git-subtree-dir: software/chuffed git-subtree-split: 2ed0c01558d2a5c49c1ce57e048d32c17adf92d3
2068 lines
69 KiB
C++
2068 lines
69 KiB
C++
#include <chuffed/core/propagator.h>
|
|
#include <list>
|
|
#include <queue>
|
|
#include <set>
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
|
|
// Time Decomposition of the cumulative constraint
|
|
void timed_cumulative(vec<IntVar*>& s, vec<int>& d, vec<int>& r, int b) {
|
|
assert(s.size() == d.size() && s.size() == r.size());
|
|
int min = INT_MAX;
|
|
int max = INT_MIN;
|
|
// bool in[s.size()];
|
|
bool* in = new bool[s.size()];
|
|
vec<int> a;
|
|
for (int i = 0; i < s.size(); i++) {
|
|
in[i] = (d[i] > 0 && r[i] > 0);
|
|
if (!in[i]) continue;
|
|
if (s[i]->getMin() < min) min = s[i]->getMin();
|
|
if (s[i]->getMax() + d[i] > max) max = s[i]->getMax() + d[i];
|
|
s[i]->specialiseToEL();
|
|
a.push(r[i]);
|
|
}
|
|
for (int t = min; t <= max; t++) {
|
|
vec<IntVar*> x;
|
|
for (int i = 0; i < s.size(); i++) {
|
|
if (!in[i]) continue;
|
|
BoolView b1(s[i]->getLit(t,3));
|
|
BoolView b2(s[i]->getLit(t-d[i]+1,2));
|
|
BoolView b3 = newBoolVar();
|
|
IntVar* v = newIntVar(0,1);
|
|
bool_rel(b1, BRT_AND, b2, b3);
|
|
bool2int(b3, v);
|
|
x.push(v);
|
|
}
|
|
int_linear(a, x, IRT_LE, b);
|
|
}
|
|
delete[] in;
|
|
|
|
}
|
|
|
|
#define CUMUVERB 0
|
|
|
|
// Data types for the Chuffed solver
|
|
#define CUMU_ARR_INTVAR vec<IntVar*>
|
|
#define CUMU_ARR_INT vec<int>
|
|
#define CUMU_INTVAR IntVar*
|
|
#define CUMU_INT int
|
|
#define CUMU_BOOL bool
|
|
#define CUMU_GETMIN(x) x.getMin()
|
|
#define CUMU_GETMAX(x) x.getMax()
|
|
#define CUMU_GETMAX0(x) x.getMax()
|
|
#define CUMU_PT_GETMIN(x) x->getMin()
|
|
#define CUMU_PT_GETMAX(x) x->getMax()
|
|
#define CUMU_PT_GETMIN0(x) x->getMin0()
|
|
#define CUMU_PT_GETMAX0(x) x->getMax0()
|
|
#define CUMU_PT_ISFIXED(x) x->isFixed()
|
|
|
|
class CumulativeProp : public Propagator {
|
|
enum ExplDeg {
|
|
ED_NAIVE,
|
|
ED_NORMAL,
|
|
ED_LIFT
|
|
};
|
|
// Task-Duration tuple
|
|
struct TaskDur {
|
|
int task;
|
|
int dur_in;
|
|
TaskDur(int _task, int _dur_in) : task(_task), dur_in(_dur_in) {}
|
|
};
|
|
// TTEF Update Structure
|
|
struct TTEFUpdate {
|
|
int task;
|
|
int bound_new;
|
|
int tw_begin;
|
|
int tw_end;
|
|
bool is_lb_update;
|
|
TTEFUpdate(int _t, int _n, int _b, int _e, int _l) : task(_t), bound_new(_n),
|
|
tw_begin(_b), tw_end(_e), is_lb_update(_l) {}
|
|
};
|
|
// Compulsory Part of a Task
|
|
struct CompPart {
|
|
CUMU_INT begin;
|
|
CUMU_INT end;
|
|
CUMU_INT level;
|
|
CUMU_INT task;
|
|
CompPart(CUMU_INT b, CUMU_INT e, CUMU_INT l, CUMU_INT t)
|
|
: begin(b), end(e), level(l), task(t) {}
|
|
};
|
|
|
|
// Resource profile of the resource
|
|
struct ProfilePart {
|
|
CUMU_INT begin;
|
|
CUMU_INT end;
|
|
CUMU_INT level;
|
|
set<CUMU_INT> tasks;
|
|
ProfilePart(CUMU_INT b, CUMU_INT e, CUMU_INT l, CUMU_INT t)
|
|
: begin(b), end(e), level(l) { tasks.insert(t); };
|
|
ProfilePart() : begin(0), end(0), level(0) {}
|
|
};
|
|
|
|
enum ProfileChange { PROFINC, PROFDEC };
|
|
struct ProfileChangePt {
|
|
CUMU_INT time;
|
|
ProfileChange change;
|
|
ProfileChangePt(CUMU_INT t, ProfileChange c) : time(t), change(c) {}
|
|
};
|
|
|
|
Tint last_unfixed;
|
|
|
|
public:
|
|
string name; // Name of the cumulative constraint for printing statistics
|
|
|
|
// Constant Data
|
|
CUMU_ARR_INTVAR start; // Start time variables of the tasks
|
|
CUMU_ARR_INTVAR dur; // Durations of the tasks
|
|
CUMU_ARR_INTVAR usage; // Resource usage of the tasks
|
|
CUMU_INTVAR limit; // Resource capacity of the resource
|
|
|
|
// Options
|
|
CUMU_BOOL idem; // Whether the cumulative propagator should be idempotent
|
|
CUMU_BOOL tt_check;
|
|
CUMU_BOOL tt_filt;
|
|
CUMU_BOOL ttef_check;
|
|
CUMU_BOOL ttef_filt;
|
|
|
|
ExplDeg ttef_expl_deg;
|
|
|
|
// Counters
|
|
long nb_tt_incons; // Number of timetabling inconsistencies
|
|
long nb_tt_filt; // Number of timetabling propagations
|
|
long nb_ttef_incons; // Number of timetabling-edge-finding inconsistencies
|
|
long nb_ttef_filt; // Number of timetabling-edge-finding propagations
|
|
|
|
// Parameters
|
|
CUMU_BOOL bound_update;
|
|
|
|
// Structures
|
|
CUMU_ARR_INT task_id; // Unfixed tasks on the left-hand side and fixed tasks on the right-hand size
|
|
int * task_id_est;
|
|
int * task_id_lct;
|
|
int * tt_after_est;
|
|
int * tt_after_lct;
|
|
int * new_est;
|
|
int * new_lct;
|
|
int tt_profile_size;
|
|
struct ProfilePart * tt_profile;
|
|
|
|
// Inline functions
|
|
struct SortEstAsc {
|
|
CumulativeProp *p;
|
|
bool operator() (int i, int j) { return p->est(i) < p->est(j); }
|
|
SortEstAsc(CumulativeProp *_p) : p(_p) {}
|
|
} sort_est_asc;
|
|
|
|
struct SortLctAsc {
|
|
CumulativeProp *p;
|
|
bool operator() (int i, int j) { return p->lct(i) < p->lct(j); }
|
|
SortLctAsc(CumulativeProp *_p) : p(_p) {}
|
|
} sort_lct_asc;
|
|
|
|
// Constructor
|
|
//
|
|
CumulativeProp(CUMU_ARR_INTVAR & _start, CUMU_ARR_INTVAR & _dur, CUMU_ARR_INTVAR & _usage,
|
|
CUMU_INTVAR _limit, list<string> opt)
|
|
: name(""), start(_start), dur(_dur), usage(_usage), limit(_limit),
|
|
idem(false), tt_check(true), tt_filt(true), ttef_check(false), ttef_filt(false),
|
|
nb_tt_incons(0), nb_tt_filt(0), nb_ttef_incons(0), nb_ttef_filt(0),
|
|
bound_update(false),
|
|
sort_est_asc(this), sort_lct_asc(this)
|
|
{
|
|
// Overriding option defaults
|
|
for (list<string>::iterator it = opt.begin(); it != opt.end(); it++) {
|
|
if (!(*it).compare("tt_filt_on"))
|
|
tt_filt = true;
|
|
else if (!(*it).compare("tt_filt_off"))
|
|
tt_filt = false;
|
|
if (!(*it).compare("ttef_check_on"))
|
|
ttef_check = true;
|
|
else if (!(*it).compare("ttef_check_off"))
|
|
ttef_check = false;
|
|
if (!(*it).compare("ttef_filt_on"))
|
|
ttef_filt = true;
|
|
else if (!(*it).compare("ttef_filt_off"))
|
|
ttef_filt = false;
|
|
else if ((*it).find("__name__") == 0)
|
|
name = (*it).substr(8);
|
|
}
|
|
//ttef_expl_deg = ED_NAIVE;
|
|
//ttef_expl_deg = ED_NORMAL;
|
|
ttef_expl_deg = ED_LIFT;
|
|
// Allocation of the memory
|
|
tt_profile = new ProfilePart[2 * start.size()];
|
|
tt_profile_size = 0;
|
|
// XXX Check for successful memory allocation
|
|
if (ttef_check || ttef_filt) {
|
|
task_id_est = (int *) malloc(start.size() * sizeof(int));
|
|
task_id_lct = (int *) malloc(start.size() * sizeof(int));
|
|
tt_after_est = (int *) malloc(start.size() * sizeof(int));
|
|
tt_after_lct = (int *) malloc(start.size() * sizeof(int));
|
|
if (ttef_filt) {
|
|
new_est = (int *) malloc(start.size() * sizeof(int));
|
|
new_lct = (int *) malloc(start.size() * sizeof(int));
|
|
} else {
|
|
new_est = NULL;
|
|
new_lct = NULL;
|
|
}
|
|
// XXX Check for successful memory allocation
|
|
} else {
|
|
task_id_est = NULL;
|
|
task_id_lct = NULL;
|
|
tt_after_est = NULL;
|
|
}
|
|
|
|
// Priority of the propagator
|
|
priority = 3;
|
|
#if CUMUVERB>0
|
|
fprintf(stderr, "\tCumulative with n = %d\n", start.size());
|
|
#endif
|
|
// Attach to var events
|
|
for (int i = 0; i < start.size(); i++) {
|
|
#if CUMUVERB>1
|
|
fprintf(stderr, "\t%d: %p\n", i, start[i]);
|
|
#endif
|
|
start[i]->attach(this, i, EVENT_LU);
|
|
if (min_dur(i) < max_dur(i)) dur[i]->attach(this, i, EVENT_LF);
|
|
if (min_usage(i) < max_usage(i)) usage[i]->attach(this, i, EVENT_LF);
|
|
}
|
|
limit->attach(this, start.size(), EVENT_UF);
|
|
|
|
for (int i = 0; i < start.size(); i++) {
|
|
task_id.push(i);
|
|
}
|
|
last_unfixed = start.size() - 1;
|
|
}
|
|
|
|
// Statistics
|
|
void printStats() {
|
|
fprintf(stderr, "%% Cumulative propagator statistics");
|
|
if (name != "")
|
|
cerr << " for " << name;
|
|
fprintf(stderr, ":\n");
|
|
fprintf(stderr, "%%\t#TT incons.: %ld\n", nb_tt_incons);
|
|
if (tt_filt)
|
|
fprintf(stderr, "%%\t#TT prop.: %ld\n", nb_tt_filt);
|
|
if (ttef_check || ttef_filt)
|
|
fprintf(stderr, "%%\t#TTEF incons.: %ld\n", nb_ttef_incons);
|
|
if (ttef_filt) {
|
|
fprintf(stderr, "%%\t#TTEF prop.: %ld\n", nb_ttef_filt);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Inline function for parameters of tasks
|
|
**/
|
|
// Earliest start time of task i
|
|
inline CUMU_INT
|
|
est(CUMU_INT i) { return CUMU_PT_GETMIN(start[i]); }
|
|
// Latest start time of task i
|
|
inline CUMU_INT
|
|
lst(CUMU_INT i) { return CUMU_PT_GETMAX(start[i]); }
|
|
// Earliest completion time of task i
|
|
inline CUMU_INT
|
|
ect(CUMU_INT i) { return CUMU_PT_GETMIN(start[i]) + CUMU_PT_GETMIN(dur[i]); }
|
|
// Latest completion time of task i
|
|
inline CUMU_INT
|
|
lct(CUMU_INT i) { return CUMU_PT_GETMAX(start[i]) + CUMU_PT_GETMIN(dur[i]); }
|
|
// Minimal resource usage of task i
|
|
inline CUMU_INT
|
|
min_usage(CUMU_INT i) { return CUMU_PT_GETMIN(usage[i]); }
|
