#include namespace MiniZinc { template MIP_SolverFactory::MIP_SolverFactory(void) { std::vector requiredFlags; std::string dllFlag = MIPWrapper::needDllFlag(); if (dllFlag.size()) requiredFlags.push_back(dllFlag); SolverConfig sc(getId(), MIPWrapper::getVersion()); sc.name(MIPWrapper::getName()); sc.mznlib(MIPWrapper::getMznLib()); sc.mznlibVersion(1); sc.supportsMzn(true); sc.description("MiniZinc MIP solver plugin"); sc.requiredFlags(requiredFlags); sc.tags(MIPWrapper::getTags()); sc.stdFlags(MIPWrapper::getStdFlags()); SolverConfigs::registerBuiltinSolver(sc); } template bool MIP_SolverFactory::processOption(SolverInstanceBase::Options* opt, int& i, std::vector& argv) { if (argv[i] == "--verbose-solving") { opt->verbose = true; return true; } else if (argv[i] == "--solver-statistics") { opt->printStatistics = true; return true; } else { return static_cast(*opt).processOption(i, argv); } } template std::string MIP_SolverFactory::getDescription(SolverInstanceBase::Options* opt) { std::string v = "MIP solver plugin, compiled " __DATE__ ", using: " + MIPWrapper::getDescription(opt); return v; } template std::string MIP_SolverFactory::getVersion(SolverInstanceBase::Options* opt) { return MIPWrapper::getVersion(opt); } template std::string MIP_SolverFactory::getId() { return "org.minizinc.mip." + MIPWrapper::getId(); } template MIP_solver::Variable MIP_solverinstance::exprToVar(Expression* arg) { if (Id* ident = arg->dyn_cast()) { return _variableMap.get(ident->decl()->id()); } else return mip_wrap->addLitVar(exprToConst(arg)); } template void MIP_solverinstance::exprToVarArray(Expression* arg, std::vector& vars) { ArrayLit* al = eval_array_lit(getEnv()->envi(), arg); vars.clear(); vars.reserve(al->size()); for (unsigned int i = 0; i < al->size(); i++) vars.push_back(exprToVar((*al)[i])); } template std::pair MIP_solverinstance::exprToConstEasy(Expression* e) { std::pair res{0.0, true}; if (IntLit* il = e->dyn_cast()) { res.first = (static_cast(il->v().toInt())); } else if (FloatLit* fl = e->dyn_cast()) { res.first = (fl->v().toDouble()); } else if (BoolLit* bl = e->dyn_cast()) { res.first = (bl->v()); } else { res.second = false; } return res; } template double MIP_solverinstance::exprToConst(Expression* e) { const auto e2ce = exprToConstEasy(e); if (!e2ce.second) { std::ostringstream oss; oss << "ExprToConst: expected a numeric/bool literal, getting " << *e; throw InternalError(oss.str()); } return e2ce.first; } template void MIP_solverinstance::exprToArray(Expression* arg, std::vector& vals) { ArrayLit* al = eval_array_lit(getEnv()->envi(), arg); vals.clear(); vals.reserve(al->size()); for (unsigned int i = 0; i < al->size(); i++) { vals.push_back(exprToConst((*al)[i])); } } template void MIP_solverinstance::processSearchAnnotations(const Annotation& ann) { if (1 == getMIPWrapper()->getFreeSearch()) return; std::vector aAnns; flattenSearchAnnotations(ann, aAnns); std::vector vars; std::vector aPri; // priorities int nArrayAnns = 0; for (auto iA = 0; iA < aAnns.size(); ++iA) { const auto& pE = aAnns[iA]; if (pE->isa()) { Call* pC = pE->cast(); const auto cId = pC->id().str(); if ("int_search" == cId || "float_search" == cId) { ArrayLit* alV = nullptr; if (!pC->n_args() || nullptr == (alV = eval_array_lit(_env.envi(), pC->arg(0)))) { std::cerr << " SEARCH ANN: '" << (*pC) << "' is unknown. " << std::endl; continue; } ++nArrayAnns; for (unsigned int i = 0; i < alV->size(); i++) { if (Id* ident = (*alV)[i]->dyn_cast()) { vars.push_back(exprToVar(ident)); aPri.push_back(static_cast(aAnns.size()) - iA); // level search by default } // else ignore } } } } if (vars.size()) { if (2 == getMIPWrapper()->getFreeSearch()) { for (int i = 0; i < vars.size(); ++i) aPri[i] = 1; // vars.size()-i; // descending } if (!getMIPWrapper()->addSearch(vars, aPri)) std::cerr << "\nWARNING: MIP backend seems to ignore search strategy." << std::endl; else std::cerr << " MIP: added " << vars.size() << " variable branching priorities from " << nArrayAnns << " arrays." << std::endl; } } template void MIP_solverinstance::processWarmstartAnnotations(const Annotation& ann) { int nVal = 0; for (ExpressionSetIter i = ann.begin(); i != ann.end(); ++i) { Expression* e = *i; if (e->isa()) { Call* c = e->cast(); if (c->id().str() == "warm_start_array" || c->id().str() == "seq_search") { ArrayLit* anns = c->arg(0)->cast(); for (unsigned int i = 0; i < anns->size(); i++) { Annotation subann; subann.add((*anns)[i]); processWarmstartAnnotations(subann); } } else if (c->id().str() == "warm_start") { MZN_ASSERT_HARD_MSG(c->n_args() >= 2, "ERROR: warm_start needs 2 array args"); std::vector coefs; std::vector vars; /// Process coefs & vars together to eliminate literals (problem with Gurobi's /// updatemodel()'s) ArrayLit* alC = eval_array_lit(_env.envi(), c->arg(1)); MZN_ASSERT_HARD_MSG(0 != alC, "ERROR: warm_start needs 2 array args"); coefs.reserve(alC->size()); ArrayLit* alV = eval_array_lit(_env.envi(), c->arg(0)); MZN_ASSERT_HARD_MSG(0 != alV, "ERROR: warm_start needs 2 array args"); vars.reserve(alV->size()); for (unsigned int i = 0; i < alV->size() && i < alC->size(); i++) { const auto e2c = exprToConstEasy((*alC)[i]); /// Check if it is not an opt int etc. and a proper variable if (e2c.second) if (Id* ident = (*alV)[i]->dyn_cast()) { coefs.push_back(e2c.first); vars.push_back(exprToVar(ident)); } // else ignore } assert(coefs.size() == vars.size()); nVal += static_cast(coefs.size()); if (coefs.size() && !getMIPWrapper()->addWarmStart(vars, coefs)) { std::cerr << "\nWARNING: MIP backend seems to ignore warm starts" << std::endl; return; } } } } if (nVal && getMIPWrapper()->fVerbose) { std::cerr << " MIP: added " << nVal << " MIPstart values..." << std::flush; } } template void MIP_solverinstance::processFlatZinc(void) { mip_wrap->fVerbose = _options->verbose; SolveI* solveItem = getEnv()->flat()->solveItem(); VarDecl* objVd = NULL; if (solveItem->st() != SolveI::SolveType::ST_SAT) { if (Id* id = solveItem->e()->dyn_cast()) { objVd = id->decl(); } else { std::cerr << "Objective must be Id: " << solveItem->e() << std::endl; throw InternalError("Objective must be Id"); } } for (VarDeclIterator it = getEnv()->flat()->begin_vardecls(); it != getEnv()->flat()->end_vardecls(); ++it) { if (it->removed()) { continue; } VarDecl* vd = it->e(); if (!vd->ann().isEmpty()) { if (vd->ann().containsCall(constants().ann.output_array.aststr()) || vd->ann().contains(constants().ann.output_var)) { _varsWithOutput.push_back(vd); // std::cerr << (*vd); // if ( vd->e() ) // cerr << " = " << (*vd->e()); // cerr << endl; } } if (vd->type().dim() == 0 && it->e()->type().isvar() && !it->removed()) { MiniZinc::TypeInst* ti = it->e()->ti(); MIP_wrapper::VarType vType = MIP_wrapper::VarType::REAL; // fInt = false; if (ti->type().isvarint() || ti->type().isint()) vType = MIP_wrapper::VarType::INT; else if (ti->type().isvarbool() || ti->type().isbool()) { vType = MIP_wrapper::VarType::BINARY; } else if (ti->type().isvarfloat() || ti->type().isfloat()) { } else { std::stringstream ssm; ssm << "This type of var is not handled by MIP: " << *it << std::endl; ssm << " VarDecl flags (ti, bt, st, ot): " << ti->type().ti() << ti->type().bt() << ti->type().st() << ti->type().ot() << ", dim == " << ti->type().dim() << "\nRemove the variable or add a constraint so it is redefined." << std::endl; throw