%-----------------------------------------------------------------------------% % Radiation problem, MiniZinc 2.0.4 version % %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% % Parameters %-----------------------------------------------------------------------------% int: m; % Rows int: n; % Columns set of int: Rows = 1..m; set of int: Columns = 1..n; % Intensity matrix array[Rows, Columns] of int: Intensity; set of int: BTimes = 1..Bt_max; int: Bt_max = max(i in Rows, j in Columns) (Intensity[i,j]); int: Ints_sum = sum(i in Rows, j in Columns) (Intensity[i,j]); %-----------------------------------------------------------------------------% % Variables %-----------------------------------------------------------------------------% % Total beam-on time var 0..Ints_sum: Beamtime; % Number of shape matrices var 0..m*n: K; % N[b] is the number of shape matrices with associated beam-on time b array[BTimes] of var 0..m*n: N; % Q[i,j,b] is the number of shape matrices with associated beam-on time % b that expose cell (i,j) array[Rows, Columns, BTimes] of var 0..m*n: Q; %-----------------------------------------------------------------------------% % Constraints %-----------------------------------------------------------------------------% % For FD/LP hybrid solving, all these should go the LP solver % (with a suitable linearisation of the 'max' expressions). constraint Beamtime = sum(b in BTimes) (b * N[b]) /\ K = sum(b in BTimes) (N[b]) /\ forall(i in Rows, j in Columns) ( Intensity[i,j] = sum([b * Q[i,j,b] | b in BTimes]) ) /\ forall(i in Rows, b in BTimes) ( upper_bound_on_increments(N[b], [Q[i,j,b] | j in Columns]) ); predicate upper_bound_on_increments(var int: N_b, array[int] of var int: L) = N_b >= L[1] + sum([ max(L[j] - L[j-1], 0) | j in 2..n ]); % % Good linear version: % let { array[min(index_set(L))..max(index_set(L))] of var int: S } in % N_b >= L[1] + sum([ S[j] | j in 2..n ]) /\ % forall([ S[j] >= L[j] - L[j-1] /\ S[j] >= 0 | j in 2..n ]); %-----------------------------------------------------------------------------% output [ "Beamtime = \(Beamtime);\n", "K = \(K);\n", "N = \(N);\n", "Q = array3d(\(Rows), \(Columns), \(BTimes), \(Q));\n" ]; %-----------------------------------------------------------------------------%