|
// Minimal energy of task i
|
|
inline CUMU_INT
|
|
min_energy(CUMU_INT i) { return min_usage(i) * min_dur(i); }
|
|
// Free Energy
|
|
inline CUMU_INT
|
|
free_energy(CUMU_INT i) {
|
|
return min_energy(i) - min_usage(i) * max(0, ect(i) - lst(i));
|
|
}
|
|
|
|
/**
|
|
* Inline functions for receiving the minimum and maximum of integer
|
|
* variables
|
|
**/
|
|
inline CUMU_INT
|
|
min_start0(CUMU_INT i) { return CUMU_PT_GETMIN0(start[i]); }
|
|
inline CUMU_INT
|
|
max_start0(CUMU_INT i) { return CUMU_PT_GETMAX0(start[i]); }
|
|
inline CUMU_INT
|
|
min_dur(CUMU_INT i) { return CUMU_PT_GETMIN(dur[i]); }
|
|
inline CUMU_INT
|
|
max_dur(CUMU_INT i) { return CUMU_PT_GETMAX(dur[i]); }
|
|
inline CUMU_INT
|
|
min_dur0(CUMU_INT i) { return CUMU_PT_GETMIN0(dur[i]); }
|
|
inline CUMU_INT
|
|
max_usage(CUMU_INT i) { return CUMU_PT_GETMAX(usage[i]); }
|
|
inline CUMU_INT
|
|
min_usage0(CUMU_INT i) { return CUMU_PT_GETMIN0(usage[i]); }
|
|
|
|
inline CUMU_INT
|
|
min_limit() { return CUMU_PT_GETMIN(limit); }
|
|
inline CUMU_INT
|
|
max_limit() { return CUMU_PT_GETMAX(limit); }
|
|
inline CUMU_INT
|
|
max_limit0() { return CUMU_PT_GETMAX0(limit); }
|
|
|
|
// Cumulative Propagator
|
|
CUMU_BOOL
|
|
propagate() {
|
|
#if CUMUVERB>0
|
|
fprintf(stderr, "Entering cumulative propagation\n");
|
|
#endif
|
|
int new_unfixed = last_unfixed;
|
|
for (int ii = new_unfixed; ii >= 0; ii--) {
|
|
int i = task_id[ii];
|
|
if ((CUMU_PT_ISFIXED(start[i]) && CUMU_PT_ISFIXED(dur[i]) && CUMU_PT_ISFIXED(usage[i])) || max_dur(i) <= 0 || max_usage(i) <= 0) {
|
|
// Swaping the id's
|
|
task_id[ii] = task_id[new_unfixed];
|
|
task_id[new_unfixed] = i;
|
|
new_unfixed--;
|
|
}
|
|
}
|
|
// Trailing the index of the last unfixed task
|
|
last_unfixed = new_unfixed;
|
|
#if CUMUVERB>0
|
|
fprintf(stderr, "\tEntering cumulative propagation loop\n");
|
|
#endif
|
|
// idempotent
|
|
do {
|
|
bound_update = false;
|
|
// Reseting the profile size
|
|
tt_profile_size = 0;
|
|
// Time-table propagators
|
|
if (tt_check || tt_filt) {
|
|
// Time-table propagation
|
|
if (! time_table_propagation(task_id) ) {
|
|
// Inconsistency was detected
|
|
#if CUMUVERB > 10
|
|
fprintf(stderr, "Leaving cumulative propagation with failure\n");
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
// TODO Time-table-edge-finding propagation
|
|
if (!bound_update && last_unfixed > 0 && (ttef_check || ttef_filt)) {
|
|
// Initialisation of necessary structures
|
|
// - Unfixed tasks sorted according earliest start time
|
|
// - Unfixed tasks sorted according latest completion time
|
|
// - Energy of the compulsory parts after the latest completion
|
|
// time of unfixed tasks
|
|
// - Energy of the compulsory parts after the earliest start
|
|
// time of unfixed tasks
|
|
ttef_initialise_parameters();
|
|
// TTEF consistency check
|
|
//if (!ttef_consistency_check(get_free_dur_right_shift)) {
|
|
// // Inconsistency was detected
|
|
// return false;
|
|
//}
|
|
// TODO TTEF start time filtering algorithm
|
|
if (ttef_filt) {
|
|
if (!ttef_bounds_propagation(get_free_dur_right_shift, get_free_dur_left_shift)) {
|
|
// Inconsistency was detected
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!ttef_consistency_check(get_free_dur_right_shift)) {
|
|
// Inconsistency was detected
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
// TODO Optional task propagation
|
|
if (!bound_update) {
|
|
if (tt_filt && tt_profile_size > 0) {
|
|
if (!tt_optional_task_propagation()) {
|
|
// Inconsistency was detected
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
} while (idem && bound_update);
|
|
#if CUMUVERB > 0
|
|
fprintf(stderr, "\tLeaving cumulative propagation loop\n");
|
|
fprintf(stderr, "Leaving cumulative propagation without failure\n");
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
// Comparison between two compulsory parts
|
|
static bool
|
|
compare_CompParts(CompPart cp1, CompPart cp2) {
|
|
if (cp1.begin < cp2.begin) return true;
|
|
if (cp1.begin > cp2.begin) return false;
|
|
// ASSUMPTION
|
|
// - cp1.begin == cp2.begin
|
|
if (cp1.end < cp2.end) return true;
|
|
if (cp1.end > cp2.end) return false;
|
|
// ASSUMPTION
|
|
// - cp1.end == cp2.end
|
|
if (cp1.task < cp2.task) return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
// Creation of the resource profile for the time-table consistency check
|
|
// and propagator
|
|
CUMU_BOOL
|
|
time_table_propagation(CUMU_ARR_INT & task) {
|
|
list<ProfileChangePt> changes;
|
|
list<CUMU_INT> comp_task;
|
|
//int size_profile = 0;
|
|
|
|
#if CUMUVERB>10
|
|
fprintf(stderr, "\tCompulsory Parts ...\n");
|
|
#endif
|
|
get_compulsory_parts2(changes, comp_task, task, 0, task.size());
|
|
// Proceed if there are compulsory parts
|
|
if (!changes.empty()) {
|
|
#if CUMUVERB>1
|
|
fprintf(stderr, "\tSorting (size %d)...\n", (int) changes.size());
|
|
#endif
|
|
// Sorting the start and end points of all the profile
|
|
changes.sort(compare_ProfileChangePt);
|
|
#if CUMUVERB>1
|
|
fprintf(stderr, "\tSorting (size %d)...\n", (int) changes.size());
|
|
#endif
|
|
// Counting the number of different profiles
|
|
tt_profile_size = count_profile(changes);
|
|
#if CUMUVERB>1
|
|
fprintf(stderr, "\t#profile parts = %d\n", tt_profile_size);
|
|
#endif
|
|
#if CUMUVERB>1
|
|
fprintf(stderr, "\tProfile Parts ...\n");
|
|
#endif
|
|
// Creating the different profile parts
|
|
create_profile(changes);
|
|
int i_max_usage = 0;
|
|
#if CUMUVERB>1
|
|
fprintf(stderr, "\tFilling of Profile Parts ...\n");
|
|
#endif
|
|
// Filling the profile parts with tasks
|
|
if (!fill_in_profile_parts(tt_profile, tt_profile_size, comp_task, i_max_usage)) {
|
|
return false;
|
|
}
|
|
#if CUMUVERB>10
|
|
fprintf(stderr, "\tFiltering Resource Limit ...\n");
|
|
#endif
|
|
// Filtering of resource limit variable
|
|
if (!filter_limit(tt_profile, i_max_usage)) {
|
|
return false;
|
|
}
|
|
if (tt_filt) {
|
|
#if CUMUVERB>10
|
|
fprintf(stderr, "\tFiltering Start Times ...\n");
|
|
#endif
|
|
// Time-table filtering
|
|
if (!time_table_filtering(tt_profile, tt_profile_size, task, 0, last_unfixed, tt_profile[i_max_usage].level)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
#if CUMUVERB>10
|
|
fprintf(stderr, "\tEnd of time-table propagation ...\n");
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
void
|
|
get_compulsory_parts2(
|
|
list<ProfileChangePt> &changes, list<CUMU_INT> &comp_task, CUMU_ARR_INT & task,
|
|
CUMU_INT i_start, CUMU_INT i_end
|
|
);
|
|
|
|
// Sets for each profile part its begin and end time in chronological order
|
|
// Runtime complexity: O(n)
|
|
//
|
|
void
|
|
create_profile(list<ProfileChangePt> &changes) {
|
|
list<ProfileChangePt>::iterator iter = changes.begin();
|
|
int cur_profile = 0;
|
|
int cur_time = iter->time;
|
|
ProfileChange cur_change = iter->change;
|
|
int no_starts = 1;
|
|
for (; iter != changes.end(); iter++) {
|
|
if (iter->time > cur_time && no_starts > 1) {
|
|
#if CUMUVERB>20
|
|
fprintf(stderr, "Set times for profile part %d = [%d, %d)\n", cur_profile, cur_time, iter->time);
|
|
fprintf(stderr, "\t%p; %p; %d\n", tt_profile, this, start.size());
|
|
#endif
|
|
set_times_for_profile(cur_profile, cur_time, iter->time);
|
|
cur_profile++;
|
|
}
|
|
no_starts += (iter->change == PROFINC ? 1 : -1);
|
|
cur_change = iter->change;
|
|
cur_time = iter->time;
|
|
}
|
|
}
|
|
|
|
inline void
|
|
set_times_for_profile(int i, CUMU_INT begin, CUMU_INT end) {
|
|
tt_profile[i].begin = begin;
|
|
tt_profile[i].end = end;
|
|
tt_profile[i].level = 0;
|
|
//fprintf(stderr, "blxxx %d\n", (int) tt_profile[i].tasks.size());
|
|
tt_profile[i].tasks.clear();
|
|
}
|
|
|
|
// Filling the profile parts with compulsory parts and checking for a resource
|
|
// overload
|
|
CUMU_BOOL
|
|
fill_in_profile_parts(ProfilePart * profile, int size, list<CUMU_INT> comp_task, int & i_max_usage) {
|
|
list<CUMU_INT>::iterator iter;
|
|
int i = 0;
|
|
CUMU_INT lst_i, ect_i;
|
|
|
|
#if CUMUVERB>2
|
|
fprintf(stderr, "\t\tstart filling profiles (size %d)\n", size);
|
|
#endif
|
|
for (iter = comp_task.begin(); iter != comp_task.end(); iter++) {
|
|
#if CUMUVERB>2
|
|
fprintf(stderr, "\t\tcomp part = %d\n", *iter);
|
|
#endif
|
|
lst_i = lst(*iter);
|
|
ect_i = ect(*iter);
|
|
#if CUMUVERB>2
|
|
fprintf(stderr, "\t\tFinding first profile part\n");
|
|
#endif
|
|
// Find first profile
|
|
i = find_first_profile(profile, 0, size - 1, lst_i);
|
|
#if CUMUVERB>2
|
|
fprintf(stderr, "\t\tAdding comp parts of level %d\n", min_usage(*iter));
|
|
#endif
|
|
// Add compulsory part to the profile
|
|
while (i < size && profile[i].begin < ect_i) {
|
|
#if CUMUVERB>2
|
|