InternalError(ssm.str()); } double lb = 0.0, ub = 1.0; // for bool if (ti->domain()) { if (MIP_wrapper::VarType::REAL == vType) { FloatBounds fb = compute_float_bounds(getEnv()->envi(), it->e()->id()); if (fb.valid) { lb = fb.l.toDouble(); ub = fb.u.toDouble(); } else { lb = 1.0; ub = 0.0; } } else if (MIP_wrapper::VarType::INT == vType) { IntBounds ib = compute_int_bounds(getEnv()->envi(), it->e()->id()); if (ib.valid) { // Normally should be lb = static_cast(ib.l.toInt()); ub = static_cast(ib.u.toInt()); } else { lb = 1; ub = 0; } } } else if (MIP_wrapper::VarType::BINARY != vType) { lb = -getMIPWrapper()->getInfBound(); // if just 1 bound inf, using MZN's default? TODO ub = -lb; } // IntSetVal* dom = eval_intset(env,vdi->e()->ti()->domain()); // if (dom->size() > 1) // throw runtime_error("MIP_solverinstance: domains with holes ! supported, use // --MIPdomains"); VarId res; Id* id = it->e()->id(); MZN_ASSERT_HARD(id == id->decl()->id()); // Assume all unified MZN_ASSERT_HARD(it->e() == id->decl()); // Assume all unified double obj = vd == objVd ? 1.0 : 0.0; auto decl00 = follow_id_to_decl(it->e()); MZN_ASSERT_HARD(decl00->isa()); { auto vd00 = decl00->dyn_cast(); if (0 != vd00->e()) { // Should be a const auto dRHS = exprToConst(vd00->e()); lb = std::max(lb, dRHS); ub = std::min(ub, dRHS); } if (it->e() != vd00) { // A different vardecl res = exprToVar(vd00->id()); // Assume FZN is sorted. MZN_ASSERT_HARD(!getMIPWrapper()->fPhase1Over); // Still can change colUB, colObj /// Tighten the ini-expr's bounds lb = getMIPWrapper()->colLB.at(res) = std::max(getMIPWrapper()->colLB.at(res), lb); ub = getMIPWrapper()->colUB.at(res) = std::min(getMIPWrapper()->colUB.at(res), ub); if (0.0 != obj) { getMIPWrapper()->colObj.at(res) = obj; } } else { res = getMIPWrapper()->addVar(obj, lb, ub, vType, id->str().c_str()); } } /// Test infeasibility if (lb > ub) { _status = SolverInstance::UNSAT; if (getMIPWrapper()->fVerbose) std::cerr << " VarDecl '" << *(it->e()) << "' seems infeasible: computed bounds [" << lb << ", " << ub << ']' << std::endl; } if (0.0 != obj) { dObjVarLB = lb; dObjVarUB = ub; getMIPWrapper()->output.nObjVarIndex = res; if (getMIPWrapper()->fVerbose) std::cerr << " MIP: objective variable index (0-based): " << res << std::endl; } _variableMap.insert(id, res); assert(res == _variableMap.get(id)); } } if (mip_wrap->fVerbose && mip_wrap->sLitValues.size()) std::cerr << " MIP_solverinstance: during Phase 1, " << mip_wrap->nLitVars << " literals with " << mip_wrap->sLitValues.size() << " values used." << std::endl; if (!getMIPWrapper()->fPhase1Over) getMIPWrapper()->addPhase1Vars(); if (mip_wrap->fVerbose) std::cerr << " MIP_solverinstance: adding constraints..." << std::flush; for (ConstraintIterator it = getEnv()->flat()->begin_constraints(); it != getEnv()->flat()->end_constraints(); ++it) { if (!it->removed()) { if (Call* c = it->e()->dyn_cast()) { _constraintRegistry.post(c); } } } if (mip_wrap->fVerbose) { std::cerr << " done, " << mip_wrap->getNRows() << " rows && " << mip_wrap->getNCols() << " columns in total."; if (mip_wrap->nIndicatorConstr) std::cerr << " " << mip_wrap->nIndicatorConstr << " indicator constraints." << std::endl; std::cerr << std::endl; if (mip_wrap->sLitValues.size()) std::cerr << " MIP_solverinstance: overall, " << mip_wrap->nLitVars << " literals with " << mip_wrap->sLitValues.size() << " values used." << std::endl; } processSearchAnnotations(solveItem->ann()); processWarmstartAnnotations(solveItem->ann()); } // processFlatZinc template Expression* MIP_solverinstance::getSolutionValue(Id* id) { id = id->decl()->id(); if (id->type().isvar()) { MIP_solver::Variable var = exprToVar(id); double