) { if (ann->isa()) { Call* call = ann->cast(); if (call->id() == "warm_start") { auto* vars = eval_array_lit(env().envi(), call->arg(0)); auto* vals = eval_array_lit(env().envi(), call->arg(1)); assert(vars->size() == vals->size()); vec ws(static_cast(vars->size())); if (vars->type().isIntArray()) { assert(vals->type().isIntArray()); for (int i = 0; i < vars->size(); ++i) { geas::intvar var = asIntVar((*vars)[i]); int val = asInt((*vals)[i]); ws.push(var == val); } } else if (vars->type().isBoolArray()) { assert(vals->type().isBoolArray()); for (int i = 0; i < vars->size(); ++i) { geas::patom_t var = asBoolVar((*vars)[i]); bool val = asBool((*vals)[i]); ws.push(val ? var : ~var); } } else { std::cerr << "WARNING Geas: ignoring warm start annotation of invalid type: " << *ann << std::endl; continue; } _solver.data->branchers.push(geas::warmstart_brancher(ws)); continue; } vec pids; geas::VarChoice select = geas::Var_FirstFail; geas::ValChoice choice = geas::Val_Min; if (call->id() == "int_search") { vec iv = asIntVar(eval_array_lit(env().envi(), call->arg(0))); pids.growTo(iv.size()); for (int i = 0; i < iv.size(); ++i) { pids[i] = iv[i].p; } } else if (call->id() == "bool_search") { vec bv = asBoolVar(eval_array_lit(env().envi(), call->arg(0))); pids.growTo(bv.size()); for (int i = 0; i < bv.size(); ++i) { pids[i] = bv[i].pid; } } else { std::cerr << "WARNING Geas: ignoring unknown search annotation: " << *ann << std::endl; continue; } ASTString select_str = call->arg(1)->cast()->str(); if (select_str == "input_order") { select = geas::Var_InputOrder; } else if (select_str == "first_fail") { select = geas::Var_FirstFail; } else if (select_str == "largest") { select = geas::Var_Largest; } else if (select_str == "smallest") { select = geas::Var_Smallest; } else { std::cerr << "WARNING Geas: unknown variable selection '" << select_str << "', using default value First Fail." << std::endl; } ASTString choice_str = call->arg(2)->cast()->str(); if (choice_str == "indomain_max") { choice = geas::Val_Max; } else if (choice_str == "indomain_min") { choice = geas::Val_Min; } else if (choice_str == "indomain_split") { choice = geas::Val_Split; } else { std::cerr << "WARNING Geas: unknown value selection '" << choice_str << "', using Indomain Min." << std::endl; } geas::brancher* b = geas::basic_brancher(select, choice, pids); if (_opt.freeSearch) { vec brv({b, _solver.data->last_branch}); _solver.data->branchers.push(geas::toggle_brancher(brv)); } else { _solver.data->branchers.push(b); } } } } } bool GeasSolverInstance::addSolutionNoGood() { assert(!_varsWithOutput.empty()); geas::model solution = _solver.get_model(); vec clause; for (auto& var : _varsWithOutput) { if (Expression::dynamicCast( get_annotation(var->ann(), constants().ann.output_array.aststr())) != nullptr) { if (auto* al = var->e()->dynamicCast()) { for (int j = 0; j < al->size(); j++) { if (Id* id = (*al)[j]->dynamicCast()) { auto geas_var = resolveVar(id); if (geas_var.isBool()) { geas::patom_t bv = geas_var.boolVar(); clause.push(solution.value(bv) ? ~bv : bv); } else if (geas_var.isFloat()) { geas::fp::fpvar fv = geas_var.floatVar(); clause.push(fv < solution[fv]); clause.push(fv > solution[fv]); } else { geas::intvar iv = geas_var.intVar(); clause.push(~(iv == solution[iv])); } } } } } else { auto geas_var = resolveVar(var); if (geas_var.isBool()) { geas::patom_t bv = geas_var.boolVar(); clause.push(solution.value(bv) ? ~bv : bv); } else if (geas_var.isFloat()) { geas::fp::fpvar fv = geas_var.floatVar(); clause.push(fv < solution[fv]); clause.push(fv > solution[fv]); } else { geas::intvar iv = geas_var.intVar(); clause.push(iv != solution[iv]); } } } return geas::add_clause(*_solver.data, clause); } SolverInstanceBase::Status MiniZinc::GeasSolverInstance::solve() { SolverInstanceBase::Status status = SolverInstance::ERROR; auto _opt = static_cast(*_options); auto remaining_time = [_opt] { if (_opt.time == std::chrono::milliseconds(0)) { return 0.0; } using geas_time = std::chrono::duration; static auto timeout = std::chrono::high_resolution_clock::now() + _opt.time; return