fprintf(stderr, "\t\t\tAdding comp parts in profile part %d\n", i);
|
|
#endif
|
|
profile[i].level += min_usage(*iter);
|
|
profile[i].tasks.insert(*iter);
|
|
// Checking if the profile part i is the part with the maximal level
|
|
//
|
|
if (profile[i].level > profile[i_max_usage].level) {
|
|
i_max_usage = i;
|
|
}
|
|
// Time-table consistency check
|
|
//
|
|
if (profile[i].level > max_limit()) {
|
|
#if CUMUVERB > 20
|
|
fprintf(stderr, "\t\t\tResource overload (%d > %d) in profile part %d\n", profile[i].level, max_limit(), i);
|
|
#endif
|
|
// Increment the inconsistency counter
|
|
nb_tt_incons++;
|
|
|
|
// The resource is overloaded in this part
|
|
vec<Lit> expl;
|
|
if (so.lazy) {
|
|
CUMU_INT lift_usage = profile[i].level - max_limit() - 1;
|
|
CUMU_INT begin1, end1;
|
|
// TODO Different choices to pick the interval
|
|
// Pointwise explanation
|
|
begin1 = profile[i].begin + ((profile[i].end - profile[i].begin) / 2);
|
|
end1 = begin1 + 1;
|
|
// Generation of the explanation
|
|
analyse_limit_and_tasks(
|
|
expl, profile[i].tasks, lift_usage, begin1, end1
|
|
);
|
|
}
|
|
// Submitting of the conflict explanation
|
|
submit_conflict_explanation(expl);
|
|
#if CUMUVERB > 20
|
|
fprintf(stderr, "\t\tend filling (conflict)\n");
|
|
#endif
|
|
return false;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
#if CUMUVERB>2
|
|
fprintf(stderr, "\t\tend filling (successful)\n");
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
// Finds the profile part that begins at the time unit "lst"
|
|
// Complexity: O(log(high - low + 1))
|
|
//
|
|
int
|
|
find_first_profile(ProfilePart * profile, int low, int high, CUMU_INT lst) {
|
|
int median = 0;
|
|
while (profile[low].begin != lst) {
|
|
median = low + (high - low + 1) / 2;
|
|
if (profile[median].begin > lst) {
|
|
high = median;
|
|
} else {
|
|
low = median;
|
|
}
|
|
}
|
|
return low;
|
|
}
|
|
|
|
// Counting the number of profiles
|
|
//
|
|
int
|
|
count_profile(list<ProfileChangePt> &changes) {
|
|
list<ProfileChangePt>::iterator iter = changes.begin();
|
|
int cur_time = iter->time;
|
|
int next_time;
|
|
ProfileChange cur_change = iter->change;
|
|
int no_starts = ( iter->change == PROFINC ? 1 : 0 );
|
|
int no_profile = no_starts;
|
|
iter++;
|
|
|
|
#if CUMUVERB>2
|
|
fprintf( stderr, "\t\t\ttime = %d; change = %d; no_starts = %d; no_profile = %d;\n", cur_time, cur_change, no_starts, no_profile);
|
|
#endif
|
|
for (; iter != changes.end(); iter++) {
|
|
if (iter->change == PROFINC) {
|
|
if (cur_time < iter->time || cur_change == PROFDEC) {
|
|
no_profile++;
|
|
}
|
|
no_starts++;
|
|
} else {
|
|
// ASSUMPTION
|
|
// - iter->change = PROFDEC
|
|
no_starts--;
|
|
next_time = iter->time;
|
|
iter++;
|
|
if (iter != changes.end() && no_starts > 0 && iter->time > next_time) {
|
|
no_profile++;
|
|
}
|
|
iter--;
|
|
}
|
|
cur_time = iter->time;
|
|
cur_change = iter->change;
|
|
#if CUMUVERB>2
|
|
fprintf( stderr, "\t\t\ttime = %d; change = %d; no_starts = %d; no_profile = %d;\n", cur_time, cur_change, no_starts, no_profile);
|
|
#endif
|
|
}
|
|
return no_profile;
|
|
}
|
|
|
|
static bool
|
|
compare_ProfileChangePt(ProfileChangePt & pt1, ProfileChangePt & pt2) {
|
|
if (pt1.time == pt2.time && pt1.change == PROFDEC && pt2.change == PROFINC) return true;
|
|
return pt1.time < pt2.time;
|
|
}
|
|
|
|
// Time-table filtering on the lower bound of the resource limit variable
|
|
// Complexity:
|
|
CUMU_BOOL
|
|
filter_limit(ProfilePart * profile, int & i_max_usage);
|
|
|
|
// Time-table filtering on the start time variables
|
|
// Complexity:
|
|
CUMU_BOOL
|
|
time_table_filtering(ProfilePart profile[], int size, CUMU_ARR_INT & task, int start, int end, CUMU_INT max_usage);
|
|
CUMU_BOOL
|
|
time_table_filtering_lb(ProfilePart profile[], int low, int high, int task);
|
|
CUMU_BOOL
|
|
time_table_filtering_ub(ProfilePart profile[], int low, int high, int task);
|
|
|
|
int
|
|
find_first_profile_for_lb(ProfilePart profile[], int low, int high, CUMU_INT t);
|
|
int
|
|
find_first_profile_for_ub(ProfilePart profile[], int low, int high, CUMU_INT t);
|
|
|
|
// Time-table filtering for optional tasks
|
|
CUMU_BOOL
|
|
tt_optional_task_propagation();
|
|
|
|
// Analysing the conflict and generation of the explanations
|
|
// NOTE: Fixed durations and resource usages are assumed!!!
|
|
//
|
|
// Explanation is created for the time interval [begin, end), i.e., exluding end.
|
|
//
|
|
void
|
|
analyse_limit_and_tasks(vec<Lit> & expl, set<CUMU_INT> & tasks, CUMU_INT lift_usage, CUMU_INT begin, CUMU_INT end);
|
|
void
|
|
analyse_tasks(vec<Lit> & expl, set<CUMU_INT> & tasks, CUMU_INT lift_usage, CUMU_INT begin, CUMU_INT end);
|
|
void
|
|
submit_conflict_explanation(vec<Lit> & expl);
|
|
Clause *
|
|
get_reason_for_update(vec<Lit> & expl);
|
|
|
|
// TODO Disentailment check
|
|
//CUMU_INT
|
|
//checkSatisfied() {
|
|
// // XXX Until no cumulative propagator is implemented the constraint
|
|
// // is always ?satisfied?
|
|
// return 1;
|
|
//}
|
|
|
|
// Wrapper to get the negated literal -[[v <= val]] = [[v >= val + 1]]
|
|
inline Lit
|
|
getNegLeqLit(CUMU_INTVAR v, CUMU_INT val) {
|
|
//return v->getLit(val + 1, 2);
|
|
return (INT_VAR_LL == v->getType() ? v->getMaxLit() : v->getLit(val + 1, 2));
|
|
}
|
|
// Wrapper to get the negated literal -[[v >= val]] = [[ v <= val - 1]]
|
|
inline Lit
|
|
getNegGeqLit(CUMU_INTVAR v, CUMU_INT val) {
|
|
//return v->getLit(val - 1, 3);
|
|
return (INT_VAR_LL == v->getType() ? v->getMinLit() : v->getLit(val - 1, 3));
|
|
}
|
|
|
|
// TTEF Propagator
|
|
//
|
|
void ttef_initialise_parameters();
|
|
bool ttef_consistency_check(int shift_in(const int, const int, const int, const int, const int, const int, const int));
|
|
bool ttef_bounds_propagation(int shift_in1(const int, const int, const int, const int, const int, const int, const int),
|
|
int shift_in2(const int, const int, const int, const int, const int, const int, const int));
|
|
bool ttef_bounds_propagation_lb(int shift_in(const int, const int, const int, const int, const int, const int, const int),
|
|
std::queue<TTEFUpdate> & update_queue);
|
|
bool ttef_bounds_propagation_ub(int shift_in(const int, const int, const int, const int, const int, const int, const int),
|
|
std::queue<TTEFUpdate> & update_queue);
|
|
bool ttef_update_bounds(int shift_in(const int, const int, const int, const int, const int, const int, const int),
|
|
std::queue<TTEFUpdate> & queue_update);
|
|
|
|
int
|
|
ttef_retrieve_tasks(int shift_in(const int, const int, const int, const int, const int, const int, const int),
|
|
int begin, int end, int fb_id, list<TaskDur> & tasks_tw, list<TaskDur> & tasks_cp);
|
|
|
|
// TTEF Generation of explanations
|
|
//
|
|
void
|
|
ttef_analyse_limit_and_tasks(const int begin, const int end, list<TaskDur> & tasks_tw,
|
|
list<TaskDur> & tasks_cp, int & en_lift, vec<Lit> & expl);
|
|
void
|
|
ttef_analyse_tasks(const int begin, const int end, list<TaskDur> & tasks, int & en_lift, vec<Lit> & expl);
|
|
|
|
inline bool
|
|
is_intersecting(const int begin1, const int end1, const int begin2, const int end2);
|
|
|
|
// Shift functions
|
|
//
|
|
static inline int
|
|
get_free_dur_right_shift(const int tw_begin, const int tw_end, const int est, const int ect,
|
|
const int lst, const int lct, const int dur_fixed_in)
|
|
{
|
|
return (tw_begin <= est ? max(0, tw_end - lst - dur_fixed_in) : 0);
|
|
}
|
|
|
|
static inline int
|
|
get_free_dur_left_shift(const int tw_begin, const int tw_end, const int est, const int ect,
|
|
const int lst, const int lct, const int dur_fixed_in)
|
|
{
|
|
return (tw_end >= lct ? max(0, ect - tw_begin - dur_fixed_in) : 0);
|
|
}
|
|
|
|
static inline int
|
|
get_no_shift(const int tw_begin, const int tw_end, const int est, const int ect,
|
|
const int lst, const int lct, const int dur_fixed_in)
|
|
{
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
/****
|
|
* Functions related to the Time-Table Consistency Check and Propagation
|
|
****/
|
|
|
|
void
|
|
CumulativeProp::get_compulsory_parts2(
|
|
list<ProfileChangePt> &changes, list<CUMU_INT> &comp_task, CUMU_ARR_INT & task, CUMU_INT i_start, CUMU_INT i_end
|
|
) {
|
|
CUMU_INT i;
|
|
#if CUMUVERB>2
|
|
fprintf(stderr, "\tstart get_compulsory_part from %d to %d\n", i_start, i_end);
|
|
#endif
|
|
for (i = i_start; i < i_end; i++) {
|
|
#if CUMUVERB>2
|
|
fprintf(stderr, "\t\ti = %d; task[i] = %d\n", i, task[i]);
|
|
#endif
|
|
// Check whether the task creates a compulsory part
|
|
if (min_dur(task[i]) > 0 && min_usage(task[i]) > 0 && lst(task[i]) < ect(task[i])) {
|
|
#if CUMUVERB>2
|
|
fprintf(stderr, "\t\ttask[i] = %d, comp part [%d, %d)\n", task[i], lst(task[i]), ect(task[i]));
