/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Christopher Mears * * Copyright: * Christopher Mears, 2012 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include namespace Gecode { namespace Int { namespace LDSB { std::pair findVar(int *indices, unsigned int n_values, unsigned int seq_size, int index) { unsigned int seq = 0; unsigned int pos = 0; for (unsigned int i=0U ; i(seq,pos); pos++; if (pos == seq_size) { pos = 0; seq++; } } return std::pair(-1,-1); } }}} namespace Gecode { using namespace Int::LDSB; SymmetryHandle VariableSymmetry(const IntVarArgs& vars) { ArgArray a(vars.size()); for (int i = 0 ; i < vars.size() ; i++) a[i] = vars[i].varimp(); return SymmetryHandle(new VariableSymmetryObject(a)); } SymmetryHandle VariableSymmetry(const BoolVarArgs& vars) { ArgArray a(vars.size()); for (int i = 0 ; i < vars.size() ; i++) a[i] = vars[i].varimp(); return SymmetryHandle(new VariableSymmetryObject(a)); } SymmetryHandle VariableSymmetry(const IntVarArgs& x, const IntArgs& indices) { IntVarArgs xs(indices.size()); for (int i = 0 ; i < indices.size() ; i++) xs[i] = x[indices[i]]; return VariableSymmetry(xs); } SymmetryHandle ValueSymmetry(const IntArgs& vs) { return SymmetryHandle(new ValueSymmetryObject(IntSet(vs))); } SymmetryHandle ValueSymmetry(const IntSet& vs) { return SymmetryHandle(new ValueSymmetryObject(vs)); } SymmetryHandle ValueSymmetry(IntVar x) { return ValueSymmetry(IntSet(x.min(), x.max())); } SymmetryHandle VariableSequenceSymmetry(const IntVarArgs& vars, int ss) { ArgArray a(vars.size()); for (int i = 0 ; i < vars.size() ; i++) a[i] = vars[i].varimp(); return SymmetryHandle(new VariableSequenceSymmetryObject(a, ss)); } SymmetryHandle VariableSequenceSymmetry(const BoolVarArgs& vars, int ss) { ArgArray a(vars.size()); for (int i = 0 ; i < vars.size() ; i++) a[i] = vars[i].varimp(); return SymmetryHandle(new VariableSequenceSymmetryObject(a, ss)); } SymmetryHandle ValueSequenceSymmetry(const IntArgs& vs, int ss) { return SymmetryHandle(new ValueSequenceSymmetryObject(vs, ss)); } SymmetryHandle values_reflect(int lower, int upper) { int n = (upper-lower+1)/2; IntArgs a(n*2); int i = lower; int j = upper; int k = 0; while (i < j) { a[k] = j; a[n+k] = i; i++; j--; k++; } return ValueSequenceSymmetry(a,n); } SymmetryHandle values_reflect(const IntVar& x) { return values_reflect(x.min(), x.max()); } } namespace Gecode { namespace Int { namespace LDSB { /// Map from variable implementation to index class VariableMap : public std::map {}; /* * The duplication in createIntSym/createBoolSym is undesirable, * and so is the use of dynamic_cast to tell the symmetries * apart. */ /// Create an integer symmetry implementation from a symmetry handle SymmetryImp* createIntSym(Space& home, const SymmetryHandle& s, VariableMap variableMap) { VariableSymmetryObject* varref = dynamic_cast(s.ref); ValueSymmetryObject* valref = dynamic_cast(s.ref); VariableSequenceSymmetryObject* varseqref = dynamic_cast(s.ref); ValueSequenceSymmetryObject* valseqref = dynamic_cast(s.ref); if (varref) { int n = varref->nxs; int* indices = home.alloc(n); for (int i = 0 ; i < n ; i++) { VariableMap::const_iterator index = variableMap.find(varref->xs[i]); if (index == variableMap.end()) throw LDSBUnbranchedVariable("VariableSymmetryObject::createInt"); indices[i] = index->second; } return new (home) VariableSymmetryImp(home, indices, n); } if (valref) { int n = valref->values.size(); int *vs = home.alloc(n); int i = 0; for (IntSetValues v(valref->values) ; v() ; ++v) { vs[i] = v.val(); i++; } return new (home) ValueSymmetryImp(home, vs, n); } if (varseqref) { int n = varseqref->nxs; int* indices = home.alloc(n); for (int i = 0 ; i < n ; i++) { VariableMap::const_iterator index = variableMap.find(varseqref->xs[i]); if (index == variableMap.end()) throw LDSBUnbranchedVariable("VariableSequenceSymmetryObject::createInt"); indices[i] = index->second; } return new (home) VariableSequenceSymmetryImp(home, indices, n, varseqref->seq_size); } if (valseqref) { unsigned int n = valseqref->values.size(); int *vs = home.alloc(n); for (unsigned int i = 0 ; i < n ; i++) vs[i] = valseqref->values[i]; return new (home) ValueSequenceSymmetryImp(home, vs, n, valseqref->seq_size); } GECODE_NEVER; return nullptr; } /// Create a boolean symmetry implementation from a symmetry handle SymmetryImp* createBoolSym(Space& home, const SymmetryHandle& s, VariableMap variableMap) { VariableSymmetryObject* varref = dynamic_cast(s.ref); ValueSymmetryObject* valref = dynamic_cast(s.ref); VariableSequenceSymmetryObject* varseqref = dynamic_cast(s.ref); ValueSequenceSymmetryObject* valseqref = dynamic_cast(s.ref); if (varref) { int n = varref->nxs; int* indices = home.alloc(n); for (int i = 0 ; i < n ; i++) { VariableMap::const_iterator index = variableMap.find(varref->xs[i]); if (index == variableMap.end()) throw LDSBUnbranchedVariable("VariableSymmetryObject::createBool"); indices[i] = index->second; } return new (home) VariableSymmetryImp(home, indices, n); } if (valref) { int n = valref->values.size(); int *vs = home.alloc(n); int i = 0; for (IntSetValues v(valref->values) ; v() ; ++v) { vs[i] = v.val(); i++; } return new (home) ValueSymmetryImp(home, vs, n); } if (varseqref) { int n = varseqref->nxs; int* indices = home.alloc(n); for (int i = 0 ; i < n ; i++) { VariableMap::const_iterator index = variableMap.find(varseqref->xs[i]); if (index == variableMap.end()) throw LDSBUnbranchedVariable("VariableSequenceSymmetryObject::createBool"); indices[i] = index->second; } return new (home) VariableSequenceSymmetryImp(home, indices, n, varseqref->seq_size); } if (valseqref) { unsigned int n = valseqref->values.size(); int *vs = home.alloc(n); for (unsigned int i = 0 ; i < n ; i++) vs[i] = valseqref->values[i]; return new (home) ValueSequenceSymmetryImp(home, vs, n, valseqref->seq_size); } GECODE_NEVER; return nullptr; } }}} namespace Gecode { using namespace Int::LDSB; void branch(Home home, const IntVarArgs& x, IntVarBranch vars, IntValBranch vals, const Symmetries& syms, IntBranchFilter bf, IntVarValPrint vvp) { using namespace Int; if (home.failed()) return; vars.expand(home,x); ViewArray xv(home,x); ViewSel* vs[1] = { Branch::viewsel(home,vars) }; switch (vals.select()) { case IntValBranch::SEL_SPLIT_MIN: case IntValBranch::SEL_SPLIT_MAX: case IntValBranch::SEL_RANGE_MIN: case IntValBranch::SEL_RANGE_MAX: case IntValBranch::SEL_VALUES_MIN: case IntValBranch::SEL_VALUES_MAX: throw LDSBBadValueSelection("Int::LDSB::branch"); break; case IntValBranch::SEL_VAL_COMMIT: if (vals.commit()) throw LDSBBadValueSelection("Int::LDSB::branch"); // If vals.commit() is valid, it means it will commit with // binary branching, which is OK for LDSB, so we // fall through default: // Construct mapping from each variable in the array to its index // in the array. VariableMap variableMap; for (int i = 0 ; i < x.size() ; i++) variableMap[x[i].varimp()] = i; // Convert the modelling-level Symmetries object into an array of // SymmetryImp objects. int n = syms.size(); SymmetryImp** array = static_cast(home).alloc* >(n); for (int i = 0 ; i < n ; i++) { array[i] = createIntSym(home, syms[i], variableMap); } postldsbbrancher (home,xv,vs,Branch::valselcommit(home,vals), array,n,bf,vvp); } } void branch(Home home, const IntVarArgs& x, TieBreak vars, IntValBranch vals, const Symmetries& syms, IntBranchFilter bf, IntVarValPrint vvp) { using namespace Int; if (home.failed()) return; vars.a.expand(home,x); if ((vars.a.select() == IntVarBranch::SEL_NONE) || (vars.a.select() == IntVarBranch::SEL_RND)) vars.b = INT_VAR_NONE(); vars.b.expand(home,x); if ((vars.b.select() == IntVarBranch::SEL_NONE) || (vars.b.select() == IntVarBranch::SEL_RND)) vars.c = INT_VAR_NONE(); vars.c.expand(home,x); if ((vars.c.select() == IntVarBranch::SEL_NONE) || (vars.c.select() == IntVarBranch::SEL_RND)) vars.d = INT_VAR_NONE(); vars.d.expand(home,x); if (vars.b.select() == IntVarBranch::SEL_NONE) { branch(home,x,vars.a,vals,syms,bf,vvp); } else { // Construct mapping from each variable in the array to its index // in the array. VariableMap variableMap; for (int i = 0 ; i < x.size() ; i++) variableMap[x[i].varimp()] = i; // Convert the modelling-level Symmetries object into an array of // SymmetryImp objects. int n = syms.size(); SymmetryImp** array = static_cast(home).alloc* >(n); for (int i = 0 ; i < n ; i++) { array[i] = createIntSym(home, syms[i], variableMap); } ViewArray xv(home,x); if (vars.c.select() == IntVarBranch::SEL_NONE) { ViewSel* vs[2] = { Branch::viewsel(home,vars.a),Branch::viewsel(home,vars.b) }; switch (vals.select()) { case IntValBranch::SEL_SPLIT_MIN: case IntValBranch::SEL_SPLIT_MAX: case IntValBranch::SEL_RANGE_MIN: case IntValBranch::SEL_RANGE_MAX: case IntValBranch::SEL_VALUES_MIN: case IntValBranch::SEL_VALUES_MAX: throw LDSBBadValueSelection("Int::LDSB::branch"); break; case IntValBranch::SEL_VAL_COMMIT: if (vals.commit()) throw LDSBBadValueSelection("Int::LDSB::branch"); // If vals.commit() is valid, it means it will commit with // binary branching, which is OK for LDSB, so we // fall through default: postldsbbrancher (home,xv,vs,Branch::valselcommit(home,vals), array,n,bf,vvp); } } else if (vars.d.select() == IntVarBranch::SEL_NONE) { ViewSel* vs[3] = { Branch::viewsel(home,vars.a),Branch::viewsel(home,vars.b), Branch::viewsel(home,vars.c) }; switch (vals.select()) { case IntValBranch::SEL_SPLIT_MIN: case IntValBranch::SEL_SPLIT_MAX: case IntValBranch::SEL_RANGE_MIN: case IntValBranch::SEL_RANGE_MAX: case IntValBranch::SEL_VALUES_MIN: case IntValBranch::SEL_VALUES_MAX: throw LDSBBadValueSelection("Int::LDSB::branch"); break; case IntValBranch::SEL_VAL_COMMIT: if (vals.commit()) throw LDSBBadValueSelection("Int::LDSB::branch"); // If vals.commit() is valid, it means it will commit with // binary branching, which is OK for LDSB, so we // fall through default: postldsbbrancher (home,xv,vs,Branch::valselcommit(home,vals), array,n,bf,vvp); } } else { ViewSel* vs[4] = { Branch::viewsel(home,vars.a),Branch::viewsel(home,vars.b), Branch::viewsel(home,vars.c),Branch::viewsel(home,vars.d) }; switch (vals.select()) { case IntValBranch::SEL_SPLIT_MIN: case IntValBranch::SEL_SPLIT_MAX: case IntValBranch::SEL_RANGE_MIN: case IntValBranch::SEL_RANGE_MAX: case IntValBranch::SEL_VALUES_MIN: case IntValBranch::SEL_VALUES_MAX: throw LDSBBadValueSelection("Int::LDSB::branch"); break; case IntValBranch::SEL_VAL_COMMIT: if (vals.commit()) throw LDSBBadValueSelection("Int::LDSB::branch"); // If vals.commit() is valid, it means it will commit with // binary branching, which is OK for LDSB, so we // fall through default: postldsbbrancher (home,xv,vs,Branch::valselcommit(home,vals), array,n,bf,vvp); } } } } void branch(Home home, const BoolVarArgs& x, BoolVarBranch vars, BoolValBranch vals, const