/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Christian Schulte * * Copyright: * Christian Schulte, 2004 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include namespace Gecode { namespace Int { namespace Arithmetic { /* * Arithmetic help functions * */ /// Multiply \a x and \y forceinline long long int mll(long long int x, long long int y) { return x*y; } /// Cast \a x into a long long int forceinline long long int ll(int x) { return static_cast(x); } /// Increment \a x by one forceinline long long int ill(int x) { return static_cast(x) + 1; } /// Decrement \a x by one forceinline long long int dll(int x) { return static_cast(x) - 1; } /// Test whether \a x is postive template forceinline bool pos(const View& x) { return x.min() > 0; } /// Test whether \a x is negative template forceinline bool neg(const View& x) { return x.max() < 0; } /// Test whether \a x is neither positive nor negative template forceinline bool any(const View& x) { return (x.min() <= 0) && (x.max() >= 0); } /* * Propagator for x * y = x * */ template forceinline MultZeroOne::MultZeroOne(Home home, View x0, View x1) : BinaryPropagator(home,x0,x1) {} template forceinline RelTest MultZeroOne::equal(View x, int n) { if (pc == PC_INT_DOM) { return rtest_eq_dom(x,n); } else { return rtest_eq_bnd(x,n); } } template forceinline ExecStatus MultZeroOne::post(Home home, View x0, View x1) { switch (equal(x0,0)) { case RT_FALSE: GECODE_ME_CHECK(x1.eq(home,1)); break; case RT_TRUE: break; case RT_MAYBE: switch (equal(x1,1)) { case RT_FALSE: GECODE_ME_CHECK(x0.eq(home,0)); break; case RT_TRUE: break; case RT_MAYBE: (void) new (home) MultZeroOne(home,x0,x1); break; default: GECODE_NEVER; } break; default: GECODE_NEVER; } return ES_OK; } template forceinline MultZeroOne::MultZeroOne(Space& home, MultZeroOne& p) : BinaryPropagator(home,p) {} template Actor* MultZeroOne::copy(Space& home) { return new (home) MultZeroOne(home,*this); } template ExecStatus MultZeroOne::propagate(Space& home, const ModEventDelta&) { switch (equal(x0,0)) { case RT_FALSE: GECODE_ME_CHECK(x1.eq(home,1)); break; case RT_TRUE: break; case RT_MAYBE: switch (equal(x1,1)) { case RT_FALSE: GECODE_ME_CHECK(x0.eq(home,0)); break; case RT_TRUE: break; case RT_MAYBE: return ES_FIX; default: GECODE_NEVER; } break; default: GECODE_NEVER; } return home.ES_SUBSUMED(*this); } /* * Positive bounds consistent multiplication * */ template forceinline ExecStatus prop_mult_plus_bnd(Space& home, Propagator& p, VA x0, VB x1, VC x2) { assert(pos(x0) && pos(x1) && pos(x2)); bool mod; do { mod = false; { ModEvent me = x2.lq(home,mll(x0.max(),x1.max())); if (me_failed(me)) return ES_FAILED; mod |= me_modified(me); } { ModEvent me = x2.gq(home,mll(x0.min(),x1.min())); if (me_failed(me)) return ES_FAILED; mod |= me_modified(me); } { ModEvent me = x0.lq(home,floor_div_pp(x2.max(),x1.min())); if (me_failed(me)) return ES_FAILED; mod |= me_modified(me); } { ModEvent me = x0.gq(home,ceil_div_pp(x2.min(),x1.max())); if (me_failed(me)) return ES_FAILED; mod |= me_modified(me); } { ModEvent me = x1.lq(home,floor_div_pp(x2.max(),x0.min())); if (me_failed(me)) return ES_FAILED; mod |= me_modified(me); } { ModEvent