/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Mikael Lagerkvist * * Copyright: * Mikael Lagerkvist, 2006 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include using namespace Gecode; namespace { using std::vector; /// Layout of the cards vector > layout; /// information for locating particular cards in the layout vector layer, pile; /** \brief Generates\ref layout. * * This function generates the layeout and intializes \ref layer and * \ref pile from it. The layout is randomly generated from the * supplied seed. */ void generate(int seed) { // The layout consists of 17 piles of 3 cards each layout = vector >(17, vector(3)); // Deck without the Ace of Spades vector deck(51); for (int i = 51; i--; ) deck[i] = i+1; Support::RandomGenerator rnd(seed+1); std::random_shuffle(deck.begin(), deck.end(), rnd); // Place cards from deck int pos = 0; for (int i = 17; i--; ) for (int j = 3; j--; ) layout[i][j] = deck[pos++]; // Location-information for each card layer = vector(52); pile = vector(52); for (int i = 17; i--; ) { for (int j = 3; j--; ) { layer[layout[i][j]] = j; pile[ layout[i][j]] = i; } } } } /** * \brief %Example: Black hole patience * * This example solves instances of the black-hole patience game. * * The model of the problem is mostly taken from "Search in the * Patience Game 'Black Hole'", by Ian P. Gent, Chris Jefferson, Tom * Kelsey, InĂªs Lynce, Ian Miguel, Peter Nightingale, Barbara * M. Smith, and S. Armagan Tarim. * * The conditional symmetry identified in the above paper can be * eliminated (enabled by default). * * \ingroup Example * */ class BlackHole : public Script { protected: IntVarArray x, ///< Card at position y; ///< Position of card /// Return a string representing the card of value val std::string card(int val) const { const char* suit = "SCHD"; std::ostringstream o; o << std::setw(2) << (1 + (val%13)) << suit[val/13]; return o.str(); } public: /// Symmetry variants enum { SYMMETRY_NONE, ///< No symmetry breaking SYMMETRY_CONDITIONAL ///< Breaking conditional symmetries }; /// Propagation of placement-rules enum { PROPAGATION_REIFIED, ///< Reified propagation PROPAGATION_DFA, ///< Extensional propagation using automatons PROPAGATION_TUPLE_SET ///< Extensional propagation using tables }; /// Actual model BlackHole(const SizeOptions& opt) : Script(opt), x(*this, 52, 0,51), y(*this, 52, 0,51) { // Black ace at bottom rel(*this, x[0], IRT_EQ, 0); // x is order and y is placement channel(*this, x, y, opt.ipl()); // The placement rules: the absolute value of the difference // between two consecutive cards is 1 or 12. if (opt.propagation() == PROPAGATION_REIFIED) { // Build table for accessing the rank of a card IntArgs modtable(52); for (int i = 0; i < 52; ++i) { modtable[i] = i%13; } for (int i = 0; i < 51; ++i) { IntVar x1(*this, 0, 12), x2(*this, 0, 12); element(*this, modtable, x[i], x1); element(*this, modtable, x[i+1], x2); const int dr[2] = {1, 12}; IntVar diff(*this, IntSet(dr, 2)); rel(*this, abs(x1-x2) == diff, IPL_DOM); } } else if (opt.propagation() == PROPAGATION_DFA) { // Build table for allowed tuples REG expression; for (int r = 13; r--; ) { for (int s1 = 4; s1--; ) { for (int s2 = 4; s2--; ) { for (int i = -1; i <= 1; i+=2) { REG r1 = REG(r+13*s1); REG r2 = REG((r+i+52+13*s2)%52); REG r = r1 + r2; expression |= r; } } } } DFA table(expression); for (int i = 51; i--; ) extensional(*this, IntVarArgs({x[i],x[i+1]}), table); } else { // opt.propagation() == PROPAGATION_TUPLE_SET) // Build table for allowed tuples TupleSet ts(2); for (int r = 13; r--; ) for (int s1 = 4; s1--; ) for (int s2 = 4; s2--; ) for (int i = -1; i <= 