Symmetries& syms, BoolBranchFilter bf, BoolVarValPrint vvp) { using namespace Int; if (home.failed()) return; vars.expand(home,x); ViewArray xv(home,x); ViewSel* vs[1] = { Branch::viewsel(home,vars) }; // Construct mapping from each variable in the array to its index // in the array. VariableMap variableMap; for (int i = 0 ; i < x.size() ; i++) variableMap[x[i].varimp()] = i; // Convert the modelling-level Symmetries object into an array of // SymmetryImp objects. int n = syms.size(); SymmetryImp** array = static_cast(home).alloc* >(n); for (int i = 0 ; i < n ; i++) { array[i] = createBoolSym(home, syms[i], variableMap); } // Technically these "bad" value selection could in fact work with // LDSB, because they degenerate to binary splitting for // Booleans. Nonetheless, we explicitly forbid them for // consistency with the integer version. switch (vals.select()) { case BoolValBranch::SEL_VAL_COMMIT: if (vals.commit()) throw LDSBBadValueSelection("Int::LDSB::branch"); // If vals.commit() is valid, it means it will commit with // binary branching, which is OK for LDSB, so we // fall through default: postldsbbrancher (home,xv,vs,Branch::valselcommit(home,vals),array,n,bf,vvp); } } void branch(Home home, const BoolVarArgs& x, TieBreak vars, BoolValBranch vals, const Symmetries& syms, BoolBranchFilter bf, BoolVarValPrint vvp) { using namespace Int; if (home.failed()) return; vars.a.expand(home,x); if ((vars.a.select() == BoolVarBranch::SEL_NONE) || (vars.a.select() == BoolVarBranch::SEL_RND)) vars.b = BOOL_VAR_NONE(); vars.b.expand(home,x); if ((vars.b.select() == BoolVarBranch::SEL_NONE) || (vars.b.select() == BoolVarBranch::SEL_RND)) vars.c = BOOL_VAR_NONE(); vars.c.expand(home,x); if ((vars.c.select() == BoolVarBranch::SEL_NONE) || (vars.c.select() == BoolVarBranch::SEL_RND)) vars.d = BOOL_VAR_NONE(); vars.d.expand(home,x); if (vars.b.select() == BoolVarBranch::SEL_NONE) { branch(home,x,vars.a,vals,syms,bf,vvp); } else { // Construct mapping from each variable in the array to its index // in the array. VariableMap variableMap; for (int i = 0 ; i < x.size() ; i++) variableMap[x[i].varimp()] = i; // Convert the modelling-level Symmetries object into an array of // SymmetryImp objects. int n = syms.size(); SymmetryImp** array = static_cast(home).alloc* >(n); for (int i = 0 ; i < n ; i++) { array[i] = createBoolSym(home, syms[i], variableMap); } // Technically these "bad" value selection could in fact work with // LDSB, because they degenerate to binary splitting for // Booleans. Nonetheless, we explicitly forbid them for // consistency with the integer version. switch (vals.select()) { case BoolValBranch::SEL_VAL_COMMIT: if (vals.commit()) throw LDSBBadValueSelection("Int::LDSB::branch"); // If vals.commit() is valid, it means it will commit with // binary branching, which is OK for LDSB, so we // fall through default: ; // Do nothing and continue. } ViewArray xv(home,x); ValSelCommitBase* vsc = Branch::valselcommit(home,vals); if (vars.c.select() == BoolVarBranch::SEL_NONE) { ViewSel* vs[2] = { Branch::viewsel(home,vars.a),Branch::viewsel(home,vars.b) }; postldsbbrancher(home,xv,vs,vsc,array,n,bf,vvp); } else if (vars.d.select() == BoolVarBranch::SEL_NONE) { ViewSel* vs[3] = { Branch::viewsel(home,vars.a),Branch::viewsel(home,vars.b), Branch::viewsel(home,vars.c) }; postldsbbrancher(home,xv,vs,vsc,array,n,bf,vvp); } else { ViewSel* vs[4] = { Branch::viewsel(home,vars.a),Branch::viewsel(home,vars.b), Branch::viewsel(home,vars.c),Branch::viewsel(home,vars.d) }; postldsbbrancher(home,xv,vs,vsc,array,n,bf,vvp); } } } } // STATISTICS: int-branch