/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Christian Schulte * * Copyright: * Christian Schulte, 2010 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include namespace Gecode { /// Nodes for linear expressions class LinIntExpr::Node { public: /// Nodes are reference counted unsigned int use; /// Integer variables in tree int n_int; /// Boolean variables in tree int n_bool; /// Type of expression NodeType t; /// Subexpressions Node *l, *r; /// Sum of integer or Boolean variables, or non-linear expression union { /// Integer views and coefficients Int::Linear::Term* ti; /// Bool views and coefficients Int::Linear::Term* tb; /// Non-linear expression NonLinIntExpr* ne; } sum; /// Coefficient and offset int a, c; /// Integer variable (potentially) IntVar x_int; /// Boolean variable (potentially) BoolVar x_bool; /// Default constructor Node(void); /// Generate linear terms from expression void fill(Home home, const IntPropLevels& ipls, Int::Linear::Term*& ti, Int::Linear::Term*& tb, long long int m, long long int& d) const; /// Generate linear terms for expressions int fill(Home home, const IntPropLevels& ipls, Int::Linear::Term* ti, Int::Linear::Term* tb) const; /// Decrement reference count and possibly free memory bool decrement(void); /// Destructor ~Node(void); /// Memory management static void* operator new(size_t size); /// Memory management static void operator delete(void* p,size_t size); }; /* * Operations for nodes * */ forceinline LinIntExpr::Node::Node(void) : use(1) { } forceinline LinIntExpr::Node::~Node(void) { switch (t) { case NT_SUM_INT: if (n_int > 0) heap.free >(sum.ti,n_int); break; case NT_SUM_BOOL: if (n_bool > 0) heap.free >(sum.tb,n_bool); break; case NT_NONLIN: delete sum.ne; break; default: ; } } forceinline void* LinIntExpr::Node::operator new(size_t size) { return heap.ralloc(size); } forceinline void LinIntExpr::Node::operator delete(void* p, size_t) { heap.rfree(p); } bool LinIntExpr::Node::decrement(void) { if (--use == 0) { if ((l != nullptr) && l->decrement()) delete l; if ((r != nullptr) && r->decrement()) delete r; return true; } return false; } /* * Operations for expressions * */ LinIntExpr::LinIntExpr(const LinIntExpr& e) : n(e.n) { n->use++; } int LinIntExpr::Node::fill(Home home, const IntPropLevels& ipls, Int::Linear::Term* ti, Int::Linear::Term* tb) const { long long int d=0; fill(home,ipls,ti,tb,1,d); Int::Limits::check(d,"MiniModel::LinIntExpr"); return static_cast(d); } void LinIntExpr::post(Home home, IntRelType irt, const IntPropLevels& ipls) const { if (home.failed()) return; Region r; if (n->n_bool == 0) { // Only integer variables if (n->t==NT_ADD && n->l == nullptr && n->r->t==NT_NONLIN) { n->r->sum.ne->post(home,irt,-n->c,ipls); } else if (n->t==NT_SUB && n->r->t==NT_NONLIN && n->l==nullptr) { switch (irt) { case IRT_LQ: irt=IRT_GQ; break; case IRT_LE: irt=IRT_GR; break; case IRT_GQ: irt=IRT_LQ; break; case IRT_GR: irt=IRT_LE; break; default: break; } n->r->sum.ne->post(home,irt,n->c,ipls); } else if (irt==IRT_EQ && n->t==NT_SUB && n->r->t==NT_NONLIN && n->l != nullptr && n->l->t==NT_VAR_INT && n->l->a==1) { (void) n->r->sum.ne->post(home,&n->l->x_int,ipls); } else if (irt==IRT_EQ && n->t==NT_SUB && n->r->t==NT_VAR_INT && n->l != nullptr && n->l->t==NT_NONLIN && n->r->a==1) { (void) n->l->sum.ne->post(home,&n->r->x_int,ipls); } else { Int::Linear::Term* its = r.alloc >(n->n_int); int c = n->fill(home,ipls,its,nullptr); Int::Linear::post(home, its, n->n_int, irt, -c, (n->n_int > 2) ? ipls.linear() : ipls.linear2()); } } else if (n->n_int == 0) { // Only Boolean variables Int::Linear::Term* bts = r.alloc >(n->n_bool); int c = n->fill(home,ipls,nullptr,bts); Int::Linear::post(home, bts, n->n_bool, irt, -c, (n->n_bool > 2) ? ipls.linear() : ipls.linear2()); } else if (n->n_bool == 1) { // Integer variables and only one Boolean variable Int::Linear::Term* its = r.alloc >(n->n_int+1); Int::Linear::Term* bts = r.alloc >(1); int c = n->fill(home,ipls,its,bts); IntVar x(home,0,1); channel(home,bts[0].x,x); its[n->n_int].x = x; its[n->n_int].a = bts[0].a; Int::Linear::post(home, its, n->n_int+1, irt, -c, (n->n_int > 1) ? ipls.linear() : ipls.linear2()); } else { // Both integer and Boolean variables Int::Linear::Term* its = r.alloc >(n->n_int+1); Int::Linear::Term* bts = r.alloc >(n->n_bool); int c = n->fill(home,ipls,its,bts); int min, max; Int::Linear::estimate(&bts[0],n->n_bool,0,min,max); IntVar x(home,min,max); its[n->n_int].x = x; its[n->n_int].a = 1; Int::Linear::post(home, bts, n->n_bool, IRT_EQ, x, 0, (n->n_bool > 2) ? ipls.linear() : ipls.linear2()); Int::Linear::post(home, its, n->n_int+1, irt, -c, (n->n_int > 1) ? ipls.linear() : ipls.linear2()); } } void LinIntExpr::post(Home home, IntRelType irt, const BoolVar& b, const IntPropLevels& ipls) const { if (home.failed()) return; Region r; if (n->n_bool == 0) { // Only integer variables if (n->t==NT_ADD && n->l==nullptr && n->r->t==NT_NONLIN) { n->r->sum.ne->post(home,irt,-n->c,b,ipls); } else if (n->t==NT_SUB && n->l==nullptr && n->r->t==NT_NONLIN) { switch (irt) { case IRT_LQ: irt=IRT_GQ; break; case IRT_LE: irt=IRT_GR; break; case IRT_GQ: irt=IRT_LQ; break; case IRT_GR: irt=IRT_LE; break; default: break; } n->r->sum.ne->post(home,irt,n->c,b,ipls); } else { Int::Linear::Term* its = r.alloc >(n->n_int); int c = n->fill(home,ipls,its,nullptr); Int::Linear::post(home, its, n->n_int, irt, -c, b, (n->n_int > 2) ? ipls.linear() : ipls.linear2()); } } else if (n->n_int == 0) { // Only Boolean variables Int::Linear::Term* bts = r.alloc >(n->n_bool); int c = n->fill(home,ipls,nullptr,bts); Int::Linear::post(home, bts, n->n_bool, irt, -c, b, (n->n_bool > 2) ? ipls.linear() : ipls.linear2()); } else if (n->n_bool == 1) { // Integer variables and only one Boolean variable Int::Linear::Term* its = r.alloc >(n->n_int+1); Int::Linear::Term* bts = r.alloc >(1); int c = n->fill(home,ipls,its,bts); IntVar x(home,0,1); channel(home,bts[0].x,x); its[n->n_int].x = x; its[n->n_int].a = bts[0].a; Int::Linear::post(home, its, n->n_int+1, irt, -c, b, (n->n_int > 1) ? ipls.linear() : ipls.linear2()); } else { // Both integer and Boolean variables Int::Linear::Term* its = r.alloc >(n->n_int+1); Int::Linear::Term* bts = r.alloc >(n->n_bool); int c = n->fill(home,ipls,its,bts); int min, max; Int::Linear::estimate(&bts[0],n->n_bool,0,min,max); IntVar x(home,min,max); its[n->n_int].x = x; its[n->n_int].a = 1; Int::Linear::post(home, bts, n->n_bool, IRT_EQ, x, 0, (n->n_int > 1) ? ipls.linear() : ipls.linear2()); Int::Linear::post(home, its, n->n_int+1, irt, -c, b, (n->n_bool > 2) ? ipls.linear() : ipls.linear2()); } } IntVar LinIntExpr::post(Home home, const IntPropLevels& ipls) const { if (home.failed()) return IntVar(home,0,0); Region r; if (n->n_bool == 0) { // Only integer variables Int::Linear::Term* its = r.alloc >(n->n_int+1); int c = n->fill(home,ipls,its,nullptr); if ((n->n_int == 1) && (c == 0) && (its[0].a == 1)) return its[0].x; int min, max; Int::Linear::estimate(&its[0],n->n_int,c,min,max); IntVar x(home, min, max); its[n->n_int].x = x; its[n->n_int].a = -1; Int::Linear::post(home, its, n->n_int+1, IRT_EQ, -c, (n->n_int > 1) ? ipls.linear() : ipls.linear2()); return x; } else if (n->n_int == 0) { // Only Boolean variables Int::Linear::Term* bts = r.alloc >(n->n_bool); int c = n->fill(home,ipls,nullptr,bts); int min, max; Int::Linear::estimate(&bts[0],n->n_bool,c,min,max); IntVar x(home, min, max); Int::Linear::post(home, bts, n->n_bool, IRT_EQ, x, -c, (n->n_bool > 2) ? ipls.linear() : ipls.linear2()); return x; } else if (n->n_bool == 1) { // Integer variables and single Boolean variable Int::Linear::Term* its = r.alloc >(n->n_int+2); Int::Linear::Term* bts = r.alloc >(1); int c = n->fill(home,ipls,its,bts); IntVar x(home, 0, 1); channel(home, x, bts[0].x); its[n->n_int].x = x; its[n->n_int].a = bts[0].a; int y_min, y_max; Int::Linear::estimate(&its[0],n->n_int+1,c,y_min,y_max); IntVar y(home, y_min, y_max); its[n->n_int+1].x = y; its[n->n_int+1].a = -1; Int::Linear::post(home, its, n->n_int+2, IRT_EQ, -c, ipls.linear()); return y; } else { // Both integer and Boolean variables Int::Linear::Term* its = r.alloc >(n->n_int+2); Int::Linear::Term* bts = r.alloc >(n->n_bool); int c = n->fill(home,ipls,its,bts); int x_min, x_max; Int::Linear::estimate(&bts[0],n->n_bool,0,x_min,x_max); IntVar x(home, x_min, x_max); Int::Linear::post(home, bts, n->n_bool, IRT_EQ, x, 0, (n->n_bool > 2) ? ipls.linear() : ipls.linear2()); its[n->n_int].x = x; its[n->n_int].a = 1; int y_min, y_max; Int::Linear::estimate(&its[0],n->n_int+1,c,y_min,y_max); IntVar y(home, y_min, y_max); its[n->n_int+1].x = y; its[n->n_int+1].a = -1; Int::Linear::post(home, its, n->n_int+2, IRT_EQ, -c, ipls.linear()); return y; } } NonLinIntExpr* LinIntExpr::nle(void) const { return n->t == NT_NONLIN ? n->sum.ne : nullptr; } LinIntExpr::LinIntExpr(void) : n(new Node) { n->n_int = n->n_bool = 0; n->t = NT_VAR_INT; n->l = n->r = nullptr; n->a = 0; } LinIntExpr::LinIntExpr(int c) : n(new Node) { n->n_int = n->n_bool = 0; n->t = NT_CONST; n->l = n->r = nullptr; n->a = 0; Int::Limits::check(c,"MiniModel::LinIntExpr"); n->c = c; } LinIntExpr::LinIntExpr(const IntVar& x, int a) : n(new Node) { n->n_int = 1; n->n_bool = 0; n->t = NT_VAR_INT; n->l = n->r = nullptr; n->a = a; n->x_int = x; } LinIntExpr::LinIntExpr(const BoolVar& x, int a) : n(new Node) { n->n_int = 0; n->n_bool = 1; n->t = NT_VAR_BOOL; n->l = n->r = nullptr; n->a = a; n->x_bool = x; } LinIntExpr::LinIntExpr(const IntVarArgs& x) : n(new Node) { n->n_int = x.size(); n->n_bool = 0; n->t = NT_SUM_INT; n->l = n->r = nullptr; if (x.size() > 0) { n->sum.ti = heap.alloc >(x.size()); for (int i=x.size(); i--; ) { n->sum.ti[i].x = x[i]; n->sum.ti[i].a = 1; } } } LinIntExpr::LinIntExpr(const IntArgs& a, const IntVarArgs& x) : n(new Node) { if (a.size() != x.size()) throw Int::ArgumentSizeMismatch("MiniModel::LinIntExpr"); n->n_int = x.size(); n->n_bool = 0; n->t = NT_SUM_INT; n->l = n->r = nullptr; if (x.size() > 0) { n->sum.ti = heap.alloc >(x.size()); for (int