|
|
#endif
|
|
// Add task to the list
|
|
comp_task.push_back(task[i]);
|
|
// Add time points to change lists
|
|
changes.push_back( ProfileChangePt(lst(task[i]), PROFINC) );
|
|
changes.push_back( ProfileChangePt(ect(task[i]), PROFDEC) );
|
|
}
|
|
}
|
|
#if CUMUVERB>2
|
|
fprintf(stderr, "\tend get_compulsory_part\n");
|
|
#endif
|
|
}
|
|
|
|
|
|
/***************************************************************************************
|
|
* Function for time-table filtering on the lower bound of the resource limit variable *
|
|
***************************************************************************************/
|
|
|
|
CUMU_BOOL
|
|
CumulativeProp::filter_limit(ProfilePart * profile, int & i) {
|
|
if (min_limit() < profile[i].level) {
|
|
Clause * reason = NULL;
|
|
nb_tt_filt++;
|
|
if (so.lazy) {
|
|
// Lower bound can be updated
|
|
// XXX Determining what time period is the best
|
|
int expl_begin = profile[i].begin + ((profile[i].end - profile[i].begin - 1)/2);
|
|
int expl_end = expl_begin + 1;
|
|
vec<Lit> expl;
|
|
// Get the negated literals for the tasks in the profile
|
|
analyse_tasks(expl, profile[i].tasks, 0, expl_begin, expl_end);
|
|
// Transform literals to a clause
|
|
reason = get_reason_for_update(expl);
|
|
}
|
|
if (! limit->setMin(profile[i].level, reason)) {
|
|
// Conflict occurred
|
|
return false;
|
|
}
|
|
// Set bound_update to true
|
|
bound_update = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/******************************************************************
|
|
* Functions for Time-Table Filtering on the start time variables *
|
|
******************************************************************/
|
|
|
|
CUMU_BOOL
|
|
CumulativeProp::time_table_filtering(ProfilePart profile[], int size, CUMU_ARR_INT & task, int i_start, int i_end, CUMU_INT max_usage) {
|
|
for (int i = i_start; i <= i_end; i++) {
|
|
// Skipping tasks with zero duration or usage
|
|
if (min_dur(task[i]) <= 0 || min_usage(task[i]) <= 0)
|
|
continue;
|
|
#if CUMUVERB>0
|
|
fprintf(stderr, "TT Filtering of task %d\n", task[i]);
|
|
#endif
|
|
// Check if the sum of max_usage and the task's usage are greater then the upper bound
|
|
// on the resource limit
|
|
if (min_usage(task[i]) + max_usage > max_limit()) {
|
|
int index;
|
|
#if CUMUVERB>0
|
|
fprintf(stderr, "Finding the first index for LB ...\n");
|
|
#endif
|
|
// Find initial profile part for lower bound propagation
|
|
//
|
|
index = find_first_profile_for_lb(profile, 0, size - 1, est(task[i]));
|
|
#if CUMUVERB>0
|
|
fprintf(stderr, "Lower bound starting from index %d till index %d\n", index, size - 1);
|
|
#endif
|
|
// Update the lower bound if possible
|
|
if (! time_table_filtering_lb(profile, index, size - 1, task[i])) {
|
|
return false;
|
|
}
|
|
#if CUMUVERB>0
|
|
fprintf(stderr, "Finding the first index for UB ...\n");
|
|
#endif
|
|
// Find initial profile part for upper bound propagation
|
|
index = find_first_profile_for_ub(profile, 0, size - 1, lct(task[i]));
|
|
#if CUMUVERB>0
|
|
fprintf(stderr, "Upper bound starting from index %d till index 0\n", index);
|
|
#endif
|
|
// Update the upper bound if possible
|
|
if (! time_table_filtering_ub(profile, 0, index, task[i])) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Time-Table Filtering on the Lower Bound of Start Times Variables
|
|
//
|
|
CUMU_BOOL
|
|
CumulativeProp::time_table_filtering_lb(ProfilePart profile[], int low, int high, int task) {
|
|
int i;
|
|
#if CUMUVERB>5
|
|
fprintf(stderr, "task %d: start [%d, %d], end [%d, %d], min usage %d\n", task, est(task), lst(task), ect(task), lct(task), min_usage(task));
|
|
#endif
|
|
for (i = low; i <= high; i++) {
|
|
#if CUMUVERB>5
|
|
fprintf(stderr, "\tprofile[%d]: begin %d; end %d; level %d;\n", i, profile[i].begin, profile[i].end, profile[i].level);
|
|
#endif
|
|
if (ect(task) <= profile[i].begin) {
|
|
// No lower bound update possible
|
|
break;
|
|
}
|
|
// ASSUMPTION
|
|
// - ect(task) > profile[i].begin
|
|
if (est(task) < profile[i].end && profile[i].level + min_usage(task) > max_limit()) {
|
|
// Possibly a lower bound update if "task" as no compulsory part in the profile
|
|
if (lst(task) < ect(task) && lst(task) <= profile[i].begin && profile[i].end <= ect(task)) {
|
|
// No lower bound update possible for this profile part, because
|
|
// "task" has a compulsory part in it
|
|
continue ;
|
|
}
|
|
#if CUMUVERB>1
|
|
fprintf(stderr, "\n----\n");
|
|
fprintf(stderr, "setMin of task %d in profile part [%d, %d)\n", task, profile[i].begin, profile[i].end);
|
|
fprintf(stderr, "task %d: lst = %d; ect = %d; dur = %d;\n", task, lst(task), ect(task), min_dur(task));
|
|
#endif
|
|
int expl_end = profile[i].end;
|
|
Clause * reason = NULL;
|
|
if (so.lazy) {
|
|
// XXX Assumption for the remaining if-statement
|
|
// No compulsory part of task in profile[i]!
|
|
int lift_usage = profile[i].level + min_usage(task) - max_limit() - 1;
|
|
// TODO Choices of different explanation
|
|
// Pointwise explanation
|
|
expl_end = min(ect(task), profile[i].end);
|
|
int expl_begin = expl_end - 1;
|
|
vec<Lit> expl;
|
|
// Get the negated literal for [[start[task] >= ex_end - min_dur(task)]]
|
|
#if CUMUVERB>1
|
|
fprintf(stderr, "start[%d] => %d ", task, expl_end - min_dur(task));
|
|
#endif
|
|
expl.push(getNegGeqLit(start[task], expl_end - min_dur(task)));
|
|
// Get the negated literal for [[dur[task] >= min_dur(task)]]
|
|
if (min_dur0(task) < min_dur(task))
|
|
expl.push(getNegGeqLit(dur[task], min_dur(task)));
|
|
// Get the negated literal for [[usage[task] >= min_usage(task)]]
|
|
if (min_usage0(task) < min_usage(task))
|
|
expl.push(getNegGeqLit(usage[task], min_usage(task)));
|
|
// Get the negated literals for the tasks in the profile and the resource limit
|
|
analyse_limit_and_tasks(expl, profile[i].tasks, lift_usage, expl_begin, expl_end);
|
|
#if CUMUVERB>1
|
|
fprintf(stderr, " -> start[%d] => %d\n", task, expl_end);
|
|
#endif
|
|
// Transform literals to a clause
|
|
reason = get_reason_for_update(expl);
|
|
}
|
|
nb_tt_filt++;
|
|
// Impose the new lower bound on start[task]
|
|
if (! start[task]->setMin(expl_end, reason)) {
|
|
// Conflict occurred
|
|
return false;
|
|
}
|
|
// Set bound_update to true
|
|
bound_update = true;
|
|
// Check for the next profile
|
|
if (expl_end < profile[i].end) {
|
|
i--;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Time-table filtering on the upper bound of start times variables
|
|
//
|
|
CUMU_BOOL
|
|
CumulativeProp::time_table_filtering_ub(ProfilePart profile[], int low, int high, int task) {
|
|
int i;
|
|
#if CUMUVERB>5
|
|
fprintf(stderr, "task %d: start [%d, %d], end [%d, %d], min usage %d\n", task, est(task), lst(task), ect(task), lct(task), min_usage(task));
|
|
#endif
|
|
for (i = high; i >= low; i--) {
|
|
#if CUMUVERB>5
|
|
fprintf(stderr, "\tprofile[%d]: begin %d; end %d; level %d;\n", i, profile[i].begin, profile[i].end, profile[i].level);
|
|
#endif
|
|
if (profile[i].end <= lst(task)) {
|
|
// No upper bound update possible
|
|
break;
|
|
}
|
|
// ASSUMPTION for the remaining for-loop
|
|
// - profile[i].end > lst(task)
|
|
if (profile[i].begin < lct(task) && profile[i].level + min_usage(task) > max_limit()) {
|
|
// Possibly a upper bound update possible if "task" has no compulsory part
|
|
// in this profile part
|
|
if (lst(task) < ect(task) && lst(task) <= profile[i].begin && profile[i].end <= ect(task)) {
|
|
// No lower bound update possible for this profile part, because
|
|
// "task" has a compulsory part in it
|
|
continue ;
|
|
}
|
|
int expl_begin = profile[i].begin;
|
|
Clause * reason = NULL;
|
|
if (so.lazy) {
|
|
// ASSUMPTION for the remaining if-statement
|
|
// - No compulsory part of task in profile[i]
|
|
int lift_usage = profile[i].level + min_usage(task) - max_limit() - 1;
|
|
// TODO Choices of different explanations
|
|
// Pointwise explanation
|
|
expl_begin = max(profile[i].begin, lst(task));
|
|
int expl_end = expl_begin + 1;
|
|
vec<Lit> expl;
|
|
// Get the negated literal for [[start[task] <= expl_begin]]
|
|
expl.push(getNegLeqLit(start[task], expl_begin));
|
|
// Get the negated literal for [[dur[task] >= min_dur(task)]]
|
|
if (min_dur0(task) < min_dur(task))
|
|
expl.push(getNegGeqLit(dur[task], min_dur(task)));
|
|
// Get the negated literal for [[usage[task] >= min_usage(task)]]
|
|
if (min_usage0(task) < min_usage(task))
|
|
expl.push(getNegGeqLit(usage[task], min_usage(task)));
|
|
// Get the negated literals for the tasks in the profile and the resource limit
|
|
analyse_limit_and_tasks(expl, profile[i].tasks, lift_usage, expl_begin, expl_end);
|
|
// Transform literals to a clause
|
|