me = x1.gq(home,ceil_div_pp(x2.min(),x0.max())); if (me_failed(me)) return ES_FAILED; mod |= me_modified(me); } } while (mod); return x0.assigned() && x1.assigned() ? home.ES_SUBSUMED(p) : ES_FIX; } template forceinline MultPlusBnd::MultPlusBnd(Home home, VA x0, VB x1, VC x2) : MixTernaryPropagator (home,x0,x1,x2) {} template forceinline MultPlusBnd::MultPlusBnd(Space& home, MultPlusBnd& p) : MixTernaryPropagator (home,p) {} template Actor* MultPlusBnd::copy(Space& home) { return new (home) MultPlusBnd(home,*this); } template ExecStatus MultPlusBnd::propagate(Space& home, const ModEventDelta&) { return prop_mult_plus_bnd(home,*this,x0,x1,x2); } template forceinline ExecStatus MultPlusBnd::post(Home home, VA x0, VB x1, VC x2) { GECODE_ME_CHECK(x0.gr(home,0)); GECODE_ME_CHECK(x1.gr(home,0)); GECODE_ME_CHECK(x2.gq(home,mll(x0.min(),x1.min()))); GECODE_ME_CHECK(x2.lq(home,mll(x0.max(),x1.max()))); (void) new (home) MultPlusBnd(home,x0,x1,x2); return ES_OK; } /* * Bounds consistent multiplication * */ forceinline MultBnd::MultBnd(Home home, IntView x0, IntView x1, IntView x2) : TernaryPropagator(home,x0,x1,x2) {} forceinline MultBnd::MultBnd(Space& home, MultBnd& p) : TernaryPropagator(home,p) {} /* * Positive domain consistent multiplication * */ template forceinline ExecStatus prop_mult_dom(Space& home, Propagator& p, View x0, View x1, View x2) { Region r; SupportValues s0(r,x0), s1(r,x1), s2(r,x2); while (s0()) { while (s1()) { if (s2.support(mll(s0.val(),s1.val()))) { s0.support(); s1.support(); } ++s1; } s1.reset(); ++s0; } GECODE_ME_CHECK(s0.tell(home)); GECODE_ME_CHECK(s1.tell(home)); GECODE_ME_CHECK(s2.tell(home)); return x0.assigned() && x1.assigned() ? home.ES_SUBSUMED(p) : ES_FIX; } template forceinline MultPlusDom::MultPlusDom(Home home, VA x0, VB x1, VC x2) : MixTernaryPropagator (home,x0,x1,x2) {} template forceinline MultPlusDom::MultPlusDom(Space& home, MultPlusDom& p) : MixTernaryPropagator (home,p) {} template Actor* MultPlusDom::copy(Space& home) { return new (home) MultPlusDom(home,*this); } template PropCost MultPlusDom::cost(const Space&, const ModEventDelta& med) const { if (VA::me(med) == ME_INT_DOM) return PropCost::ternary(PropCost::HI); else return PropCost::ternary(PropCost::LO); } template ExecStatus MultPlusDom::propagate(Space& home, const ModEventDelta& med) { if (VA::me(med) != ME_INT_DOM) { GECODE_ES_CHECK((prop_mult_plus_bnd(home,*this,x0,x1,x2))); return home.ES_FIX_PARTIAL(*this,VA::med(ME_INT_DOM)); } IntView y0(x0.varimp()), y1(x1.varimp()), y2(x2.varimp()); return prop_mult_dom(home,*this,y0,y1,y2); } template forceinline ExecStatus MultPlusDom::post(Home home, VA x0, VB x1, VC x2) { GECODE_ME_CHECK(x0.gr(home,0)); GECODE_ME_CHECK(x1.gr(home,0)); GECODE_ME_CHECK(x2.gq(home,mll(x0.min(),x1.min()))); GECODE_ME_CHECK(x2.lq(home,mll(x0.max(),x1.max()))); (void) new (home) MultPlusDom(home,x0,x1,x2); return ES_OK; } /* * Domain consistent multiplication * */ forceinline MultDom::MultDom(Home home, IntView x0, IntView x1, IntView x2) : TernaryPropagator(home,x0,x1,x2) {} forceinline MultDom::MultDom(Space& home, MultDom& p) : TernaryPropagator(home,p) {} }}} // STATISTICS: int-prop