i=x.size(); i--; ) { n->sum.ti[i].x = x[i]; n->sum.ti[i].a = a[i]; } } } LinIntExpr::LinIntExpr(const BoolVarArgs& x) : n(new Node) { n->n_int = 0; n->n_bool = x.size(); n->t = NT_SUM_BOOL; n->l = n->r = nullptr; if (x.size() > 0) { n->sum.tb = heap.alloc >(x.size()); for (int i=x.size(); i--; ) { n->sum.tb[i].x = x[i]; n->sum.tb[i].a = 1; } } } LinIntExpr::LinIntExpr(const IntArgs& a, const BoolVarArgs& x) : n(new Node) { if (a.size() != x.size()) throw Int::ArgumentSizeMismatch("MiniModel::LinIntExpr"); n->n_int = 0; n->n_bool = x.size(); n->t = NT_SUM_BOOL; n->l = n->r = nullptr; if (x.size() > 0) { n->sum.tb = heap.alloc >(x.size()); for (int i=x.size(); i--; ) { n->sum.tb[i].x = x[i]; n->sum.tb[i].a = a[i]; } } } LinIntExpr::LinIntExpr(const LinIntExpr& e0, NodeType t, const LinIntExpr& e1) : n(new Node) { n->n_int = e0.n->n_int + e1.n->n_int; n->n_bool = e0.n->n_bool + e1.n->n_bool; n->t = t; n->l = e0.n; n->l->use++; n->r = e1.n; n->r->use++; } LinIntExpr::LinIntExpr(const LinIntExpr& e, NodeType t, int c) : n(new Node) { n->n_int = e.n->n_int; n->n_bool = e.n->n_bool; n->t = t; n->l = nullptr; n->r = e.n; n->r->use++; n->c = c; } LinIntExpr::LinIntExpr(int a, const LinIntExpr& e) : n(new Node) { n->n_int = e.n->n_int; n->n_bool = e.n->n_bool; n->t = NT_MUL; n->l = e.n; n->l->use++; n->r = nullptr; n->a = a; } LinIntExpr::LinIntExpr(NonLinIntExpr* e) : n(new Node) { n->n_int = 1; n->n_bool = 0; n->t = NT_NONLIN; n->l = n->r = nullptr; n->a = 0; n->sum.ne = e; } const LinIntExpr& LinIntExpr::operator =(const LinIntExpr& e) { if (this != &e) { if (n->decrement()) delete n; n = e.n; n->use++; } return *this; } LinIntExpr::~LinIntExpr(void) { if (n->decrement()) delete n; } void LinIntExpr::Node::fill(Home home, const IntPropLevels& ipls, Int::Linear::Term*& ti, Int::Linear::Term*& tb, long long int m, long long int& d) const { switch (this->t) { case NT_CONST: Int::Limits::check(m*c,"MiniModel::LinIntExpr"); d += m*c; break; case NT_VAR_INT: Int::Limits::check(m*a,"MiniModel::LinIntExpr"); ti->a=static_cast(m*a); ti->x=x_int; ti++; break; case NT_NONLIN: ti->a=static_cast(m); ti->x=sum.ne->post(home, nullptr, ipls); ti++; break; case NT_VAR_BOOL: Int::Limits::check(m*a,"MiniModel::LinIntExpr"); tb->a=static_cast(m*a); tb->x=x_bool; tb++; break; case NT_SUM_INT: for (int i=n_int; i--; ) { Int::Limits::check(m*sum.ti[i].a,"MiniModel::LinIntExpr"); ti[i].x = sum.ti[i].x; ti[i].a = static_cast(m*sum.ti[i].a); } ti += n_int; break; case NT_SUM_BOOL: for (int i=n_bool; i--; ) { Int::Limits::check(m*sum.tb[i].a,"MiniModel::LinIntExpr"); tb[i].x = sum.tb[i].x; tb[i].a = static_cast(m*sum.tb[i].a); } tb += n_bool; break; case NT_ADD: if (l == nullptr) { Int::Limits::check(m*c,"MiniModel::LinIntExpr"); d += m*c; } else { l->fill(home,ipls,ti,tb,m,d); } r->fill(home,ipls,ti,tb,m,d); break; case NT_SUB: if (l == nullptr) { Int::Limits::check(m*c,"MiniModel::LinIntExpr"); d += m*c; } else { l->fill(home,ipls,ti,tb,m,d); } r->fill(home,ipls,ti,tb,-m,d); break; case NT_MUL: Int::Limits::check(m*a,"MiniModel::LinIntExpr"); l->fill(home,ipls,ti,tb,m*a,d); break; default: GECODE_NEVER; } } /* * Operators * */ LinIntExpr operator +(int c, const IntVar& x) { if (x.assigned() && Int::Limits::valid(static_cast(c)+x.val())) return LinIntExpr(c+x.val()); else return LinIntExpr(x,LinIntExpr::NT_ADD,c); } LinIntExpr