reason = get_reason_for_update(expl);
|
|
}
|
|
nb_tt_filt++;
|
|
// Impose the new lower bound on start[task]
|
|
if (! start[task]->setMax(expl_begin - min_dur(task), reason)) {
|
|
// Conflict occurred
|
|
return false;
|
|
}
|
|
// Set bound_update to true
|
|
bound_update = true;
|
|
// Check for the next profile
|
|
if (profile[i].begin < expl_begin) {
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
CUMU_BOOL
|
|
CumulativeProp::tt_optional_task_propagation() {
|
|
for (int ii = 0; ii <= last_unfixed; ii++) {
|
|
const int i = task_id[ii];
|
|
assert(max_dur(i) > 0 && max_usage(i) > 0);
|
|
if (min_dur(i) <= 0 || min_usage(i) <= 0) {
|
|
//fprintf(stderr, "task %d: start [%d, %d], dur %d, usage %d\n", i, est(i), lst(i), min_dur(i), min_usage(i));
|
|
// Getting the smallest non-zero value for the duration
|
|
const int dur_smallest = max(1, min_dur(i));
|
|
// Getting the smallest non-zero value for the usage
|
|
const int usage_smallest = max(1, min_usage(i));
|
|
// XXX Only for the moment to make the propagation easier
|
|
if (est(i) < lst(i))
|
|
continue;
|
|
// Getting the starting profile index
|
|
const int index = find_first_profile_for_lb(tt_profile, 0, tt_profile_size - 1, est(i));
|
|
// TODO Check whether a task with a duration 'dur_smallest' and a usage 'usage_smallest'
|
|
// can be scheduled
|
|
//fprintf(stderr, "%d: start %d; profile (%d, %d, %d)\n", i, est(i), tt_profile[index].begin, tt_profile[index].end, tt_profile[index].level);
|
|
if (est(i) < tt_profile[index].end && tt_profile[index].begin < est(i) + dur_smallest
|
|
&& tt_profile[index].level + usage_smallest > max_limit()) {
|
|
// Tasks cannot be performed on this resource
|
|
|
|
Clause * reason = NULL;
|
|
if (so.lazy) {
|
|
// Explanation for the propagation required
|
|
vec<Lit> expl;
|
|
|
|
// Lifting the usage
|
|
int lift_usage = tt_profile[index].level + usage_smallest - max_limit() - 1;
|
|
// Defining explanation time interval
|
|
const int overlap_begin = max(tt_profile[index].begin, est(i));
|
|
const int overlap_end = min(tt_profile[index].end, est(i) + dur_smallest);
|
|
const int expl_begin = overlap_begin + ((overlap_end - overlap_begin - 1)/2);
|
|
const int expl_end = expl_begin + 1;
|
|
|
|
// Explanation parts for task 'i'
|
|
// Get the negated literal for [[start[i] >= expl_end - dur_smallest]]
|
|
expl.push(getNegGeqLit(start[i], expl_end - dur_smallest));
|
|
// Get the negated literal for [[start[task] <= expl_begin]]
|
|
expl.push(getNegLeqLit(start[i], expl_begin));
|
|
// Get the negated literal for [[dur[i] >= min_dur(i)]]
|
|
if (min_dur0(i) < min_dur(i) && 0 < min_dur(i))
|
|
expl.push(getNegGeqLit(dur[i], min_dur(i)));
|
|
// Get the negated literal for [[usage[i] >= min_usage(i)]]
|
|
if (min_usage0(i) < min_usage(i) && 0 < min_usage(i))
|
|
expl.push(getNegGeqLit(usage[i], min_usage(i)));
|
|
|
|
// Get the negated literals for the tasks in the profile and the resource limit
|
|
analyse_limit_and_tasks(expl, tt_profile[index].tasks, lift_usage, expl_begin, expl_end);
|
|
// Transform literals to a clause
|
|
reason = get_reason_for_update(expl);
|
|
}
|
|
// Increment filtering counter
|
|
nb_tt_filt++;
|
|
if (min_usage(i) <= 0) {
|
|
// Impose the new upper bound on usage[i]
|
|
if (! usage[i]->setMax(0, reason)) {
|
|
// Conflict occurred
|
|
return false;
|
|
}
|
|
}
|
|
else {
|
|
// Impose the new upper bound on usage[i]
|
|
if (! dur[i]->setMax(0, reason)) {
|
|
// Conflict occurred
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int
|
|
CumulativeProp::find_first_profile_for_lb(ProfilePart profile[], int low, int high, CUMU_INT t) {
|
|
int median;
|
|
if (profile[low].end > t || low == high) {
|
|
return low;
|
|
}
|
|
if (profile[high].begin <= t) {
|
|
return high;
|
|
}
|
|
#if CUMUVERB>0
|
|
fprintf(stderr, "time = %d\n", t);
|
|
fprintf(stderr, "profile[low = %d] = [%d, %d); ", low, profile[low].begin, profile[low].end);
|
|
fprintf(stderr, "profile[high = %d] = [%d, %d);\n", high, profile[high].begin, profile[high].end);
|
|
#endif
|
|
// ASSUMPTIONS:
|
|
// - profile[low].end <= t
|
|
// - profile[high].begin > t
|
|
// - low < high
|
|
//
|
|
while (!(profile[low].end <= t && t <= profile[low + 1].end)) {
|
|
median = low + (high - low + 1) / 2;
|
|
#if CUMUVERB>0
|
|
fprintf(stderr, "profile[lo = %d] = [%d, %d); ", low, profile[low].begin, profile[low].end);
|
|
fprintf(stderr, "profile[me = %d] = [%d, %d); ", median, profile[median].begin, profile[median].end);
|
|
fprintf(stderr, "profile[hi = %d] = [%d, %d);\n", high, profile[high].begin, profile[high].end);
|
|
#endif
|
|
if (t < profile[median].end) {
|
|
high = median;
|
|
//high = median - 1;
|
|
low++;
|
|
} else {
|
|
low = median;
|
|
}
|
|
}
|
|
return low;
|
|
}
|
|
|
|
int
|
|
CumulativeProp::find_first_profile_for_ub(ProfilePart profile[], int low, int high, CUMU_INT t) {
|
|
int median;
|
|
if (profile[high].begin <= t || low == high) {
|
|
return high;
|
|
}
|
|
if (t < profile[low].end) {
|
|
return low;
|
|
}
|
|
// ASSUMPTIONS:
|
|
// - profile[high].begin > t
|
|
// - profile[low].end <= t
|
|
// - low < high
|
|
//
|
|
while (!(profile[high - 1].begin <= t && t < profile[high].begin)) {
|
|
median = low + (high - low + 1) / 2;
|
|
if (t < profile[median].begin) {
|
|
high = median;
|
|
} else {
|
|
low = median;
|
|
high--;
|
|
}
|
|
}
|
|
return high;
|
|
}
|
|
|
|
|
|
/************************************************************************
|
|
* Functions for Analysing Conflicts or Bound Updates and Generation of *
|
|
* their explanations *
|
|
************************************************************************/
|
|
|
|
void
|
|
CumulativeProp::analyse_limit_and_tasks(vec<Lit> & expl, set<CUMU_INT> & tasks, CUMU_INT lift_usage, CUMU_INT begin, CUMU_INT end) {
|
|
CUMU_INT diff_limit = max_limit0() - max_limit();
|
|
if (diff_limit > 0) {
|
|
// Lifting of limit variable if possible
|
|
if (diff_limit <= lift_usage) {
|
|
// No explanation literal is needed
|
|
lift_usage -= diff_limit;
|
|
} else {
|
|
lift_usage = 0;
|
|
// Get explanation for [[limit <= max_limit() + lift_usage]]
|
|
#if CUMUVERB > 10
|
|
fprintf(stderr, "/\\ limit <= %d ", max_limit() + lift_usage);
|
|
#endif
|
|
expl.push(getNegLeqLit(limit, max_limit() + lift_usage));
|
|
}
|
|
}
|
|
analyse_tasks(expl, tasks, lift_usage, begin, end);
|
|
}
|
|
|
|
void
|
|
CumulativeProp::analyse_tasks(vec<Lit> & expl, set<CUMU_INT> & tasks, CUMU_INT lift_usage, CUMU_INT begin, CUMU_INT end) {
|
|
set<CUMU_INT>::iterator iter;
|
|
for (iter = tasks.begin(); iter != tasks.end(); iter++) {
|
|
#if CUMUVERB > 10
|
|
fprintf(stderr, "\ns[%d] in [%d..%d]\n", *iter, start[*iter]->getMin(), start[*iter]->getMax());
|
|
#endif
|
|
if (min_usage(*iter) <= lift_usage) {
|
|
// Task is not relevant for the resource overload
|
|
lift_usage -= min_usage(*iter);
|
|
} else {
|
|
// Task is relevant for the resource overload
|
|
if (min_start0(*iter) + min_dur(*iter) <= end) {
|
|
// Lower bound of the start time variable matters
|
|
// Get explanation for [[start[*iter] >= end - min_dur(*iter)]]
|
|
#if CUMUVERB > 10
|
|
fprintf(stderr, "/\\ start[%d] => %d ", *iter, end - min_dur(*iter));
|
|
#endif
|
|
expl.push(getNegGeqLit(start[*iter], end - min_dur(*iter)));
|
|
}
|
|
if (begin < max_start0(*iter)) {
|
|
// Upper bound of the start time variable matters
|
|
// Get explanation for [[start[*iter] <= begin]]
|
|
#if CUMUVERB > 10
|
|
fprintf(stderr, "/\\ start[%d] <= %d ", *iter, begin);
|
|
#endif
|
|
expl.push(getNegLeqLit(start[*iter], begin));
|
|
}
|
|
// Get the negated literal for [[dur[*iter] >= min_dur(*iter)]]
|
|
if (min_dur0(*iter) < min_dur(*iter))
|
|
expl.push(getNegGeqLit(dur[*iter], min_dur(*iter)));
|
|
// Get the negated literal for [[usage[*iter] >= min_usage(*iter)]]
|
|
const CUMU_INT usage_diff = min_usage(*iter) - min_usage0(*iter);
|
|
if (usage_diff > 0) {
|
|
if (usage_diff <= lift_usage)
|
|
lift_usage -= usage_diff;
|
|
else
|
|
expl.push(getNegGeqLit(usage[*iter], min_usage(*iter)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
CumulativeProp::submit_conflict_explanation(vec<Lit> & expl) {
|
|
Clause * reason = NULL;
|
|
if (so.lazy) {
|
|
reason = Reason_new(expl.size());
|
|
int i = 0;
|
|
for (; i < expl.size(); i++) { (*reason)[i] = expl[i]; }
|
|
}
|
|
sat.confl = reason;
|
|
}
|
|
|
|
Clause *
|
|
CumulativeProp::get_reason_for_update(vec<Lit> & expl) {
|
|
Clause* reason = Reason_new(expl.size() + 1);
|
|
for (int i = 1; i <= expl.size(); i++) {
|
|
(*reason)[i] = expl[i-1];
|
|
}
|
|
return reason;
|
|
}
|
|
|
|
|
|
// XXX Which version of the cumulative constraint should be used?
