/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Samuel Gagnon * * Copyright: * Samuel Gagnon, 2018 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #ifdef GECODE_HAS_CBS #include #include namespace Gecode { namespace Int { namespace Distinct { /** * \brief Minc and Brégman factors * * Factors precomputed for every value in the domain of x. Thoses factors are * used to compute the Minc and Brégman upper bound for the permanent in * counting base search */ const int MAX_MINC_FACTORS = 400; extern const double mincFactors[MAX_MINC_FACTORS]; forceinline double getMincFactor(int domSize) { return mincFactors[domSize - 1]; } /** * \brief Liang and Bai factors * * Factors precomputed for every index and domain size in x. Thoses factors * are used to compute the Liang and Bai upper bound for the permanent in * counting base search */ const int WIDTH_LIANG_BAI_FACTORS = 400; extern const double liangBaiFactors[WIDTH_LIANG_BAI_FACTORS * WIDTH_LIANG_BAI_FACTORS]; forceinline double getLiangBaiFactor(int index, int domSize) { return liangBaiFactors[index*WIDTH_LIANG_BAI_FACTORS + domSize - 1]; } /** * \brief Mapping of each value to its permanent update * */ class ValToUpdate { private: /// Minimum value of the union of all variable domains in the propagator const int minVal; /// Minc and Brégman estimation update for each value double* mincUpdate; /// Liang and Bai estimation update for each value double* liangUpdate; public: template ValToUpdate(const ViewArray& x, int minDomVal, int maxDomVal, Region& r); /** * Gives the update we have to apply to the Minc and Brégman * estimation of the permanent if we fix a variable of cardinalty * \a varSize to the value \a val. */ double getMincUpdate(int val, unsigned int varSize) const; /** * Gives the update we have to apply to the Liang and Bai * estimation of the * permanent if we fix a variable of cardinalty \a varSize * to the value "val". */ double getLiangUpdate(int val, unsigned int idx, unsigned int varSize) const; }; template forceinline ValToUpdate::ValToUpdate(const ViewArray& x, int minDomVal, int maxDomVal, Region& r) : minVal(minDomVal) { unsigned int width = maxDomVal - minDomVal + 1; mincUpdate = r.alloc(width); std::fill(mincUpdate, mincUpdate + width, 1); liangUpdate = r.alloc(width); std::fill(liangUpdate, liangUpdate + width, 1); for (int i=0; i val(x[i]); val(); ++val) { int idx = val.val() - minVal; mincUpdate[idx] *= getMincFactor(s-1) / getMincFactor(s); liangUpdate[idx] *= getLiangBaiFactor(i, s-1) / getLiangBaiFactor(i, s); } } } forceinline double ValToUpdate::getMincUpdate(int val, unsigned int varSize) const { return mincUpdate[val-minVal] / getMincFactor(varSize-1); } forceinline double ValToUpdate::getLiangUpdate(int val, unsigned int idx, unsigned int varSize) const { return liangUpdate[val-minVal] / getLiangBaiFactor(idx, varSize-1); } template void cbsdistinct(Space&, unsigned int prop_id, const ViewArray& x, Propagator::SendMarginal send) { // Computation of Minc and Brégman and Liang and Bai upper bounds for // the permanent of the whole constraint struct UB { double minc; double liangBai; }; UB ub{1,1}; for (int i=0; i= MAX_MINC_FACTORS) || (s >= WIDTH_LIANG_BAI_FACTORS)) throw Gecode::Exception("Int::Distinct::cbsdistinct", "Variable cardinality too big for using counting-based" "search with distinct constraints"); ub.minc *= getMincFactor(s); ub.liangBai *= getLiangBaiFactor(i, s); } // Minimum and maximum value of the union of all variable domains int minVal = std::numeric_limits::max(); int maxVal = std::numeric_limits::min(); for (const auto& v : x) { if (v.assigned()) continue; minVal = std::min(v.min(), minVal); maxVal = std::max(v.max(), maxVal); } // For each possible value, we compute the update we have to apply to the // permanent of the whole constraint to get the new solution count Region r; ValToUpdate valToUpdate(x, minVal, maxVal, r); // Preallocated memory for holding solution counts for all values of a // variable during computation double* solCounts = r.alloc(maxVal - minVal + 1); for (int i=0; i val(x[i]); val(); ++val) { UB localUB = ub; int v = val.val(); unsigned int s = x[i].size(); // We update both upper bounds according to the assigned value, yielding // two new estimations for the upper bound localUB.minc *= valToUpdate.getMincUpdate(v, s); localUB.liangBai *= valToUpdate.getLiangUpdate(v, i, s); // We take the lower upper bound as our estimation for the permanent double lowerUB = std::min(localUB.minc, ::sqrt(localUB.liangBai)); solCounts[val.val() - minVal] = lowerUB; normalization += lowerUB; } // Because we approximate the permanent of each value for the variable, we // assign densities in a separate loop where we normalize solution densities. for (ViewValues val(x[i]); val(); ++val) { // In practice, send is going to be a function provided by a brancher. // Thus, the brancher will receive each computed solution densities via // this call. For more details, please see Section 4 of the dissertation // "Improvement and Integration of Counting-Based Search Heuristics in // Constraint Programming" by Samuel Gagnon. send(prop_id, x[i].id(), x[i].baseval(val.val()), solCounts[val.val() - minVal] / normalization); } } } template void cbssize(const ViewArray& x, Propagator::InDecision in, unsigned int& size, unsigned int& size_b) { size = 0; size_b = 0; for (const auto& v : x) { if (!v.assigned()) { size += v.size(); if (in(v.id())) size_b += v.size(); } } } }}} #endif // STATISTICS: int-prop