val = getMIPWrapper()->getValues()[var]; switch (id->type().bt()) { case Type::BT_INT: return IntLit::a(round_to_longlong(val)); case Type::BT_FLOAT: return FloatLit::a(val); case Type::BT_BOOL: return new BoolLit(Location(), round_to_longlong(val) != 0); default: return NULL; } } else { return id->decl()->e(); } } template void MIP_solverinstance::genCuts(const MIP_wrapper::Output& slvOut, MIP_wrapper::CutInput& cutsIn, bool fMIPSol) { for (auto& pCG : cutGenerators) { if (!fMIPSol || pCG->getMask() & MIP_wrapper::MaskConsType_Lazy) pCG->generate(slvOut, cutsIn); } /// Select some most violated? TODO } template void MIP_solverinstance::printStatisticsLine(bool fLegend) { // auto nn = std::chrono::system_clock::now(); // auto n_c = std::chrono::system_clock::to_time_t( nn ); { std::ios oldState(nullptr); oldState.copyfmt(_log); _log.precision(12); _log << " % MIP Status: " << mip_wrap->getStatusName() << std::endl; if (fLegend) _log << " % obj, bound, time wall/CPU, nodes (left): "; _log << mip_wrap->getObjValue() << ", "; _log << mip_wrap->getBestBound() << ", "; _log.setf(std::ios::fixed); _log.precision(1); _log << mip_wrap->getWallTimeElapsed() << "/"; _log << mip_wrap->getCPUTime() << ", "; _log << mip_wrap->getNNodes(); if (mip_wrap->getNOpen()) _log << " ( " << mip_wrap->getNOpen() << " )"; // _log << " " << std::ctime( &n_c ); // ctime already adds EOL. os << endl; _log << std::endl; _log.copyfmt(oldState); } } template void MIP_solverinstance::printStatistics(bool fLegend) { // auto nn = std::chrono::system_clock::now(); // auto n_c = std::chrono::system_clock::to_time_t( nn ); { EnvI& env = getEnv()->envi(); std::ios oldState(nullptr); oldState.copyfmt(env.outstream); env.outstream.precision(12); env.outstream << "%%%mzn-stat objective=" << mip_wrap->getObjValue() << std::endl; ; env.outstream << "%%%mzn-stat objectiveBound=" << mip_wrap->getBestBound() << std::endl; ; env.outstream << "%%%mzn-stat nodes=" << mip_wrap->getNNodes() << std::endl; ; if (mip_wrap->getNOpen()) env.outstream << "%%%mzn-stat openNodes=" << mip_wrap->getNOpen() << std::endl; ; env.outstream.setf(std::ios::fixed); env.outstream.precision(4); env.outstream << "%%%mzn-stat solveTime=" << mip_wrap->getWallTimeElapsed() << std::endl; ; env.outstream.copyfmt(oldState); env.outstream << "%%%mzn-stat-end" << std::endl; } } template void HandleSolutionCallback(const MIP_wrapper::Output& out, void* pp) { // multi-threading? TODO MIP_solverinstance* pSI = static_cast*>(pp); assert(pSI); /// Not for -a: // if (fabs(pSI->lastIncumbent - out.objVal) > 1e-12*(1.0 + fabs(out.objVal))) { pSI->lastIncumbent = out.objVal; try { /// Sometimes the intermediate output is wrong, especially in SCIP pSI->printSolution(); // The solution in [out] is not used TODO } catch (const Exception& e) { std::cerr << std::endl; std::cerr << " Error when evaluating an intermediate solution: " << e.what() << ": " << e.msg() << std::endl; } catch (const std::exception& e) { std::cerr << std::endl; std::cerr << " Error when evaluating an intermediate solution: " << e.what() << std::endl; } catch (...) { std::cerr << std::endl; std::cerr << " Error when evaluating an intermediate solution: " << " UNKNOWN EXCEPTION." << std::endl; } // } } template void HandleCutCallback(const MIP_wrapper::Output& out, MIP_wrapper::CutInput& in, void* pp, bool fMIPSol) { // multi-threading? TODO MIP_solverinstance* pSI = static_cast*>(pp); assert(pSI); assert(&out); assert(&in); pSI->genCuts(out, in, fMIPSol); } template SolverInstance::Status MIP_solverinstance::solve(void) { SolveI* solveItem = getEnv()->flat()->solveItem(); int nProbType = 0; if (solveItem->st() != SolveI::SolveType::ST_SAT) { if (solveItem->st() == SolveI::SolveType::ST_MAX) { getMIPWrapper()->setObjSense(1); getMIPWrapper()->setProbType(1); nProbType = 1; if (mip_wrap->fVerbose) std::cerr << " MIP_solverinstance: this is a MAXimization problem." << std::endl; } else { getMIPWrapper()->setObjSense(-1); getMIPWrapper()->setProbType(-1); nProbType = -1; if (mip_wrap->fVerbose) std::cerr << " MIP_solverinstance: this is a MINimization problem." << std::endl; } if (mip_wrap->fVerbose) { std::cerr << " MIP_solverinstance: bounds for the objective function: " << dObjVarLB << ", " << dObjVarUB << std::endl; } } else { getMIPWrapper()->setProbType(0); if (mip_wrap->fVerbose) std::cerr << " MIP_solverinstance: this is a SATisfiability problem." << std::endl; } lastIncumbent = 1e200; // for callbacks MIP_wrapper::Status sw; if (SolverInstance::UNSAT == _status) // already deduced - exit now return _status; if (getMIPWrapper()->getNCols()) { // If any variables, we need to run solver just to get values? getMIPWrapper()->provideSolutionCallback(HandleSolutionCallback, this); if (cutGenerators.size()) // only then, can modify presolve getMIPWrapper()->provideCutCallback(HandleCutCallback, this); ////////////// clean up envi ///////////////// { /// Removing for now - need access to output variables TODO // cleanupForNonincrementalSolving(); if (GC::locked() && mip_wrap->fVerbose) std::cerr << "WARNING: GC is locked before SolverInstance::solve()! Wasting memory." << std::endl; // GCLock lock; GC::trigger(); } getMIPWrapper()->solve(); // printStatistics(cout, 1); MznSolver does this (if it wants) sw = getMIPWrapper()->getStatus(); } else { if (mip_wrap->fVerbose) std::cerr << " MIP_solverinstance: no constraints - skipping actual solution phase." << std::endl; sw = MIP_wrapper::Status::OPT; printSolution(); } SolverInstance::Status s = SolverInstance::UNKNOWN; switch (sw) { case MIP_wrapper::Status::OPT: if (0 != nProbType) { s = SolverInstance::OPT; } else { s = SolverInstance::SAT; // For SAT problems, just say SAT unless we know it's complete } break; case MIP_wrapper::Status::SAT: s = SolverInstance::SAT; break; case MIP_wrapper::Status::UNSAT: s = SolverInstance::UNSAT; break; case MIP_wrapper::Status::UNBND: s = SolverInstance::UNBND; break; case MIP_wrapper::Status::UNSATorUNBND: s = SolverInstance::UNSATorUNBND; break; case MIP_wrapper::Status::UNKNOWN: s = SolverInstance::UNKNOWN; break; default: s = SolverInstance::ERROR; } return s; } namespace SCIPConstraints { bool CheckAnnUserCut(const Call* call); bool CheckAnnLazyConstraint(const Call* call); int GetMaskConsType(const Call* call); /// Create constraint name /// Input: a prefix, a counter, and the original call. /// If the call has a path annotation, that is used, /// otherwise pfx << cnt. inline std::string makeConstrName(const char* pfx, int cnt, const Expression* cOrig = nullptr) { Call* mznp; if (nullptr != cOrig && (mznp = cOrig->ann().getCall(constants().ann.mzn_path))) { assert(1 == mznp->n_args()); auto strp = mznp->arg(0)->dyn_cast(); assert(strp); return strp->v().str().substr(0, 255); // Gurobi 8.1 has <=255 characters } std::ostringstream ss; ss << pfx << cnt; return ss.str(); } /// Gurobi 8.1.0 complains about duplicates, CPLEX 12.8.0 just ignores repeats /// An example for duplicated indices was on 72a9b64f with two floats equated template void removeDuplicates(std::vector& rmi, std::vector& rmv) { std::unordered_map linExp; for (int i = rmi.size(); i--;) linExp[rmi[i]] += rmv[i]; if (rmi.size() == linExp.size()) return; rmi.resize(linExp.size()); rmv.resize(linExp.size()); int i = 0; for (const auto& iv : linExp) { rmi[i] = iv.first; rmv[i] = iv.second; ++i; } } template