|
|
// Lifting the limit parameter to an integer variable
|
|
//
|
|
void cumulative(vec<IntVar*>& s, vec<int>& d, vec<int>& r, int limit) {
|
|
std::list<string> opt;
|
|
cumulative(s, d, r, limit, opt);
|
|
}
|
|
|
|
void cumulative(vec<IntVar*>& s, vec<int>& d, vec<int>& r, int limit, std::list<string> opt) {
|
|
rassert(s.size() == d.size() && s.size() == r.size());
|
|
// ASSUMPTION
|
|
// - s, d, and r contain the same number of elements
|
|
|
|
// Option switch
|
|
if (so.cumu_global) {
|
|
vec<IntVar*> s_new, d_new, r_new;
|
|
IntVar * vlimit = newIntVar(limit, limit);
|
|
int r_sum = 0;
|
|
|
|
for (int i = 0; i < s.size(); i++) {
|
|
if (r[i] > 0 && d[i] > 0) {
|
|
s_new.push(s[i]);
|
|
d_new.push(newIntVar(d[i], d[i]));
|
|
r_new.push(newIntVar(r[i], r[i]));
|
|
r_sum += r[i];
|
|
}
|
|
}
|
|
|
|
if (r_sum <= limit) return;
|
|
|
|
// Global cumulative constraint
|
|
new CumulativeProp(s_new, d_new, r_new, vlimit, opt);
|
|
} else {
|
|
vec<IntVar*> s_new;
|
|
vec<int> d_new, r_new;
|
|
int r_sum = 0;
|
|
for (int i = 0; i < s.size(); i++) {
|
|
if (r[i] > 0 && d[i] > 0) {
|
|
s_new.push(s[i]);
|
|
d_new.push(d[i]);
|
|
r_new.push(r[i]);
|
|
r_sum += r[i];
|
|
}
|
|
}
|
|
|
|
if (r_sum <= limit) return;
|
|
|
|
// Time-indexed decomposition
|
|
timed_cumulative(s_new, d_new, r_new, limit);
|
|
}
|
|
}
|
|
|
|
void cumulative2(vec<IntVar*>& s, vec<IntVar*>& d, vec<IntVar*>& r, IntVar* limit) {
|
|
std:list<string> opt;
|
|
cumulative2(s, d, r, limit, opt);
|
|
}
|
|
|
|
void cumulative2(vec<IntVar*>& s, vec<IntVar*>& d, vec<IntVar*>& r, IntVar* limit, std::list<string> opt) {
|
|
rassert(s.size() == d.size() && s.size() == r.size());
|
|
// ASSUMPTION
|
|
// - s, d, and r contain the same number of elements
|
|
|
|
vec<IntVar*> s_new, d_new, r_new;
|
|
int r_sum = 0;
|
|
|
|
for (int i = 0; i < s.size(); i++) {
|
|
if (r[i]->getMax() > 0 && d[i]->getMax() > 0) {
|
|
s_new.push(s[i]);
|
|
d_new.push(d[i]);
|
|
r_new.push(r[i]);
|
|
r_sum += r[i]->getMax();
|
|
}
|
|
}
|
|
|
|
if (r_sum <= limit->getMin()) return;
|
|
|
|
// Global cumulative constraint
|
|
new CumulativeProp(s_new, d_new, r_new, limit, opt);
|
|
}
|
|
|
|
/********************************************
|
|
* Functions related to the TTEF propagator
|
|
*******************************************/
|
|
|
|
// Initialisation of various parameters
|
|
//
|
|
void
|
|
CumulativeProp::ttef_initialise_parameters() {
|
|
int energy = 0;
|
|
int p_idx = tt_profile_size - 1;
|
|
|
|
// Initialisation of the task id's arrays
|
|
//
|
|
for (int ii = 0; ii <= last_unfixed; ii++) {
|
|
task_id_est[ii] = task_id[ii];
|
|
task_id_lct[ii] = task_id[ii];
|
|
}
|
|
if (ttef_filt) {
|
|
for (int ii = 0; ii <= last_unfixed; ii++) {
|
|
new_est[task_id[ii]] = est(task_id[ii]);
|
|
new_lct[task_id[ii]] = lct(task_id[ii]);
|
|
}
|
|
}
|
|
// Sorting of the task id's arrays
|
|
//
|
|
sort(task_id_est, task_id_est + last_unfixed + 1, sort_est_asc);
|
|
sort(task_id_lct, task_id_lct + last_unfixed + 1, sort_lct_asc);
|
|
// Calculation of 'tt_after_est'
|
|
//
|
|
for (int ii = last_unfixed; ii >= 0; ii--) {
|
|
int i = task_id_est[ii];
|
|
if (p_idx < 0 || tt_profile[p_idx].end <= est(i)) {
|
|
tt_after_est[ii] = energy;
|
|
} else if (tt_profile[p_idx].begin <= est(i)) {
|
|
tt_after_est[ii] = energy + tt_profile[p_idx].level * (tt_profile[p_idx].end - est(i));
|
|
} else {
|
|
assert(tt_profile[p_idx].begin > est(i));
|
|
energy += tt_profile[p_idx].level * (tt_profile[p_idx].end - tt_profile[p_idx].begin);
|
|
p_idx--;
|
|
ii++;
|
|
}
|
|
}
|
|
// Calculation of 'tt_after_lct'
|
|
//
|
|
p_idx = tt_profile_size - 1;
|
|
energy = 0;
|
|
for (int ii = last_unfixed; ii >= 0; ii--) {
|
|
unsigned i = task_id_lct[ii];
|
|
if (p_idx < 0 || tt_profile[p_idx].end <= lct(i)) {
|
|
tt_after_lct[ii] = energy;
|
|
} else if (tt_profile[p_idx].begin <= lct(i)) {
|
|
tt_after_lct[ii] = energy + tt_profile[p_idx].level * (tt_profile[p_idx].end - lct(i));
|
|
} else {
|
|
assert(tt_profile[p_idx].begin > lct(i));
|
|
energy += tt_profile[p_idx].level * (tt_profile[p_idx].end - tt_profile[p_idx].begin);
|
|
p_idx--;
|
|
ii++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// TTEF Consistency Check
|
|
// Assumptions:
|
|
// - task_id_est sorted in non-decreasing order of est's
|
|
// - task_id_lct sorted in non-decreasing order of lct's
|
|
bool
|
|
CumulativeProp::ttef_consistency_check(
|
|
int shift_in(const int, const int, const int, const int, const int, const int, const int)
|
|
) {
|
|
assert(last_unfixed > 0);
|
|
int begin, end; // Begin and end of the time interval [begin, end)
|
|
int est_idx_last = last_unfixed;
|
|
int i, j, en_req, en_avail;
|
|
int en_req_free;
|
|
int min_en_avail = -1, lct_idx_last = last_unfixed, i_last = task_id_lct[lct_idx_last];
|
|
bool consistent = true;
|
|
|
|
end = lct(task_id_lct[last_unfixed]) + 1;
|
|
|
|
// Outer Loop: iterating over lct in non-increasing order
|
|
//
|
|
for (int ii = last_unfixed; ii >= 0; ii--) {
|
|
i = task_id_lct[ii];
|
|
if (end == lct(i) || min_energy(i) == 0) continue;
|
|
|
|
// Check whether the current latest completion time have to be considered
|
|
int free = max_limit() * (lct(i_last) - lct(i)) - (tt_after_lct[ii] - tt_after_lct[lct_idx_last]);
|
|
if (min_en_avail >= free) continue;
|
|
lct_idx_last = ii;
|
|
i_last = i;
|
|
min_en_avail = max_limit() * (lct(task_id_lct[last_unfixed]) - est(task_id_est[0]));
|
|
|
|
end = lct(i);
|
|
while (est(task_id_est[est_idx_last]) >= end) est_idx_last--;
|
|
en_req_free = 0;
|
|
|
|
// Inner Loop: iterating over est in non-increasing order
|
|
//
|
|
for (int jj = est_idx_last; jj >= 0; jj--) {
|
|
j = task_id_est[jj];
|
|
if (min_energy(j) == 0) continue;
|
|
assert(est(j) < end);
|
|
begin = est(j);
|
|
if (lct(j) <= end) {
|
|
// Task lies in the considered time interval
|
|
en_req_free += free_energy(j);
|
|
} else {
|
|
// Task might partially lie in the considered time interval
|
|
int dur_fixed = max(0, ect(j) - lst(j));
|
|
int dur_shift = shift_in(begin, end, est(j), ect(j), lst(j), lct(j), dur_fixed);
|
|
en_req_free += min_usage(j) * dur_shift;
|
|
}
|
|
en_req = en_req_free + tt_after_est[jj] - tt_after_lct[ii];
|
|
en_avail = max_limit() * (end - begin) - en_req;
|
|
|
|
min_en_avail = min(min_en_avail, en_avail);
|
|
|
|
// Check for resource overload
|
|
//
|
|
if (en_avail < 0) {
|
|
consistent = false;
|
|
ii = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!consistent) {
|
|
vec<Lit> expl;
|
|
// Increment the inconsistency counter
|
|
nb_ttef_incons++;
|
|
if (so.lazy) {
|
|
list<TaskDur> tasks_tw;
|
|
list<TaskDur> tasks_cp;
|
|
int en_req1 = 0;
|
|
// Retrieve tasks involved
|
|
en_req1 = ttef_retrieve_tasks(shift_in, begin, end, -1, tasks_tw, tasks_cp);
|
|
assert(en_req1 >= en_req);
|
|
// Calculate the lifting
|
|
int en_lift = en_req1 - 1 - max_limit() * (end - begin);
|
|
assert(en_lift >= 0);
|
|
// Explaining the overload
|
|
ttef_analyse_limit_and_tasks(begin, end, tasks_tw, tasks_cp, en_lift, expl);
|
|
}
|
|
assert(expl.size() > 0);
|
|
// Submitting of the conflict explanation
|
|
submit_conflict_explanation(expl);
|
|
}
|
|
return consistent;
|
|
}
|
|
|
|
// TTEF bounds propagation
|
|
//
|
|
bool
|
|
CumulativeProp::ttef_bounds_propagation(
|
|
int shift_in1(const int, const int, const int, const int, const int, const int, const int),
|
|
int shift_in2(const int, const int, const int, const int, const int, const int, const int)
|
|
) {
|
|
std::queue<TTEFUpdate> update1;
|
|
std::queue<TTEFUpdate> update2;
|
|
// TODO LB bound on the limit
|
|
// LB bounds on the start times
|
|
if (!ttef_bounds_propagation_lb(shift_in1, update1)) {
|
|
// Inconsistency
|
|
return false;
|
|
}
|
|
// TODO UB bounds on the start times
|
|
if (!ttef_bounds_propagation_ub(shift_in2, update2)) {
|
|
// Inconsistency
|
|
return false;
|
|
}
|
|
// TODO Updating the bounds
|
|
//printf("zzz %d\n", (int) update1.size());
|
|
if (!ttef_update_bounds(shift_in1, update1)) {
|
|
return false;
|
|
}
|
|
if (!ttef_update_bounds(shift_in2, update2)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
CumulativeProp::ttef_bounds_propagation_lb(
|
|
int shift_in(const int, const int, const int, const int, const int, const int, const int),
|
|
std::queue<TTEFUpdate> & update_queue
|
|
) {
|
|
assert(last_unfixed > 0);
|
|
int begin, end; // Begin and end of the time interval [begin, end)
|
|
int est_idx_last = last_unfixed;
|
|
int i, j, en_req, en_avail;
|
|
int en_req_free;
|
|
int update_en_req_start, update_idx;
|
|
//int min_en_avail = -1, lct_idx_last = last_unfixed, i_last = task_id_lct[lct_idx_last];
|
|
int min_en_avail = -1, min_begin = -1;
|
|
bool consistent = true;
|
|
|
|
end = lct(task_id_lct[last_unfixed]) + 1;
|
|
|
|
// Outer Loop: iterating over lct in non-increasing order
|
|
//
|
|
for (int ii = last_unfixed; ii >= 0; ii--) {
|
|
i = task_id_lct[ii];
|
|
if (end == lct(i) || min_energy(i) == 0) continue;
|
|
|
|
// Check whether the current latest completion time have to be considered
|
|
//int free = max_limit() * (lct(i_last) - lct(i)) - (tt_after_lct[ii] - tt_after_lct[lct_idx_last]);
|
|
//if (min_en_avail >= free) continue;
|
|
//lct_idx_last = ii;
|
|
//i_last = i;
|
|
min_en_avail = max_limit() * (lct(task_id_lct[last_unfixed]) - est(task_id_est[0]));
|
|
min_begin = -1;
|
|
|
|
end = lct(i);
|
|
while (est(task_id_est[est_idx_last]) >= end) est_idx_last--;
|
|
// Initialisations for the inner loop
|
|
en_req_free = 0;
|
|
update_idx = -1;
|
|
update_en_req_start = -1;
|
|
|
|
// Inner Loop: iterating over est in non-increasing order
|
|
//
|
|
for (int jj = est_idx_last; jj >= 0; jj--) {
|
|
j = task_id_est[jj];
|
|
assert(est(j) < end);
|
|
if (min_energy(j) == 0) continue;
|
|
begin = est(j);
|
|
|
|
// Checking for TTEEF propagation on upper bound
|
|
//
|
|
int min_en_in = min_usage(j) * max(0, min(end, ect(j)) - max(min_begin, lst(j)));
|
|
if (min_begin >= 0 && min_en_avail + min_en_in < min_usage(j) * (min(end, lct(j)) - max(min_begin, lst(j)))) {
|
|
// Calculate new upper bound
|
|
// XXX Is min_usage correct?
