/*** !Test expected: - !Result solution: !Solution Total: 383 cost: [30, 27, 70, 2, 4, 22, 5, 13, 35, 55] objective: 383 open: [true, true, true, false, true] supplier: [5, 2, 5, 1, 5, 2, 2, 3, 2, 3] ***/ %----------------------------------------------------------------------------- % Warehouse allocation % (Problem 034 in CSPLib) % vim: ft=zinc ts=2 sw=2 et tw=0 % % Guido Tack, tack@gecode.org % 2007-02-22 % % Ported from the Gecode example %----------------------------------------------------------------------------- % A company needs to construct warehouses to supply stores with goods. Each % warehouse possibly to be constructed has a certain capacity defining how many % stores it can supply. Constructing a warehouse incurs a fixed cost. Costs % for transportation from warehouses to stores depend on the locations of % warehouses and stores. % % Determine which warehouses should be constructed and which warehouse should % supply which store such that overall cost (transportation cost plus % construction cost) is smallest. %----------------------------------------------------------------------------- include "globals.mzn"; %----------------------------------------------------------------------------- % Instance n_suppliers = 5; n_stores = 10; building_cost = 30; capacity = [1,4,2,1,3]; cost_matrix = [|20, 24, 11, 25, 30 |28, 27, 82, 83, 74 |74, 97, 71, 96, 70 | 2, 55, 73, 69, 61 |46, 96, 59, 83, 4 |42, 22, 29, 67, 59 | 1, 5, 73, 59, 56 |10, 73, 13, 43, 96 |93, 35, 63, 85, 46 |47, 65, 55, 71, 95|]; %----------------------------------------------------------------------------- % Model int: n_suppliers; int: n_stores; int: building_cost; array[1..n_suppliers] of int: capacity; array[1..n_stores,1..n_suppliers] of int: cost_matrix; int: MaxCost = max(i in 1..n_stores, j in 1..n_suppliers)(cost_matrix[i,j]); int: MaxTotal = (n_suppliers * building_cost) + sum(i in 1..n_stores, j in 1..n_suppliers)(cost_matrix[i,j]); array[1..n_stores] of var 1..n_suppliers: supplier; array[1..n_suppliers] of var bool: open; array[1..n_stores] of var 1..MaxCost: cost; var 1..MaxTotal: Total; constraint sum (i in 1..n_suppliers) (building_cost * bool2int(open[i])) + sum (i in 1..n_stores) (cost[i]) = Total; constraint forall (i in 1..n_stores) ( cost_matrix[i,supplier[i]] = cost[i] ); constraint forall (i in 1..n_suppliers) ( let { var int: use } in count(supplier,i,use) /\ use <= capacity[i] ); constraint forall (i in 1..n_suppliers) ( (exists (j in 1..n_stores) (supplier[j] == i)) == open[i] ); solve :: int_search( supplier ++ cost ++ [bool2int(open[i]) | i in 1..n_suppliers], first_fail, indomain_split, complete ) minimize Total; output [ "warehouses:" ] ++ [ "\nTotal = ", show(Total) ] ++ [ "\nsupplier = [\n" ] ++ [ "\t" ++ show(supplier[i]) ++ if i = n_stores then "\n]" elseif i mod 5 = 0 then ",\n" else "," endif | i in 1..n_stores ] ++ [ "\ncost = [\n" ] ++ [ "\t" ++ show(cost[i]) ++ if i = n_stores then "\n]" elseif i mod 5 = 0 then ",\n" else "," endif | i in 1..n_stores ] ++ [ "\nopen = [\n" ] ++ [ "\t" ++ show(open[i]) ++ if i = n_suppliers then "\n]\n" elseif i mod 5 = 0 then ",\n" else "," endif | i in 1..n_suppliers ] %----------------------------------------------------------------------------- %-----------------------------------------------------------------------------