void p_lin(SolverInstanceBase& si, const Call* call, MIP_wrapper::LinConType lt) { MIP_solverinstance& gi = dynamic_cast&>(si); Env& _env = gi.env(); // ArrayLit* al = eval_array_lit(_env.envi(), args[0]); // int nvars = al->v().size(); std::vector coefs; // gi.exprToArray(args[0], coefs); std::vector::VarId> vars; // gi.exprToVarArray(args[1], vars); IntVal ires; FloatVal fres; double rhs; if (call->arg(2)->type().isint()) { ires = eval_int(_env.envi(), call->arg(2)); rhs = static_cast(ires.toInt()); } else if (call->arg(2)->type().isfloat()) { fres = eval_float(_env.envi(), call->arg(2)); rhs = fres.toDouble(); } else { throw InternalError("p_lin: rhs unknown type"); } /// Process coefs & vars together to eliminate literals (problem with Gurobi's updatemodel()'s) ArrayLit* alC = eval_array_lit(_env.envi(), call->arg(0)); coefs.reserve(alC->size()); ArrayLit* alV = eval_array_lit(_env.envi(), call->arg(1)); vars.reserve(alV->size()); for (unsigned int i = 0; i < alV->size(); i++) { const double dCoef = gi.exprToConst((*alC)[i]); if (Id* ident = (*alV)[i]->dyn_cast()) { coefs.push_back(dCoef); vars.push_back(gi.exprToVar(ident)); } else rhs -= dCoef * gi.exprToConst((*alV)[i]); } assert(coefs.size() == vars.size()); /// Check feas-ty if (coefs.empty()) { if ((MIP_wrapper::LinConType::EQ == lt && 1e-5 < fabs(rhs)) || (MIP_wrapper::LinConType::LQ == lt && -1e-5 > (rhs)) || (MIP_wrapper::LinConType::GQ == lt && 1e-5 < (rhs))) { si._status = SolverInstance::UNSAT; if (gi.getMIPWrapper()->fVerbose) std::cerr << " Constraint '" << *call << "' seems infeasible: simplified to 0 (rel) " << rhs << std::endl; } } else { removeDuplicates(vars, coefs); // See if the solver adds indexation itself: no. gi.getMIPWrapper()->addRow(static_cast(coefs.size()), &vars[0], &coefs[0], lt, rhs, GetMaskConsType(call), makeConstrName("p_lin_", (gi.getMIPWrapper()->nAddedRows++), call)); } } template void p_int_lin_le(SolverInstanceBase& si, const Call* call) { p_lin(si, call, MIP_wrapper::LQ); } template void p_int_lin_eq(SolverInstanceBase& si, const Call* call) { p_lin(si, call, MIP_wrapper::EQ); } template void p_float_lin_le(SolverInstanceBase& si, const Call* call) { p_lin(si, call, MIP_wrapper::LQ); } template void p_float_lin_eq(SolverInstanceBase& si, const Call* call) { p_lin(si, call, MIP_wrapper::EQ); } // The non-_lin constraints happen in a failed model || in a non-optimized one: template void p_non_lin(SolverInstanceBase& si, const Call* call, MIP_wrapper::LinConType nCmp) { MIP_solverinstance& gi = dynamic_cast&>(si); std::vector coefs; std::vector vars; double rhs = 0.0; if (call->arg(0)->isa()) { coefs.push_back(1.0); vars.push_back(gi.exprToVar(call->arg(0))); } else rhs -= gi.exprToConst(call->arg(0)); if (call->arg(1)->isa()) { coefs.push_back(-1.0); vars.push_back(gi.exprToVar(call->arg(1))); } else rhs += gi.exprToConst(call->arg(1)); /// Check feas-ty if (coefs.empty()) { if ((MIP_wrapper::LinConType::EQ == nCmp && 1e-5 < fabs(rhs)) || (MIP_wrapper::LinConType::LQ == nCmp && -1e-5 > (rhs)) || (MIP_wrapper::LinConType::GQ == nCmp && 1e-5 < (rhs))) { si._status = SolverInstance::UNSAT; if (gi.getMIPWrapper()->fVerbose) std::cerr << " Constraint '" << *call << "' seems infeasible: simplified to 0 (rel) " << rhs << std::endl; } } else { removeDuplicates(vars, coefs); gi.getMIPWrapper()->addRow(static_cast(vars.size()), &vars[0], &coefs[0], nCmp, rhs, GetMaskConsType(call), makeConstrName("p_eq_", (gi.getMIPWrapper()->nAddedRows++), call)); } } template void p_eq(SolverInstanceBase& si, const Call* call) { p_non_lin(si, call, MIP_wrapper::EQ); } template void p_le(SolverInstanceBase& si, const