/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Christian Schulte * * Copyright: * Christian Schulte, 2002 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include namespace Gecode { namespace Int { namespace Linear { template inline void estimate(Term* t, int n, int c, int& l, int &u) { long long int min = c; long long int max = c; for (int i=0; i 0) { min += a*t[i].x.min(); max += a*t[i].x.max(); } else { max += a*t[i].x.min(); min += a*t[i].x.max(); } } if (min < Limits::min) min = Limits::min; if (min > Limits::max) min = Limits::max; l = static_cast(min); if (max < Limits::min) max = Limits::min; if (max > Limits::max) max = Limits::max; u = static_cast(max); } /// Sort linear terms by view template class TermByView { public: forceinline bool operator ()(const Term& a, const Term& b) { return a.x < b.x; } }; /// Sort linear terms by coefficient size and original position template class TermBySizePos { public: forceinline bool operator ()(const Term& a, const Term& b) { assert((a.a > 0) && (b.a > 0)); return (a.a > b.a) || ((a.a == b.a) && (a.p < b.p)); } }; /// Compute the greatest common divisor of \a a and \a b inline int gcd(int a, int b) { if (b > a) std::swap(a,b); while (b > 0) { int t = b; b = a % b; a = t; } return a; } /** \brief Normalize linear integer constraints * * \param t array of linear terms * \param n size of array * \param t_p array of linear terms over integers with positive coefficients * \param n_p number of postive terms * \param t_n array of linear terms over integers with negative coefficients * \param n_n number of negative terms * \param gcd greatest common divisor of all coefficients * * Replaces all negative coefficients by positive coefficients. * * - Variables occuring multiply in the term array are replaced * by a single occurence: for example, \f$ax+bx\f$ becomes * \f$(a+b)x\f$. * - If in the above simplification the value for \f$(a+b)\f$ (or for * \f$a\f$ and \f$b\f$) exceeds the limits for integers as * defined in Limits::Int, an exception of type * Int::NumericalOverflow is thrown. * - Divides all coefficients by their greatest common divisor and * returns the gcd \a g * * Returns true, if all coefficients are unit coefficients */ template inline bool normalize(Term* t, int &n, Term* &t_p, int &n_p, Term* &t_n, int &n_n, int& g) { // Number terms by position for (int i=0; i tl; Support::quicksort,TermByView>(t,n,tl); // Join adjacent variables int i = 0; int j = 0; while (i < n) { Limits::check(t[i].a,"Int::linear"); long long int a = t[i].a; int p = t[i].p; View x = t[i].x; while ((++i < n) && (t[i].x == x)) { a += t[i].a; p = std::min(p,t[i].p); Limits::check(a,"Int::linear"); } if (a != 0) { t[j].a = static_cast(a); t[j].x = x; t[j].p = p; j++; } } n = j; } /* * Partition into positive/negative coefficents * */ if (n > 0) { int i = 0; int j = n-1; while (true) { while ((t[j].a < 0) && (--j >= 0)) ; while ((t[i].a > 0) && (++i < n)) ; if (j <= i) break; std::swap(t[i],t[j]); } t_p = t; n_p = i; t_n = t+n_p; n_n = n-n_p; } else { t_p = t; n_p = 0; t_n = t; n_n = 0; } /* * Make all coefficients positive * */ for (int i=0; i tl; Support::quicksort,TermBySizePos>(t_p,n_p,tl); Support::quicksort,TermBySizePos>(t_n,n_n,tl); } /* * Compute greatest common divisor * */ if ((n > 0) && (g > 0)) { g = t[0].a; for (int i=1; (g > 1) && (i < n); i++) g = gcd(t[i].a,g); if (g > 1) for (int i=n; i--; ) t[i].a /= g; } else { g = 1; } /* * Test for unit coefficients only * */ for (int i=0; i