operator +(int c, const BoolVar& x) { if (x.assigned() && Int::Limits::valid(static_cast(c)+x.val())) return LinIntExpr(c+x.val()); else return LinIntExpr(x,LinIntExpr::NT_ADD,c); } LinIntExpr operator +(int c, const LinIntExpr& e) { return LinIntExpr(e,LinIntExpr::NT_ADD,c); } LinIntExpr operator +(const IntVar& x, int c) { if (x.assigned() && Int::Limits::valid(static_cast(c)+x.val())) return LinIntExpr(c+x.val()); else return LinIntExpr(x,LinIntExpr::NT_ADD,c); } LinIntExpr operator +(const BoolVar& x, int c) { if (x.assigned() && Int::Limits::valid(static_cast(c)+x.val())) return LinIntExpr(c+x.val()); else return LinIntExpr(x,LinIntExpr::NT_ADD,c); } LinIntExpr operator +(const LinIntExpr& e, int c) { return LinIntExpr(e,LinIntExpr::NT_ADD,c); } LinIntExpr operator +(const IntVar& x, const IntVar& y) { if (x.assigned()) return x.val() + y; else if (y.assigned()) return x + y.val(); else return LinIntExpr(x,LinIntExpr::NT_ADD,y); } LinIntExpr operator +(const IntVar& x, const BoolVar& y) { if (x.assigned()) return x.val() + y; else if (y.assigned()) return x + y.val(); else return LinIntExpr(x,LinIntExpr::NT_ADD,y); } LinIntExpr operator +(const BoolVar& x, const IntVar& y) { if (x.assigned()) return x.val() + y; else if (y.assigned()) return x + y.val(); else return LinIntExpr(x,LinIntExpr::NT_ADD,y); } LinIntExpr operator +(const BoolVar& x, const BoolVar& y) { if (x.assigned()) return x.val() + y; else if (y.assigned()) return x + y.val(); else return LinIntExpr(x,LinIntExpr::NT_ADD,y); } LinIntExpr operator +(const IntVar& x, const LinIntExpr& e) { if (x.assigned()) return x.val() + e; else return LinIntExpr(x,LinIntExpr::NT_ADD,e); } LinIntExpr operator +(const BoolVar& x, const LinIntExpr& e) { if (x.assigned()) return x.val() + e; else return LinIntExpr(x,LinIntExpr::NT_ADD,e); } LinIntExpr operator +(const LinIntExpr& e, const IntVar& x) { if (x.assigned()) return e + x.val(); else return LinIntExpr(e,LinIntExpr::NT_ADD,x); } LinIntExpr operator +(const LinIntExpr& e, const BoolVar& x) { if (x.assigned()) return e + x.val(); else return LinIntExpr(e,LinIntExpr::NT_ADD,x); } LinIntExpr operator +(const LinIntExpr& e1, const LinIntExpr& e2) { return LinIntExpr(e1,LinIntExpr::NT_ADD,e2); } LinIntExpr operator -(int c, const IntVar& x) { if (x.assigned() && Int::Limits::valid(static_cast(c)-x.val())) return LinIntExpr(c-x.val()); else return LinIntExpr(x,LinIntExpr::NT_SUB,c); } LinIntExpr operator -(int c, const BoolVar& x) { if (x.assigned() && Int::Limits::valid(static_cast(c)-x.val())) return LinIntExpr(c-x.val()); else return LinIntExpr(x,LinIntExpr::NT_SUB,c); } LinIntExpr operator -(int c, const LinIntExpr& e) { return LinIntExpr(e,LinIntExpr::NT_SUB,c); } LinIntExpr operator -(const IntVar& x, int c) { if (x.assigned() && Int::Limits::valid(x.val()-static_cast(c))) return LinIntExpr(x.val()-c); else return LinIntExpr(x,LinIntExpr::NT_ADD,-c); } LinIntExpr operator -(const BoolVar& x, int c) { if (x.assigned() && Int::Limits::valid(x.val()-static_cast(c))) return LinIntExpr(x.val()-c); else return LinIntExpr(x,LinIntExpr::NT_ADD,-c); } LinIntExpr operator -(const LinIntExpr& e, int c) { return LinIntExpr(e,LinIntExpr::NT_ADD,-c); } LinIntExpr operator -(const IntVar& x, const IntVar& y) { if (x.assigned()) return x.val() - y; else if (y.assigned()) return x - y.val(); else