Call* call) { p_non_lin(si, call, MIP_wrapper::LQ); } /// var1<=0 if var2==0 template void p_indicator_le0_if0(SolverInstanceBase& si, const Call* call) { MIP_solverinstance& gi = dynamic_cast&>(si); /// Looking at the bounded variable and the flag bool f1const = 0, f2const = 0; double val1, val2; MIP_solver::Variable var1, var2; if (call->arg(0)->isa()) { var1 = gi.exprToVar(call->arg(0)); } else { f1const = 1; val1 = gi.exprToConst(call->arg(0)); } if (call->arg(1)->isa()) { var2 = gi.exprToVar(call->arg(1)); } else { f2const = 1; val2 = gi.exprToConst(call->arg(1)); } /// Check feas-ty. 1e-6 ????????????? TODO if (f1const && f2const) { if (val1 > 1e-6 && val2 < 1e-6) { si._status = SolverInstance::UNSAT; if (gi.getMIPWrapper()->fVerbose) std::cerr << " Constraint '" << *call << "' seems infeasible: " << val2 << "==0 -> " << val1 << "<=0" << std::endl; } } else if (f1const) { if (val1 > 1e-6) // so var2==1 gi.getMIPWrapper()->setVarBounds(var2, 1.0, 1.0); } else if (f2const) { if (val2 < 1e-6) // so var1<=0 gi.getMIPWrapper()->setVarUB(var1, 0.0); } else { double coef = 1.0; gi.getMIPWrapper()->addIndicatorConstraint( var2, 0, 1, &var1, &coef, MIP_wrapper::LinConType::LQ, 0.0, makeConstrName("p_ind_", (gi.getMIPWrapper()->nAddedRows++), call)); ++gi.getMIPWrapper()->nIndicatorConstr; } } /// var1==var2 if var3==1 template void p_indicator_eq_if1(SolverInstanceBase& si, const Call* call) { MIP_solverinstance& gi = dynamic_cast&>(si); std::vector coefs; std::vector vars; double rhs = 0.0; /// Looking at the bounded variables and the flag bool f1const = 0, f2const = 0, fBconst = 0; double val1, val2, valB; MIP_solver::Variable var1, var2, varB; if (call->arg(0)->isa()) { var1 = gi.exprToVar(call->arg(0)); coefs.push_back(1.0); vars.push_back(var1); } else { f1const = 1; val1 = gi.exprToConst(call->arg(0)); rhs -= val1; } if (call->arg(1)->isa()) { var2 = gi.exprToVar(call->arg(1)); coefs.push_back(-1.0); vars.push_back(var2); } else { f2const = 1; val2 = gi.exprToConst(call->arg(1)); rhs += val2; } if (call->arg(2)->isa()) { varB = gi.exprToVar(call->arg(2)); } else { fBconst = 1; valB = gi.exprToConst(call->arg(2)); } /// Check feas-ty. 1e-6 ????????????? TODO if (f1const && f2const && fBconst) { if (fabs(val1 - val2) > 1e-6 && val2 > 0.999999) { si._status = SolverInstance::UNSAT; if (gi.getMIPWrapper()->fVerbose) std::cerr << " Constraint '" << *call << "' seems infeasible: " << valB << "==0 -> " << val1 << "==" << val2 << std::endl; } } else if (f1const && f2const) { if (fabs(val1 - val2) > 1e-6) // so varB=0 gi.getMIPWrapper()->setVarBounds(varB, 0.0, 0.0); } else if (fBconst) { if (val2 > 0.999999) { // so var1<=0 removeDuplicates(vars, coefs); gi.getMIPWrapper()->addRow(static_cast(vars.size()), &vars[0], &coefs[0], MIP_wrapper::LinConType::EQ, rhs, MIP_wrapper::MaskConsType_Normal, makeConstrName("p_eq_", (gi.getMIPWrapper()->nAddedRows++), call)); } } else { std::ostringstream ss; ss << "p_ind_" << (gi.getMIPWrapper()->nAddedRows++); gi.getMIPWrapper()->addIndicatorConstraint( varB, 1, static_cast(coefs.size()), vars.data(), coefs.data(), MIP_wrapper::LinConType::EQ, rhs, makeConstrName("p_ind_", (gi.getMIPWrapper()->nAddedRows++), call)); ++gi.getMIPWrapper()->nIndicatorConstr; } } /// Cumulative template void p_cumulative(SolverInstanceBase& si, const Call* call) { MIP_solverinstance& gi = dynamic_cast&>(si); std::unique_ptr pCG(new SECCutGen(gi.getMIPWrapper())); assert(call->n_args() == 4); std::vector startTimes; gi.exprToVarArray(call->arg(0), startTimes); std::vector durations, demands; gi.exprToArray(call->arg(1), durations); gi.exprToArray(call->arg(2), demands); double b = gi.exprToConst(call->arg(3)); gi.getMIPWrapper()->addCumulative( startTimes.size(), startTimes.data(), durations.data(), demands.data(), b, makeConstrName("p_cumulative_", (gi.getMIPWrapper()->nAddedRows++), call)); } /// The XBZ cut generator template void p_XBZ_cutgen(SolverInstanceBase& si, const Call* call) { MIP_solverinstance& gi = dynamic_cast&>(si); // auto pCG = make_unique(); std::unique_ptr pCG(new XBZCutGen(gi.getMIPWrapper())); assert(call->n_args() == 3); gi.exprToVarArray(call->arg(0), pCG->varX); gi.exprToVarArray(call->arg(1), pCG->varB); assert(pCG->varX.size() == pCG->varB.size()); pCG->varZ = gi.exprToVar(call->arg(2)); // cout << " NEXT_CUTGEN" << endl; // pCG->print( cout ); gi.registerCutGenerator(move(pCG)); } /// Initialize the SEC cut generator template void p_SEC_cutgen(SolverInstanceBase& si, const Call* call) { MIP_solverinstance& gi = dynamic_cast&>(si); std::unique_ptr pCG(new SECCutGen(gi.getMIPWrapper())); assert(call->n_args() == 1); gi.exprToVarArray(call->arg(0), pCG->varXij); // WHAT ABOUT CONSTANTS? const double dN = sqrt(pCG->varXij.size()); MZN_ASSERT_HARD(fabs(dN - round(dN)) < 1e-6); // should be a square matrix pCG->nN = round(dN); const auto sVld = pCG->validate(); MZN_ASSERT_HARD_MSG(sVld.empty(), "ERROR(s): " << sVld); // cout << " NEXT_CUTGEN" << endl; // pCG->print( cout ); gi.registerCutGenerator(move(pCG)); } /// SCIP's bound disj template void p_bounds_disj(SolverInstanceBase& si, const Call* call) { MIP_solverinstance& gi = dynamic_cast&>(si); assert(6 == call->n_args()); std::vector fUB, fUBF, bnd, bndF; std::vector vars, varsF; gi.exprToArray(call->arg(0), fUB); gi.exprToArray(call->arg(3), fUBF); gi.exprToArray(call->arg(1), bnd); gi.exprToArray(call->arg(4), bndF); gi.exprToVarArray(call->arg(2), vars); gi.exprToVarArray(call->arg(5), varsF); double coef = 1.0; gi.getMIPWrapper()->addBoundsDisj( fUB.size(), fUB.data(), bnd.data(), vars.data(), fUBF.size(), fUBF.data(), bndF.data(), varsF.data(), makeConstrName("p_bounds_disj_", (gi.getMIPWrapper()->nAddedRows++), call)); } } // namespace SCIPConstraints template void MIP_solverinstance::registerConstraints() { GCLock lock; _constraintRegistry.add("int2float", SCIPConstraints::p_eq); _constraintRegistry.add("bool_eq", SCIPConstraints::p_eq); // for inconsistency reported in fzn _constraintRegistry.add("int_eq", SCIPConstraints::p_eq); _constraintRegistry.add("int_le", SCIPConstraints::p_le); _constraintRegistry.add("int_lin_eq", SCIPConstraints::p_int_lin_eq); _constraintRegistry.add("int_lin_le", SCIPConstraints::p_int_lin_le); // _constraintRegistry.add("int_plus", SCIPConstraints::p_plus); // _constraintRegistry.add("bool2int", SCIPConstraints::p_eq); _constraintRegistry.add("float_eq", SCIPConstraints::p_eq); _constraintRegistry.add("float_le", SCIPConstraints::p_le); _constraintRegistry.add("float_lin_eq", SCIPConstraints::p_float_lin_eq); _constraintRegistry.add("float_lin_le", SCIPConstraints::p_float_lin_le); // _constraintRegistry.add("float_plus", SCIPConstraints::p_plus); /// Indicators, if supported by the solver _constraintRegistry.add("aux_int_le_zero_if_0__IND", SCIPConstraints::p_indicator_le0_if0); _constraintRegistry.add("aux_float_le_zero_if_0__IND", SCIPConstraints::p_indicator_le0_if0); _constraintRegistry.add("aux_float_eq_if_1__IND", SCIPConstraints::p_indicator_eq_if1); _constraintRegistry.add("fzn_cumulative", SCIPConstraints::p_cumulative); /// XBZ cut generator _constraintRegistry.add("array_var_float_element__XBZ_lb__cutgen", SCIPConstraints::p_XBZ_cutgen); _constraintRegistry.add("circuit__SECcuts", SCIPConstraints::p_SEC_cutgen); _constraintRegistry.add("bounds_disj", SCIPConstraints::p_bounds_disj); } } // namespace MiniZinc