geas_time(timeout - std::chrono::high_resolution_clock::now()).count(); }; if (_objType == SolveI::ST_SAT) { int nr_solutions = 0; geas::solver::result res = geas::solver::UNKNOWN; while ((_opt.allSolutions || nr_solutions < _opt.nrSolutions) && remaining_time() >= 0.0) { res = _solver.solve({remaining_time(), _opt.conflicts - _solver.data->stats.conflicts}); printSolution(); if (res != geas::solver::SAT) { break; } nr_solutions++; _solver.restart(); if (!addSolutionNoGood()) { res = geas::solver::UNSAT; break; } } switch (res) { case geas::solver::SAT: status = SolverInstance::SAT; break; case geas::solver::UNSAT: if (nr_solutions > 0) { status = SolverInstance::OPT; } else { status = SolverInstance::UNSAT; } break; case geas::solver::UNKNOWN: if (nr_solutions > 0) { status = SolverInstance::SAT; } else { status = SolverInstance::UNKNOWN; } break; default: status = SolverInstance::ERROR; break; } } else { assert(_objType == SolveI::ST_MIN); // TODO: Add float objectives assert(_objVar->isInt()); geas::intvar obj = _objVar->intVar(); geas::solver::result res; while (true) { res = _solver.solve({remaining_time(), _opt.conflicts - _solver.data->stats.conflicts}); geas::intvar::val_t obj_val; if (res != geas::solver::SAT) { break; } status = SolverInstance::SAT; if (_opt.allSolutions) { printSolution(); } obj_val = _solver.get_model()[obj]; int step = 1; while (_opt.objProbeLimit > 0) { geas::intvar::val_t assumed_obj; assumed_obj = obj_val - step; assumed_obj = obj.lb(_solver.data) > assumed_obj ? obj.lb(_solver.data) : assumed_obj; if (!_solver.assume(obj == assumed_obj)) { _solver.retract(); break; } res = _solver.solve({remaining_time(), _opt.objProbeLimit}); _solver.retract(); if (res != geas::solver::SAT) { break; } step *= 2; if (_opt.allSolutions) { printSolution(); } obj_val = _solver.get_model()[obj]; } _solver.post(obj < obj_val); } if (status == SolverInstance::ERROR) { switch (res) { case geas::solver::UNSAT: status = SolverInstance::UNSAT; break; case geas::solver::UNKNOWN: status = SolverInstance::UNKNOWN; break; default: assert(false); status = SolverInstance::ERROR; break; } } else { if (res == geas::solver::UNSAT) { status = SolverInstance::OPT; } if (!_opt.allSolutions) { printSolution(); } } } if (_opt.statistics) { printStatistics(); } return status; } Expression* GeasSolverInstance::getSolutionValue(Id* id) { id = id->decl()->id(); if (id->type().isvar()) { GeasVariable& var = resolveVar(id->decl()->id()); geas::model solution = _solver.get_model(); switch (id->type().bt()) { case Type::BT_BOOL: assert(var.isBool()); return constants().boollit(solution.value(var.boolVar())); case Type::BT_FLOAT: assert(var.isFloat()); return FloatLit::a(solution[var.floatVar()]); case Type::BT_INT: assert(var.isInt()); return IntLit::a(solution[var.intVar()]); default: return nullptr; } } else { return id->decl()->e(); } } void GeasSolverInstance::resetSolver() { assert(false); } GeasTypes::Variable& GeasSolverInstance::resolveVar(Expression* e) { if (auto* id = e->dynamicCast()) { return _variableMap.get(id->decl()->id()); } if (auto* vd = e->dynamicCast()) { return _variableMap.get(vd->id()->decl()->id()); } if (auto* aa = e->dynamicCast()) { auto* ad = aa->v()->cast()->decl(); auto idx = aa->idx()[0]->cast()->v().toInt(); auto* al = eval_array_lit(_env.envi(), ad->e()); return _variableMap.get((*al)[idx]->cast()); } std::stringstream ssm; ssm << "Expected Id, VarDecl or ArrayAccess instead of \"" << *e << "\""; throw InternalError(ssm.str()); } vec GeasSolverInstance::asBool(ArrayLit* al) { vec vec(static_cast(al->size())); for (int i = 0; i < al->size(); ++i) { vec[i] = asBool((*al)[i]); } return vec; } geas::patom_t GeasSolverInstance::asBoolVar(Expression* e) { if (e->type().isvar()) { GeasVariable& var = resolveVar(follow_id_to_decl(e)); assert(var.isBool()); return var.boolVar(); } if (auto* bl = e->dynamicCast()) { return bl->v() ? geas::at_True : geas::at_False; } std::stringstream ssm; ssm << "Expected bool or int literal instead of: " << *e; throw InternalError(ssm.str()); } vec