/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Vincent Barichard * * Copyright: * Vincent Barichard, 2012 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include using namespace Gecode; /** * \brief %Example: Golden spiral * * The Golden Spiral is a logarithmic spiral whose growth factor * is the golden ratio \f$\phi=1,618\f$. * * It is defined by the polar equation: * \f[ * r = ae^{b\theta} * \f] * where * \f[ * \operatorname{abs}(b) = \frac{\operatorname{ln}(\phi)}{\frac{\pi}{2}} * \f] * * To get cartesian coordinates, it can be solved for \f$x\f$ * and \f$y\f$ in terms of \f$r\f$ and \f$\theta\f$. * By setting \f$a=1\f$, it yields to the equation: * * \f[ * r = e^{0.30649\times\theta} * \f] * with * \f[ * x=r\operatorname{cos}(\theta), \quad y=r\operatorname{sin}(\theta) * \f] * * The tuple \f$(r,\theta)\f$ is related to the position for * \f$x\f$ and \f$y\f$ on the curve. \f$r\f$ and \f$\theta\f$ * are positive numbers. * * To get reasonable interval starting sizes, \f$x\f$ and \f$y\f$ * are restricted to \f$[-20;20]\f$. * * \ingroup Example */ class GoldenSpiral : public FloatMaximizeScript { protected: /// The numbers FloatVarArray f; public: /// Actual model GoldenSpiral(const Options& opt) : FloatMaximizeScript(opt), f(*this,4,-20,20) { // Post equation FloatVar theta = f[0]; FloatVar r = f[3]; FloatVar x = f[1]; FloatVar y = f[2]; rel(*this, theta >= 0); rel(*this, r >= 0); rel(*this, r*cos(theta) == x); rel(*this, r*sin(theta) == y); rel(*this, exp(0.30649*theta) == r); branch(*this,theta,FLOAT_VAL_SPLIT_MIN()); } /// Constructor for cloning \a p GoldenSpiral(GoldenSpiral& p) : FloatMaximizeScript(p) { f.update(*this, p.f); } /// Copy during cloning virtual Space* copy(void) { return new GoldenSpiral(*this); } /// Cost function virtual FloatVar cost(void) const { return f[0]; } /// Print solution coordinates virtual void print(std::ostream& os) const { os << "XY " << f[1].med() << " " << f[2].med() << std::endl; } }; /** \brief Main-function * \relates GoldenSpiral */ int main(int argc, char* argv[]) { Options opt("GoldenSpiral"); opt.solutions(0); opt.step(0.1); opt.parse(argc,argv); FloatMaximizeScript::run(opt); return 0; } // STATISTICS: example-any