1; i+=2) ts.add({r+13*s1, (r+i+52+13*s2)%52}); ts.finalize(); for (int i = 51; i--; ) extensional(*this, IntVarArgs({x[i],x[i+1]}), ts); } // A card must be played before the one under it. for (int i = 17; i--; ) for (int j = 2; j--; ) rel(*this, y[layout[i][j]] < y[layout[i][j+1]]); // Compute and break the conditional symmetries that are dependent // on the current layout. // Two cards with the same rank but different suits are symmetric // with respect to their placement in the black hole if changing // their order does not affect any other card. if (opt.symmetry() == SYMMETRY_CONDITIONAL) { // For all ranks for (int r = 13; r--; ) { // For all pairs of suits for (int s1 = 4; s1--; ) { for (int s2 = s1; s2--; ) { int c1 = 13*s1 + r, c2 = 13*s2 + r; // The ace of spades is already placed if (c1 == 0 || c2 == 0) continue; // Piles are handled by the rules of the game if (pile[c1] == pile[c2]) continue; // Fix the right order of the cards int o1 = c1, o2 = c2; if (pile[c1] > pile[c2] && layer[c2] >= layer[c1]) std::swap(o1, o2); // cond is the condition for the symmetry BoolVarArgs ba; // Both cards played after the ones on top of them for (int i = 0; i < layer[o1]; ++i) ba << expr(*this, (y[layout[pile[o1]][i]] < y[o2])); for (int i = 0; i < layer[o2]; ++i) ba << expr(*this, (y[layout[pile[o2]][i]] < y[o1])); // Both cards played before the ones under them for (int i = layer[o1]+1; i < 3; ++i) ba << expr(*this, (y[o2] < y[layout[pile[o1]][i]])); for (int i = layer[o2]+1; i < 3; ++i) ba << expr(*this, (y[o1] < y[layout[pile[o2]][i]])); // Cond holds when all the above holds BoolVar cond(*this, 0, 1); rel(*this, BOT_AND, ba, cond); // If cond is fulfilled, then we can order the cards // cond -> (y[o1] < y[o2]) rel(*this, !cond || (y[o1] < y[o2])); } } } } // Install custom brancher branch(*this, x, INT_VAR_NONE(), INT_VAL(&val)); } /// Value selection function for branching static int val(const Space&, IntVar x, int) { int v = -1; int w = 4; for (IntVarValues vals(x); vals(); ++vals) if (layer[vals.val()] < w) { v = vals.val(); if ((w = layer[vals.val()]) == 0) break; } assert(v >= 1 && v < 52); return v; } /// Print instance and solution virtual void print(std::ostream& os) const { os << "Layout:" << std::endl; for (int i = 0; i < 17; i++) { for (int j = 0; j < 3; j++) os << card(layout[i][j]) << " "; if ((i+1) % 3 == 0) os << std::endl; else os << " \t"; } os << std::endl << std::endl; os << "Solution:" << std::endl; for (int i = 0; i < 52; ++i) { if (x[i].assigned()) os << card(x[i].val()) << " "; else os << " "; if ((i + 1) % 13 == 0) os << std::endl; } os << std::endl; os << std::endl; } /// Constructor for cloning \a s BlackHole(BlackHole& s) : Script(s) { x.update(*this, s.x); y.update(*this, s.y); } /// Copy during cloning virtual Space* copy(void) { return new BlackHole(*this); } }; /** \brief Main-function * \relates BlackHole */ int main(int argc, char* argv[]) { SizeOptions opt("Black Hole patience"); opt.symmetry(BlackHole::SYMMETRY_CONDITIONAL); opt.symmetry(BlackHole::SYMMETRY_NONE,"none", "no symmetry breaking"); opt.symmetry(BlackHole::SYMMETRY_CONDITIONAL,"conditional", "break conditional symmetries"); opt.propagation(BlackHole::PROPAGATION_TUPLE_SET); opt.propagation(BlackHole::PROPAGATION_REIFIED, "reified", "use reified propagation"); opt.propagation(BlackHole::PROPAGATION_DFA, "dfa", "use DFA-based extensional propagation"); opt.propagation(BlackHole::PROPAGATION_TUPLE_SET, "tuple-set", "use TupleSet-based extensional propagation"); opt.ipl(IPL_DOM); opt.parse(argc,argv); // Generates the new board generate(opt.size()); Script::run(opt); return 0; } // STATISTICS: example-any