GeasSolverInstance::asBoolVar(ArrayLit* al) { vec vec(static_cast(al->size())); for (int i = 0; i < al->size(); ++i) { vec[i] = this->asBoolVar((*al)[i]); } return vec; } vec GeasSolverInstance::asInt(ArrayLit* al) { vec vec(static_cast(al->size())); for (int i = 0; i < al->size(); ++i) { vec[i] = this->asInt((*al)[i]); } return vec; } geas::intvar GeasSolverInstance::asIntVar(Expression* e) { if (e->type().isvar()) { GeasVariable& var = resolveVar(follow_id_to_decl(e)); assert(var.isInt()); return var.intVar(); } IntVal i; if (auto* il = e->dynamicCast()) { i = il->v().toInt(); } else if (auto* bl = e->dynamicCast()) { i = static_cast(bl->v()); } else { std::stringstream ssm; ssm << "Expected bool or int literal instead of: " << *e; throw InternalError(ssm.str()); } if (i == 0) { return zero; } return _solver.new_intvar(static_cast(i.toInt()), static_cast(i.toInt())); } vec GeasSolverInstance::asIntVar(ArrayLit* al) { vec vec(static_cast(al->size())); for (int i = 0; i < al->size(); ++i) { vec[i] = this->asIntVar((*al)[i]); } return vec; } void GeasSolverInstance::printStatistics() { auto& st = _solver.data->stats; auto& out = getSolns2Out()->getOutput(); out << "%%%mzn-stat: failures=" << st.conflicts << std::endl; // TODO: Statistic name out << "%%%mzn-stat: solveTime=" << st.time << std::endl; out << "%%%mzn-stat: solutions=" << st.solutions << std::endl; out << "%%%mzn-stat: restarts=" << st.restarts << std::endl; out << "%%%mzn-stat: nogoods=" << st.num_learnts << std::endl; // TODO: Statistic name out << "%%%mzn-stat: learntLiterals=" << st.num_learnt_lits << std::endl; // TODO: Statistic name } GeasSolverFactory::GeasSolverFactory() { SolverConfig sc("org.minizinc.geas", getVersion(nullptr)); sc.name("Geas"); sc.mznlib("-Ggeas"); sc.mznlibVersion(1); sc.supportsMzn(false); sc.description(getDescription(nullptr)); sc.tags({ "api", "cp", "float", "int", "lcg", }); sc.stdFlags({"-a", "-f", "-n", "-s", "-t"}); sc.extraFlags({ SolverConfig::ExtraFlag("--conflicts", "Limit the maximum number of conflicts to be used during solving.", SolverConfig::ExtraFlag::FlagType::T_INT, {}, "0"), SolverConfig::ExtraFlag( "--obj-probe", "Number of conflicts to use to probe for better solutions after a new solution is found.", SolverConfig::ExtraFlag::FlagType::T_INT, {}, "0"), }); SolverConfigs::registerBuiltinSolver(sc); }; SolverInstanceBase::Options* GeasSolverFactory::createOptions() { return new GeasOptions; } SolverInstanceBase* GeasSolverFactory::doCreateSI(Env& env, std::ostream& log, SolverInstanceBase::Options* opt) { return new GeasSolverInstance(env, log, opt); } bool GeasSolverFactory::processOption(SolverInstanceBase::Options* opt, int& i, std::vector& argv, const std::string& workingDir) { auto* _opt = static_cast(opt); if (argv[i] == "-a" || argv[i] == "--all-solutions") { _opt->allSolutions = true; } else if (argv[i] == "--conflicts") { if (++i == argv.size()) { return false; } int nodes = atoi(argv[i].c_str()); if (nodes >= 0) { _opt->conflicts = nodes; } } else if (argv[i] == "-f") { _opt->freeSearch = true; } else if (argv[i] == "-n") { if (++i == argv.size()) { return false; } int n = atoi(argv[i].c_str()); if (n >= 0) { _opt->nrSolutions = n; } } else if (argv[i] == "--obj-probe") { if (++i == argv.size()) { return false; } int limit = atoi(argv[i].c_str()); if (limit >= 0) { _opt->objProbeLimit = limit; } } else if (argv[i] == "--solver-statistics" || argv[i] == "-s") { _opt->statistics = true; } else if (argv[i] == "--solver-time-limit" || argv[i] == "-t") { if (++i == argv.size()) { return false; } int time = atoi(argv[i].c_str()); if (time >= 0) { _opt->time = std::chrono::milliseconds(time); } } else { return false; } return true; } void GeasSolverFactory::printHelp(std::ostream& os) { os << "Geas solver plugin options:" << std::endl << " --conflicts " << std::endl << " Limit the maximum number of conflicts to be used during solving." << std::endl << " --obj-probe " << std::endl << " Number of conflicts to use to probe for better solutions after a new solution is " "found." << std::endl << std::endl; } } // namespace MiniZinc