return LinIntExpr(x,LinIntExpr::NT_SUB,y); } LinIntExpr operator -(const IntVar& x, const BoolVar& y) { if (x.assigned()) return x.val() - y; else if (y.assigned()) return x - y.val(); else return LinIntExpr(x,LinIntExpr::NT_SUB,y); } LinIntExpr operator -(const BoolVar& x, const IntVar& y) { if (x.assigned()) return x.val() - y; else if (y.assigned()) return x - y.val(); else return LinIntExpr(x,LinIntExpr::NT_SUB,y); } LinIntExpr operator -(const BoolVar& x, const BoolVar& y) { if (x.assigned()) return x.val() - y; else if (y.assigned()) return x - y.val(); else return LinIntExpr(x,LinIntExpr::NT_SUB,y); } LinIntExpr operator -(const IntVar& x, const LinIntExpr& e) { if (x.assigned()) return x.val() - e; else return LinIntExpr(x,LinIntExpr::NT_SUB,e); } LinIntExpr operator -(const BoolVar& x, const LinIntExpr& e) { if (x.assigned()) return x.val() - e; else return LinIntExpr(x,LinIntExpr::NT_SUB,e); } LinIntExpr operator -(const LinIntExpr& e, const IntVar& x) { if (x.assigned()) return e - x.val(); else return LinIntExpr(e,LinIntExpr::NT_SUB,x); } LinIntExpr operator -(const LinIntExpr& e, const BoolVar& x) { if (x.assigned()) return e - x.val(); else return LinIntExpr(e,LinIntExpr::NT_SUB,x); } LinIntExpr operator -(const LinIntExpr& e1, const LinIntExpr& e2) { return LinIntExpr(e1,LinIntExpr::NT_SUB,e2); } LinIntExpr operator -(const IntVar& x) { if (x.assigned()) return LinIntExpr(-x.val()); else return LinIntExpr(x,LinIntExpr::NT_SUB,0); } LinIntExpr operator -(const BoolVar& x) { if (x.assigned()) return LinIntExpr(-x.val()); else return LinIntExpr(x,LinIntExpr::NT_SUB,0); } LinIntExpr operator -(const LinIntExpr& e) { return LinIntExpr(e,LinIntExpr::NT_SUB,0); } LinIntExpr operator *(int a, const IntVar& x) { if (a == 0) return LinIntExpr(0); else if (x.assigned() && Int::Limits::valid(static_cast(a)*x.val())) return LinIntExpr(a*x.val()); else return LinIntExpr(x,a); } LinIntExpr operator *(int a, const BoolVar& x) { if (a == 0) return LinIntExpr(0); else if (x.assigned() && Int::Limits::valid(static_cast(a)*x.val())) return LinIntExpr(a*x.val()); else return LinIntExpr(x,a); } LinIntExpr operator *(const IntVar& x, int a) { if (a == 0) return LinIntExpr(0); else if (x.assigned() && Int::Limits::valid(static_cast(a)*x.val())) return LinIntExpr(a*x.val()); else return LinIntExpr(x,a); } LinIntExpr operator *(const BoolVar& x, int a) { if (a == 0) return LinIntExpr(0); else if (x.assigned() && Int::Limits::valid(static_cast(a)*x.val())) return LinIntExpr(a*x.val()); else return LinIntExpr(x,a); } LinIntExpr operator *(const LinIntExpr& e, int a) { if (a == 0) return LinIntExpr(0); else return LinIntExpr(a,e); } LinIntExpr operator *(int a, const LinIntExpr& e) { if (a == 0) return LinIntExpr(0); else return LinIntExpr(a,e); } LinIntExpr sum(const IntVarArgs& x) { return LinIntExpr(x); } LinIntExpr sum(const IntArgs& a, const IntVarArgs& x) { return LinIntExpr(a,x); } LinIntExpr sum(const BoolVarArgs& x) { return LinIntExpr(x); } LinIntExpr sum(const IntArgs& a, const BoolVarArgs& x) { return LinIntExpr(a,x); } LinIntExpr sum(const Slice& slice) { const Slice::ArgsType & args = slice; return sum(args); } LinIntExpr sum(const Matrix& matrix) { const Matrix::ArgsType & args = matrix.get_array(); return sum(args); } LinIntExpr sum(const IntArgs& args) { int sum = 0; for (int i = 0; i