int: n; array [1..n] of var 1..n: q; % 在第i列的皇后在q[i]上 include "alldifferent.mzn"; constraint alldifferent(q); % distinct rows constraint alldifferent([ q[i] + i | i in 1..n]); % distinct diagonals constraint alldifferent([ q[i] - i | i in 1..n]); % upwards+downwards include "lex_lesseq.mzn"; % 可选的布尔模型: % 映射每一个位置 i,j到一个布尔变量上来表示在i,j上是否有一个皇后 array[1..n,1..n] of var bool: qb; % 连通约束 constraint forall (i,j in 1..n) ( qb[i,j] <-> (q[i]=j) ); % 字典排序对称性破缺 constraint lex_lesseq(array1d(qb), [ qb[j,i] | i,j in 1..n ]) /\ lex_lesseq(array1d(qb), [ qb[i,j] | i in reverse(1..n), j in 1..n ]) /\ lex_lesseq(array1d(qb), [ qb[j,i] | i in 1..n, j in reverse(1..n) ]) /\ lex_lesseq(array1d(qb), [ qb[i,j] | i in 1..n, j in reverse(1..n) ]) /\ lex_lesseq(array1d(qb), [ qb[j,i] | i in reverse(1..n), j in 1..n ]) /\ lex_lesseq(array1d(qb), [ qb[i,j] | i,j in reverse(1..n) ]) /\ lex_lesseq(array1d(qb), [ qb[j,i] | i,j in reverse(1..n) ]) ; % 搜索 solve :: int_search(q, first_fail, indomain_min, complete) satisfy; output [ if fix(q[j]) == i then "Q" else "." endif ++ if j == n then "\n" else "" endif | i,j in 1..n]