/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Christian Schulte * * Copyright: * Christian Schulte, 2012 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ namespace Gecode { namespace Int { namespace Arithmetic { forceinline PowOps::PowOps(int n0) : n(n0) {} forceinline bool PowOps::even(int m) { return (m & 1) == 0; } forceinline bool PowOps::even(void) const { return even(n); } forceinline int PowOps::exp(void) const { return n; } forceinline void PowOps::exp(int m) { n=m; } template inline IntType PowOps::pow(IntType x) const { int m = n; IntType p = 1; do { if (even(m)) { x *= x; m >>= 1; } else { p *= x; m--; } } while (m > 0); return p; } inline int PowOps::tpow(int _x) const { int m = n; long long int p = 1; long long int x = _x; do { if (even(m)) { x *= x; m >>= 1; } else { p *= x; m--; } if (p > Limits::max) return Limits::max+1; if (p < Limits::min) return Limits::min-1; } while (m > 0); return static_cast(p); } forceinline bool PowOps::powgr(long long int r, int x) const { assert(r >= 0); int m = n; long long int y = r; long long int p = 1; do { if (even(m)) { y *= y; m >>= 1; if (y > x) return true; } else { p *= y; m--; if (p > x) return true; } } while (m > 0); assert(y <= x); return false; } inline int PowOps::fnroot(int x) const { if (x < 2) return x; /* * We look for l such that: l^n <= x < (l+1)^n */ long long int l = 1; long long int u = x; do { long long int m = (l + u) >> 1; if (powgr(m,x)) u=m; else l=m; } while (l+1 < u); assert((pow(l) <= x) && (x < pow(l+1))); return static_cast(l); } forceinline bool PowOps::powle(long long int r, int x) const { assert(r >= 0); int m = n; long long int y = r; long long int p = 1; do { if (even(m)) { y *= y; m >>= 1; if (y >= x) return false; } else { p *= y; m--; if (p >= x) return false; } } while (m > 0); assert(y < x); return true; } inline int PowOps::cnroot(int x) const { if (x < 2) return x; /* * We look for u such that: (u-1)^n < x <= u^n */ long long int l = 1; long long int u = x; do { long long int m = (l + u) >> 1; if (powle(m,x)) l=m; else u=m; } while (l+1 < u); assert((pow(u-1) < x) && (x <= pow(u))); return static_cast(u); } forceinline bool SqrOps::even(void) const { return true; } forceinline int SqrOps::exp(void) const { return 2; } forceinline void SqrOps::exp(int) { GECODE_NEVER; } template inline IntType SqrOps::pow(IntType x) const { return x * x; } inline int SqrOps::tpow(int _x) const { long long int x = _x; if (x*x > Limits::max) return Limits::max+1; if (x*x < Limits::min) return Limits::min-1; return static_cast(x*x); } inline int SqrOps::fnroot(int x) const { if (x < 2) return x; /* * We look for l such that: l^2 <= x < (l+1)^2 */ long long int l = 1; long long int u = x; do { long long int m = (l + u) >> 1; if (m*m > x) u=m; else l=m; } while (l+1 < u); assert((pow(l) <= x) && (x < pow(l+1))); return static_cast(l); } inline int SqrOps::cnroot(int x) const { if (x < 2) return x; /* * We look for u such that: (u-1)^n < x <= u^n */ long long int l = 1; long long int u = x; do { long long int m = (l + u) >> 1; if (m*m < x) l=m; else u=m; } while (l+1 < u); assert((pow(u-1) < x) && (x <= pow(u))); return static_cast(u); } }}} // STATISTICS: int-other