predicate fzn_cost_mdd(array[int] of var int: x, % variables constrained by MDD int: N, % number of nodes root is node 1 array[int] of int: level, % level of each node root is level 1, T is level length(x)+1 int: E, % number of edges array[int] of int: from, % edge leaving node 1..N array[int] of set of int: label, % values of variable on edge array[int] of int: cost, % cost of using edge array[int] of int: to, % edge entering node 0..N where 0 = T node var int: totalcost % total cost of path ) = let { set of int: NODE = 1..N; set of int: EDGE = 1..E; int: L = length(x); array[1..L] of int: maxlevelcost = [ max(e in EDGE where level[from[e]] = l)(cost[e]) | l in 1..L]; array[1..L] of int: minlevelcost = [ min([0] ++ [ cost[e] | e in EDGE where level[from[e]] = l /\ cost[e] < 0])| l in 1..L] ; int: maxcost = sum(maxlevelcost); set of int: COST = sum(minlevelcost)..L*(maxcost+1); array[0..N] of var bool: bn; array[EDGE] of var bool: be; array[0..N] of var COST: ln; % distance from T array[0..N] of var COST: un; % distance from root } in bn[0] /\ % true node is true bn[1] /\ % root must hold % T1 each node except the root enforces an outgoing edge forall(n in NODE)(bn[n] -> exists(e in EDGE where from[e] = n)(be[e])) /\ % T23 each edge enforces its endpoints forall(e in EDGE)((be[e] -> bn[to[e]]) /\ (be[e] -> bn[to[e]])) /\ % T4 each edge enforces its label forall(e in EDGE)(be[e] -> x[level[from[e]]] in label[e]) /\ % P1 each node enforces its outgoing edges forall(e in EDGE)(bn[from[e]] /\ x[level[from[e]]] in label[e] -> be[e]) /\ % P2 each node except the root enforces an incoming edge exists(e in EDGE where to[e] = 0)(be[e]) /\ forall(n in 2..N)(bn[n] -> exists(e in EDGE where to[e] = n)(be[e])) /\ % P3 each label has a support forall(i in 1..L, d in dom(x[i])) (x[i] = d -> exists(e in EDGE where level[from[e]] = i /\ d in label[e])(be[e])) /\ ln[0] = 0 /\ un[1] = 0 /\ forall(n in NODE) (ln[n] = min(e in EDGE where from[e] = n)(ln[to[e]] + cost[e] + (not be[e])*(maxcost+1 - cost[e]))) /\ forall(n in 2..N) (un[n] = min(e in EDGE where to[e] = n)(un[from[e]] + cost[e] + (not be[e])*(maxcost+1 - cost[e]))) /\ forall(e in EDGE)(be[e] -> un[from[e]] + cost[e] + ln[to[e]] <= maxcost) /\ totalcost = ln[1];