|
|
int dur_avail = (min_en_avail + min_en_in) / min_usage(j);
|
|
int lct_new = min_begin + dur_avail;
|
|
// Check whether a new upper bound was found
|
|
if (lct_new < new_lct[j]) {
|
|
// Push possible update into the queue
|
|
update_queue.push(TTEFUpdate(j, lct_new, min_begin, end, false));
|
|
new_lct[j] = lct_new;
|
|
//int blah = max_limit() * (end - min_begin) - (min_en_avail + min_en_in);
|
|
//printf("%d: lct_new %d; dur_avail %d; en_req %d; [%d, %d)\n", j, lct_new, dur_avail, blah, min_begin, end);
|
|
//printf("XXXXXX\n");
|
|
}
|
|
}
|
|
|
|
if (lct(j) <= end) {
|
|
// Task lies in the considered time interval
|
|
en_req_free += free_energy(j);
|
|
} else {
|
|
// Task might partially lie in the considered time interval
|
|
|
|
// Calculation of the energy part inside the time interavl
|
|
int dur_fixed = max(0, ect(j) - lst(j));
|
|
int dur_shift = shift_in(begin, end, est(j), ect(j), lst(j), lct(j), dur_fixed);
|
|
en_req_free += min_usage(j) * dur_shift;
|
|
// Calculation of the required energy for starting at est(j)
|
|
int en_req_start = min(free_energy(j), min_usage(j) * (end - est(j))) - min_usage(j) * dur_shift;
|
|
if (en_req_start > update_en_req_start) {
|
|
update_en_req_start = en_req_start;
|
|
update_idx = jj;
|
|
}
|
|
}
|
|
en_req = en_req_free + tt_after_est[jj] - tt_after_lct[ii];
|
|
en_avail = max_limit() * (end - begin) - en_req;
|
|
|
|
if (min_en_avail > en_avail) {
|
|
min_en_avail = en_avail;
|
|
min_begin = begin;
|
|
}
|
|
|
|
// Check for resource overload
|
|
//
|
|
if (en_avail < 0) {
|
|
consistent = false;
|
|
ii = -1;
|
|
break;
|
|
}
|
|
|
|
// Check for a start time update
|
|
//
|
|
if (en_avail < update_en_req_start) {
|
|
// Reset 'j' to the task to be updated
|
|
j = task_id_est[update_idx];
|
|
// Calculation of the possible new lower bound wrt.
|
|
// the current time interval
|
|
int dur_mand = max(0, min(end, ect(j)) - lst(j));
|
|
int dur_shift = shift_in(begin, end, est(j), ect(j), lst(j), lct(j), dur_mand);
|
|
int en_in = min_usage(j) * (dur_mand + dur_shift);
|
|
int en_avail_new = en_avail + en_in;
|
|
// XXX Is min_usage correct?
|
|
int dur_avail = en_avail_new / min_usage(j);
|
|
int start_new = end - dur_avail;
|
|
// TODO Check whether a new lower bound was found
|
|
// - nfnl-rule TODO
|
|
if (start_new > new_est[j]) {
|
|
// Push possible update into the queue
|
|
update_queue.push(TTEFUpdate(j, start_new, begin, end, true));
|
|
new_est[j] = start_new;
|
|
//printf("XXXXXX\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!consistent) {
|
|
vec<Lit> expl;
|
|
// Increment the inconsistency counter
|
|
nb_ttef_incons++;
|
|
if (so.lazy) {
|
|
list<TaskDur> tasks_tw;
|
|
list<TaskDur> tasks_cp;
|
|
int en_req1 = 0;
|
|
// Retrieve tasks involved
|
|
en_req1 = ttef_retrieve_tasks(shift_in, begin, end, -1, tasks_tw, tasks_cp);
|
|
assert(en_req1 >= en_req);
|
|
// Calculate the lifting
|
|
int en_lift = en_req1 - 1 - max_limit() * (end - begin);
|
|
assert(en_lift >= 0);
|
|
// Explaining the overload
|
|
ttef_analyse_limit_and_tasks(begin, end, tasks_tw, tasks_cp, en_lift, expl);
|
|
assert(expl.size() > 0);
|
|
}
|
|
// Submitting of the conflict explanation
|
|
submit_conflict_explanation(expl);
|
|
}
|
|
return consistent;
|
|
}
|
|
|
|
bool
|
|
CumulativeProp::ttef_bounds_propagation_ub(
|
|
int shift_in(const int, const int, const int, const int, const int, const int, const int),
|
|
std::queue<TTEFUpdate> & update_queue
|
|
) {
|
|
assert(last_unfixed > 0);
|
|
int begin, end; // Begin and end of the time interval [begin, end)
|
|
int lct_idx_last = 0;
|
|
int i, j, en_req, en_avail;
|
|
int en_req_free;
|
|
int update_en_req_end, update_idx;
|
|
//int min_en_avail = -1, lct_idx_last = last_unfixed, i_last = task_id_lct[lct_idx_last];
|
|
int min_en_avail = -1, min_end = -1;
|
|
bool consistent = true;
|
|
|
|
begin = est(task_id_est[0]) - 1;
|
|
|
|
// Outer Loop: iterating over est in non-decreasing order
|
|
//
|
|
for (int ii = 0; ii <= last_unfixed; ii++) {
|
|
i = task_id_est[ii];
|
|
if (begin == est(i) || min_energy(i) == 0) continue;
|
|
|
|
// Intialisation for the minimal avaible energy of a time interval starting
|
|
// at begin
|
|
// TODO dominance rule for skipping time intervals
|
|
min_en_avail = max_limit() * (lct(task_id_lct[last_unfixed]) - est(task_id_est[0]));
|
|
min_end = -1;
|
|
|
|
begin = est(i);
|
|
while (lct(task_id_lct[lct_idx_last]) <= begin) lct_idx_last++;
|
|
// Initialisations for the inner loop
|
|
en_req_free = 0;
|
|
update_idx = -1;
|
|
update_en_req_end = -1;
|
|
|
|
// Inner Loop: iterating over lct in non-decreasing order
|
|
//
|
|
for (int jj = lct_idx_last; jj <= last_unfixed; jj++) {
|
|
j = task_id_lct[jj];
|
|
assert(lct(j) > begin);
|
|
if (min_energy(j) == 0) continue;
|
|
end = lct(j);
|
|
|
|
// Checking for TTEEF propagation on lower bounds
|
|
//
|
|
int min_en_in = min_usage(j) * max(0, min(min_end, ect(j)) - max(begin, lst(j)));
|
|
if (min_end >= 0 && min_en_avail + min_en_in < min_usage(j) * (min(min_end, ect(j)) - max(begin, est(j)))) {
|
|
// Calculate new upper bound
|
|
// XXX Is min_usage correct?
|
|
int dur_avail = (min_en_avail + min_en_in) / min_usage(j);
|
|
int est_new = min_end - dur_avail;
|
|
// Check whether a new lower bound was found
|
|
if (est_new > new_est[j]) {
|
|
// Push possible update into the queue
|
|
update_queue.push(TTEFUpdate(j, est_new, begin, min_end, true));
|
|
new_est[j] = est_new;
|
|
//int blah = max_limit() * (end - min_begin) - (min_en_avail + min_en_in);
|
|
//printf("%d: lct_new %d; dur_avail %d; en_req %d; [%d, %d)\n", j, lct_new, dur_avail, blah, min_begin, end);
|
|
//printf("XXXXXX\n");
|
|
}
|
|
}
|
|
|
|
if (begin <= est(j)) {
|
|
// Task lies in the considered time interval [begin, end)
|
|
en_req_free += free_energy(j);
|
|
} else {
|
|
// Task might partially lie in the considered time interval
|
|
|
|
// Calculation of the energy part inside the time interval
|
|
int dur_fixed = max(0, ect(j) - lst(j));
|
|
int dur_shift = shift_in(begin, end, est(j), ect(j), lst(j), lct(j), dur_fixed);
|
|
en_req_free += min_usage(j) * dur_shift;
|
|
// Calculation of the required energy for finishing at 'lct(j)'
|
|
int en_req_end = min(free_energy(j), min_usage(j) * (lct(j) - begin)) - min_usage(j) * dur_shift;
|
|
if (en_req_end > update_en_req_end) {
|
|
update_en_req_end = en_req_end;
|
|
update_idx = jj;
|
|
}
|
|
}
|
|
en_req = en_req_free + tt_after_est[ii] - tt_after_lct[jj];
|
|
en_avail = max_limit() * (end - begin) - en_req;
|
|
|
|
if (min_en_avail > en_avail) {
|
|
min_en_avail = en_avail;
|
|
min_end = end;
|
|
}
|
|
|
|
// Check for resource overload
|
|
//
|
|
if (en_avail < 0) {
|
|
consistent = false;
|
|
ii = last_unfixed + 1;
|
|
break;
|
|
}
|
|
|
|
// Check for a start time update
|
|
//
|
|
if (en_avail < update_en_req_end) {
|
|
// Reset 'j' to the task to be updated
|
|
j = task_id_lct[update_idx];
|
|
// Calculation of the possible upper bound wrt.
|
|
// the current time interval
|
|
int dur_mand = max(0, ect(j) - max(begin, lst(j)));
|
|
int dur_shift = shift_in(begin, end, est(j), ect(j), lst(j), lct(j), dur_mand);
|
|
int en_in = min_usage(j) * (dur_mand + dur_shift);
|
|
int en_avail_new = en_avail + en_in;
|
|
// XXX Is min_usage correct?
|
|
int dur_avail = en_avail_new / min_usage(j);
|
|
int end_new = begin + dur_avail;
|
|
// TODO Check whether a new uppder bound was found
|
|
// - nfnl-rule TODO
|
|
if (end_new < new_lct[j]) {
|
|
// Push possible update into queue
|
|
update_queue.push(TTEFUpdate(j, end_new, begin, end, false));
|
|
new_lct[j] = end_new;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!consistent) {
|
|
vec<Lit> expl;
|
|
// Increment the inconsistency counter
|
|
nb_ttef_incons++;
|
|
if (so.lazy) {
|
|
list<TaskDur> tasks_tw;
|
|
list<TaskDur> tasks_cp;
|
|
int en_req1 = 0;
|
|
// Retrieve tasks involved
|
|
en_req1 = ttef_retrieve_tasks(shift_in, begin, end, -1, tasks_tw, tasks_cp);
|
|
assert(en_req1 >= en_req);
|
|
// Calculate the lifting
|
|
int en_lift = en_req1 - 1 - max_limit() * (end - begin);
|
|
assert(en_lift >= 0);
|
|
// Explaining the overload
|
|
ttef_analyse_limit_and_tasks(begin, end, tasks_tw, tasks_cp, en_lift, expl);
|
|
assert(expl.size() > 0);
|
|
}
|
|
// Submitting of the conflict explanation
|
|
submit_conflict_explanation(expl);
|
|
}
|
|
return consistent;
|
|
}
|
|
|
|
bool
|
|
CumulativeProp::ttef_update_bounds(
|
|
int shift_in(const int, const int, const int, const int, const int, const int, const int),
|
|
std::queue<TTEFUpdate> & queue_update
|
|
) {
|
|
while (!queue_update.empty()) {
|
|
int task = queue_update.front().task;
|
|
int bound = queue_update.front().bound_new;
|
|
int begin = queue_update.front().tw_begin;
|
|
int end = queue_update.front().tw_end;
|
|
Clause * reason = NULL;
|
|
if (queue_update.front().is_lb_update) {
|
|
// Lower bound update
|
|
if (new_est[task] == bound) {
|
|
if (so.lazy) {
|
|
vec<Lit> expl;
|
|
list<TaskDur> tasks_tw;
|
|
list<TaskDur> tasks_cp;
|
|
// Retrieving tasks involved
|
|
int en_req = ttef_retrieve_tasks(shift_in, begin, end, task, tasks_tw, tasks_cp);
|
|
|
|
// Lifting for the lower bound of 'task'
|
|
//
|
|
int en_avail = max_limit() * (end - begin) - en_req;
|
|
// XXX Is min_usage correct?
|
|
int dur_avail = en_avail / min_usage(task);
|
|
assert(end - dur_avail >= bound);
|
|
// XXX Is min_usage correct?
|
|
assert(en_avail < min_usage(task) * (min(end, ect(task)) - max(begin, est(task))));
|
|
bound = end - dur_avail;
|
|
int expl_lb;
|
|
|
|
switch (ttef_expl_deg) {
|
|
case ED_NORMAL:
|
|
case ED_LIFT:
|
|
// XXX Is min_dur correct?
