/*%-----------------------------------------------------------------------------% % Domain encodings %-----------------------------------------------------------------------------% */ % Linear equality encoding % Single variable: x = d <-> x_eq_d[d] predicate equality_encoding(var int: x, array[int] of var int: x_eq_d) = x in index_set(x_eq_d) /\ sum(d in dom(x))( x_eq_d[d] ) = 1 /\ sum(d in dom(x))( d * x_eq_d[d] ) = x /\ % my_trace( "eq_enc: \(x), index_set(pp)=" ++ show(index_set( x_eq_d )) ++ "\n" ) /\ if fPostprocessDomains then equality_encoding__POST(x, x_eq_d) else true endif ; % Two variables: x = d /\ y = e <-> x_eq_d[d] /\ y_eq_e[e] /\ xy_eq_de[d, e] predicate equality_encoding(var int: x, var int: y, array[int] of var int: x_eq_d, array[int] of var int: y_eq_e, array[int, int] of var int: xy_eq_de ) = x in index_set(x_eq_d) /\ y in index_set(y_eq_e) /\ index_set(x_eq_d) == index_set_1of2(xy_eq_de) /\ index_set(y_eq_e) == index_set_2of2(xy_eq_de) /\ sum(d in dom(x), e in dom(y))( xy_eq_de[d, e] ) = 1 /\ forall(d in dom(x)) (sum(e in dom(y))( xy_eq_de[d, e] ) = x_eq_d[d]) /\ forall(e in dom(y)) (sum(d in dom(x))( xy_eq_de[d, e] ) = y_eq_e[e]) ; % Array of variables: x[i] = d <-> x_eq_d[i,d] predicate equality_encoding(array[int] of var int: x, array[int, int] of var int: x_eq_d) = forall(i in index_set(x))( x[i] in index_set_2of2(x_eq_d) /\ sum(d in index_set_2of2(x_eq_d))( x_eq_d[i,d] ) = 1 /\ sum(d in index_set_2of2(x_eq_d))( d * x_eq_d[i,d] ) = x[i] ); function var int: eq_new_var(var int: x, int: i) ::promise_total = if i in dom(x) then let { var 0..1: xi; } in xi else 0 endif; function array[int] of var int: eq_encode(var int: x) ::promise_total = let { array[int] of var int: y = array1d(lb(x)..ub(x),[eq_new_var(x,i) | i in lb(x)..ub(x)]); constraint equality_encoding(x,y); % constraint % if card(dom(x))>0 then % my_trace(" eq_encode: dom(\(x)) = " ++ show(dom(x)) ++ ", card( dom(\(x)) ) = " ++ show(card(dom(x))) ++ "\n") % else true endif; %% constraint assert(card(dom(x))>1, " eq_encode: card(dom(\(x))) == " ++ show(card(dom(x)))); } in y; function array[int] of int: eq_encode(int: x) ::promise_total = array1d(lb(x)..ub(x),[ if i=x then 1 else 0 endif | i in lb(x)..ub(x)]); %%% The same for 2 variables: function var int: eq_new_var(var int: x, int: i, var int: y, int: j) ::promise_total = if i in dom(x) /\ j in dom(y) then let { var 0..1: xi; } in xi else 0 endif; function array[int, int] of var int: eq_encode(var int: x, var int: y) ::promise_total = let { array[int] of var int: pX = eq_encode(x), array[int] of var int: pY = eq_encode(y), array[int, int] of var int: pp = array2d(index_set(pX), index_set(pY), [eq_new_var(x,i,y,j) | i in index_set(pX), j in index_set(pY)]); constraint equality_encoding(x, y, pX, pY, pp); } in pp; function array[int, int] of int: eq_encode(int: x, int: y) ::promise_total = % let { % constraint if card(dom(x))*card(dom(y))>200 then % my_trace(" eq_encode: dom(\(x)) = " ++ show(dom(x)) ++ ", dom(\(y)) = " ++ show(dom(y)) ++ "\n") % else true endif; % } in array2d(lb(x)..ub(x), lb(y)..ub(y), [if i==x /\ j==y then 1 else 0 endif | i in lb(x)..ub(x), j in lb(y)..ub(y)]); function array[int,int] of var int: eq_encode(array[int] of var int: x) ::promise_total = let { array[index_set(x),lb_array(x)..ub_array(x)] of var int: y = array2d(index_set(x),lb_array(x)..ub_array(x), [ let { array[int] of var int: xi = eq_encode(x[i]) } in if j in index_set(xi) then xi[j] else 0 endif | i in index_set(x), j in lb_array(x)..ub_array(x)] ) } in y; function array[int,int] of int: eq_encode(array[int] of int: x) ::promise_total = array2d(index_set(x),lb_array(x)..ub_array(x),[ if j=x[i] then 1 else 0 endif | i in index_set(x), j in lb_array(x)..ub_array(x)]); %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------%