predicate fzn_mdd_nondet_reif(array[int] of var int: x, % variables constrained by MDD int: N, % number of nodes root is node 1 array[int] of int: level, % level of each node root is level 1, T is level length(x)+1 int: E, % number of edges array[int] of int: from, % edge leaving node 1..N array[int] of set of int: label, % value of variable array[int] of int: to, % edge entering node 0..N where 0 = T node var bool: b % reification value ) = let { set of int: NODE = 1..N; set of int: EDGE = 1..E; int: L = length(x); array[0..N] of var bool: bn; array[EDGE] of var bool: be; set of int: D = dom_array(x); } in bn[0] /\ % true node is true (b <-> bn[1]) /\ % root gives truth value % T1 each node except the root enforces an outgoing edge forall(n in NODE)(bn[n] -> exists(e in EDGE where from[e] = n)(be[e])) /\ % T23 each edge enforces its endpoints forall(e in EDGE)((be[e] -> bn[from[e]]) /\ (be[e] -> bn[to[e]])) /\ % T4 each edge enforces its label forall(e in EDGE)(be[e] -> x[level[from[e]]] in label[e]) /\ % P2 each node except the root enforces an incoming edge exists(e in EDGE where to[e] = 0)(be[e]) /\ forall(n in 2..N)(bn[n] -> exists(e in EDGE where to[e] = n)(be[e])) /\ % P3 each label has a support forall(i in 1..L, d in D) (x[i] = d -> exists(e in EDGE where level[from[e]] = i /\ d in label[e])(be[e]));