|
|
expl_lb = max(min_start0(task), begin + dur_avail + 1 - min_dur(task));
|
|
break;
|
|
case ED_NAIVE:
|
|
default:
|
|
expl_lb = est(task);
|
|
}
|
|
// Lifting from the remainder
|
|
int en_lift = min_usage(task) - 1 - (en_avail % min_usage(task));
|
|
// Lifting from 'expl_lb'
|
|
en_lift += min_usage(task) * (expl_lb + min_dur(task) - (begin + dur_avail + 1));
|
|
assert(expl_lb + min_dur(task) - (begin + dur_avail + 1) >= 0);
|
|
assert(en_lift >= 0);
|
|
|
|
// Explaining the update
|
|
//
|
|
if (expl_lb > min_start0(task)) {
|
|
// start[task] >= expl_lb
|
|
expl.push(getNegGeqLit(start[task], expl_lb));
|
|
}
|
|
// Get the negated literal for [[dur[task] >= min_dur(task)]]
|
|
if (min_dur0(task) < min_dur(task))
|
|
expl.push(getNegGeqLit(dur[task], min_dur(task)));
|
|
// Get the negated literal for [[usage[task] >= min_usage(task)]]
|
|
if (min_usage0(task) < min_usage(task))
|
|
expl.push(getNegGeqLit(usage[task], min_usage(task)));
|
|
ttef_analyse_limit_and_tasks(begin, end, tasks_tw, tasks_cp, en_lift, expl);
|
|
reason = get_reason_for_update(expl);
|
|
}
|
|
// Increment the filtering counter
|
|
nb_ttef_filt++;
|
|
// Update the lower bound
|
|
if (!start[task]->setMin(bound, reason)) {
|
|
// Conflict occurred
|
|
return false;
|
|
}
|
|
// Set bound_update to true
|
|
bound_update = true;
|
|
}
|
|
} else {
|
|
// Upper bound update
|
|
if (new_lct[task] == bound) {
|
|
if (so.lazy) {
|
|
vec<Lit> expl;
|
|
list<TaskDur> tasks_tw;
|
|
list<TaskDur> tasks_cp;
|
|
// Retrieving tasks involved
|
|
int en_req = ttef_retrieve_tasks(shift_in, begin, end, task, tasks_tw, tasks_cp);
|
|
|
|
// Lifting for the upper bound of 'task'
|
|
//
|
|
int en_avail = max_limit() * (end - begin) - en_req;
|
|
// XXX Is min_usage correct?
|
|
int dur_avail = en_avail / min_usage(task);
|
|
//printf("%d: bound %d; dur_avail %d; en_req %d; [%d, %d)\n", task, bound, dur_avail, en_req, begin, end);
|
|
assert(begin + dur_avail <= bound);
|
|
// assert(en_avail < usage[task] * (min(end, lct(task)) - max(begin, lst(task))));
|
|
bound = begin + dur_avail;
|
|
int expl_ub;
|
|
|
|
switch (ttef_expl_deg) {
|
|
case ED_NORMAL:
|
|
case ED_LIFT:
|
|
expl_ub = min(max_start0(task), end - dur_avail - 1);
|
|
break;
|
|
case ED_NAIVE:
|
|
default:
|
|
expl_ub = lst(task);
|
|
}
|
|
// Lifting from the remainder
|
|
// XXX Is min_usage correct
|
|
int en_lift = min_usage(task) - 1 - (en_avail % min_usage(task));
|
|
// Lifting from 'expl_ub'
|
|
en_lift += min_usage(task) * (end - dur_avail - 1 - expl_ub);
|
|
assert(end - dur_avail - 1 - expl_ub >= 0);
|
|
assert(en_lift >= 0);
|
|
|
|
// Explaining the update
|
|
//
|
|
if (expl_ub < max_start0(task)) {
|
|
// start[task] <= expl_ub
|
|
expl.push(getNegLeqLit(start[task], expl_ub));
|
|
}
|
|
// Get the negated literal for [[dur[task] >= min_dur(task)]]
|
|
if (min_dur0(task) < min_dur(task))
|
|
expl.push(getNegGeqLit(dur[task], min_dur(task)));
|
|
// Get the negated literal for [[usage[task] >= min_usage(task)]]
|
|
if (min_usage0(task) < min_usage(task))
|
|
expl.push(getNegGeqLit(usage[task], min_usage(task)));
|
|
ttef_analyse_limit_and_tasks(begin, end, tasks_tw, tasks_cp, en_lift, expl);
|
|
reason = get_reason_for_update(expl);
|
|
|
|
}
|
|
// Increment the filtering counter
|
|
nb_ttef_filt++;
|
|
// Update the lower bound
|
|
// XXX Is min_dur correct?
|
|
if (!start[task]->setMax(bound - min_dur(task), reason)) {
|
|
// Conflict occurred
|
|
return false;
|
|
}
|
|
// Set bound_update to true
|
|
bound_update = true;
|
|
}
|
|
}
|
|
queue_update.pop();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int
|
|
CumulativeProp::ttef_retrieve_tasks(
|
|
int shift_in(const int, const int, const int, const int, const int, const int, const int),
|
|
int begin, int end, int fb_id, list<TaskDur> & tasks_tw, list<TaskDur> & tasks_cp)
|
|
{
|
|
int en_req = 0;
|
|
//printf("* [%d, %d): #tasks %d; fixed %d\n", begin, end, task_id.size(), (int) last_unfixed);
|
|
// Getting fixed tasks
|
|
for (int ii = 0; ii < task_id.size(); ii++) {
|
|
int i = task_id[ii];
|
|
if (i == fb_id || min_energy(i) == 0) continue;
|
|
//printf("\t%d: est %d; ect %d; lst %d; lct %d (dur: %d; rr: %d; en: %d)\n", i, est(i), ect(i), lst(i), lct(i),
|
|
// min_dur(i), min_usage(i), min_energy(i));
|
|
if (begin <= est(i) && lct(i) <= end) {
|
|
// Task lies in the time interval [begin, end)
|
|
en_req += min_energy(i);
|
|
tasks_tw.push_back(TaskDur(i, min_dur(i)));
|
|
//printf("\tFull %d: %d in [%d, %d)\n", i, min_energy(i), begin, end);
|
|
//printf("\t\t%d: est %d; ect %d; lst %d; lct %d (dur: %d; rr: %d; en: %d)\n", i, est(i), ect(i), lst(i), lct(i),
|
|
// min_dur(i), min_usage(i), min_energy(i));
|
|
} else if (lst(i) < ect(i) && is_intersecting(begin, end, lst(i), ect(i))) {
|
|
// Compulsory part partially or fully lies in [begin, end)
|
|
int dur_comp = min(end, ect(i)) - max(begin, lst(i));
|
|
int dur_shift = shift_in(begin, end, est(i), ect(i), lst(i), lct(i), dur_comp);
|
|
int dur_in = dur_comp + dur_shift;
|
|
en_req += min_usage(i) * dur_in;
|
|
tasks_cp.push_back(TaskDur(i, dur_in));
|
|
//printf("\tComp %d: %d in [%d, %d)\n", i, min_usage(i) * dur_in, begin, end);
|
|
//printf("\t\t%d: est %d; ect %d; lst %d; lct %d (dur: %d; rr: %d; en: %d)\n", i, est(i), ect(i), lst(i), lct(i),
|
|
// min_dur(i), min_usage(i), min_energy(i));
|
|
} else if (0 < shift_in(begin, end, est(i), ect(i), lst(i), lct(i), 0)) {
|
|
// Task partially lies in [begin, end)
|
|
int dur_in = shift_in(begin, end, est(i), ect(i), lst(i), lct(i), 0);
|
|
en_req += min_usage(i) * dur_in;
|
|
tasks_tw.push_back(TaskDur(i, dur_in));
|
|
//printf("Shift %d: %d in [%d, %d)\n", i, min_usage(i) * dur_in, begin, end);
|
|
}
|
|
}
|
|
return en_req;
|
|
}
|
|
|
|
void
|
|
CumulativeProp::ttef_analyse_limit_and_tasks(const int begin, const int end, list<TaskDur> & tasks_tw,
|
|
list<TaskDur> & tasks_cp, int & en_lift, vec<Lit> & expl)
|
|
{
|
|
// Getting explanation for tasks in the time window
|
|
ttef_analyse_tasks(begin, end, tasks_tw, en_lift, expl);
|
|
// Getting explanation for tasks with compulsory parts
|
|
ttef_analyse_tasks(begin, end, tasks_cp, en_lift, expl);
|
|
// Getting explanation for the resource capacity
|
|
int diff_limit = max_limit0() - max_limit();
|
|
if (diff_limit > 0) {
|
|
// Calculate possible lifting
|
|
int lift_limit = min(en_lift / (end - begin), diff_limit);
|
|
en_lift -= lift_limit * (end - begin);
|
|
assert(en_lift >= 0);
|
|
if (lift_limit < diff_limit) {
|
|
// limit[%d] <= max_limit() + lift_limit
|
|
expl.push(getNegLeqLit(limit, max_limit() + lift_limit));
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
CumulativeProp::ttef_analyse_tasks(const int begin, const int end, list<TaskDur> & tasks, int & en_lift, vec<Lit> & expl) {
|
|
while (!tasks.empty()) {
|
|
int i = tasks.front().task;
|
|
int dur_in = tasks.front().dur_in;
|
|
int expl_lb, expl_ub;
|
|
int est0 = min_start0(i);
|
|
int lst0 = max_start0(i);
|
|
// Calculate possible lifting
|
|
switch (ttef_expl_deg) {
|
|
case ED_NORMAL:
|
|
// XXX Is min_dur correct
|
|
expl_lb = begin + dur_in - min_dur(i); expl_ub = end - dur_in;
|
|
break;
|
|
case ED_LIFT: {
|
|
int dur_max_out0 = max(0, max(lst0 + min_dur(i) - end, begin - est0));
|
|
int dur_max_out = min(dur_max_out0, dur_in);
|
|
// XXX Is min_usage correct?
|
|
int dur_lift = min(en_lift / min_usage(i), dur_max_out);
|
|
//printf("\t%d: dur_in %d, dur_lift %d; max_out0 %d; max_out %d; %d\n", i, dur_in, dur_lift, dur_max_out0, dur_max_out, en_lift /dur[i]);
|
|
//printf("\t\t est0 %d, lst0 %d\n", est0, lst0);
|
|
en_lift -= min_usage(i) * dur_lift;
|
|
assert(en_lift >= 0);
|
|
if (dur_lift < dur_in) {
|
|
// XXX Is min_dur correct?
|
|
expl_lb = begin + dur_in - dur_lift - min_dur(i);
|
|
expl_ub = end - dur_in + dur_lift;
|
|
} else {
|
|
expl_lb = est0;
|
|
expl_ub = lst0;
|
|
}}
|
|
break;
|
|
case ED_NAIVE:
|
|
default:
|
|
expl_lb = est(i); expl_ub = lst(i);
|
|
}
|
|
//printf("%d: dur_in %d/%d; en_in %d; est0 %d; lst0 %d\t", i, dur_in, dur[i], dur_in * min_usage(i), est0, lst0);
|
|
if (est0 < expl_lb) {
|
|
//printf("s[%d] >= %d; ", i, expl_lb);
|
|
expl.push(getNegGeqLit(start[i], expl_lb));
|
|
}
|
|
if (expl_ub < lst0) {
|
|
//printf("s[%d] <= %d; ", i, expl_ub);
|
|
expl.push(getNegLeqLit(start[i], expl_ub));
|
|
}
|
|
// Get the negated literal for [[dur[i] >= min_dur(i)]]
|
|
if (min_dur0(i) < min_dur(i))
|
|
expl.push(getNegGeqLit(dur[i], min_dur(i)));
|
|
// Get the negated literal for [[usage[i] >= min_usage(i)]]
|
|
if (min_usage0(i) < min_usage(i))
|
|
expl.push(getNegGeqLit(usage[i], min_usage(i)));
|
|
//printf("\n");
|
|
tasks.pop_front();
|
|
}
|
|
}
|
|
|
|
inline bool
|
|
CumulativeProp::is_intersecting(const int begin1, const int end1, const int begin2, const int end2) {
|
|
return ((begin1 <= begin2 && begin2 < end1) || (begin2 <= begin1 && begin1 < end2));
|
|
}
|
|
|
|
/*** EOF ***/
|
|
|