/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Vincent Barichard * * Copyright: * Vincent Barichard, 2012 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ namespace Gecode { namespace Float { namespace Trigonometric { /* * ASin projection function * */ template void aSinProject(Rounding& r, const V& aSinIv, FloatNum& iv_min, FloatNum& iv_max, int& n_min, int& n_max) { #define I0_PI_2I FloatVal(0,pi_half_upper()) #define IPI_2_PII FloatVal(pi_half_lower(),pi_upper()) #define IPI_3PI_2I FloatVal(pi_lower(),3*pi_half_upper()) #define I3PI_2_2PII FloatVal(3*pi_half_lower(),pi_twice_upper()) #define POS(X) ((I0_PI_2I.in(X))?0: (IPI_2_PII.in(X))?1: (IPI_3PI_2I.in(X))?2: 3 ) #define ASININF_DOWN r.asin_down(aSinIv.min()) #define ASINSUP_UP r.asin_up(aSinIv.max()) // 0 <=> in [0;PI/2] // 1 <=> in [PI/2;PI] // 2 <=> in [PI;3*PI/2] // 3 <=> in [3*PI/2;2*PI] switch ( POS(iv_min) ) { case 0: if (r.sin_down(iv_min) > aSinIv.max()) { n_min++; iv_min = -ASINSUP_UP; } else if (r.sin_up(iv_min) < aSinIv.min()) { iv_min = ASININF_DOWN; } break; case 1: if (r.sin_down(iv_min) > aSinIv.max()) { n_min++; iv_min = -ASINSUP_UP; } else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN; } break; case 2: if (r.sin_down(iv_min) > aSinIv.max()) { n_min++; iv_min = -ASINSUP_UP; } else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN; } break; case 3: if (r.sin_down(iv_min) > aSinIv.max()) { n_min+=3; iv_min = -ASINSUP_UP; } else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN; } break; default: GECODE_NEVER; break; } // 0 <=> in [0;PI/2] // 1 <=> in [PI/2;PI] // 2 <=> in [PI;3*PI/2] // 3 <=> in [3*PI/2;2*PI] switch ( POS(iv_max) ) { case 0: if (r.sin_down(iv_max) > aSinIv.max()) { iv_max = ASINSUP_UP; } else if (r.sin_up(iv_max) < aSinIv.min()) { n_max--; iv_max = -ASININF_DOWN; } break; case 1: if (r.sin_down(iv_max) > aSinIv.max()) { iv_max = ASINSUP_UP; } else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++; iv_max = -ASININF_DOWN; } break; case 2: if (r.sin_down(iv_max) > aSinIv.max()) { iv_max = ASINSUP_UP; } else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++; iv_max = -ASININF_DOWN; } break; case 3: if (r.sin_down(iv_max) > aSinIv.max()) { n_max+=2; iv_max = ASINSUP_UP; } else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++; iv_max = -ASININF_DOWN; } break; default: GECODE_NEVER; break; } #undef ASININF_DOWN #undef ASINSUP_UP #undef POS #undef I0_PI_2I #undef IPI_2_PII #undef IPI_3PI_2I #undef I3PI_2_2PII } /* * Bounds consistent sinus operator * */ template ExecStatus Sin::dopropagate(Space& home, A x0, B x1) { GECODE_ME_CHECK(x1.eq(home,sin(x0.val()))); Rounding r; int n_min = 2*static_cast(r.div_up(x0.min(), pi_twice_upper())); int n_max = 2*static_cast(r.div_up(x0.max(), pi_twice_upper())); if (x0.min() < 0) n_min-=2; if (x0.max() < 0) n_max-=2; FloatNum iv_min = r.sub_down(x0.min(),r.mul_down(n_min, pi_upper())); FloatNum iv_max = r.sub_up (x0.max(),r.mul_down(n_max, pi_upper())); aSinProject(r,x1,iv_min,iv_max,n_min,n_max); FloatNum n_iv_min = r.add_down(iv_min,r.mul_down(n_min, pi_upper())); FloatNum n_iv_max = r.add_up (iv_max,r.mul_down(n_max, pi_upper())); if (n_iv_min > n_iv_max) return ES_FAILED; GECODE_ME_CHECK(x0.eq(home,FloatVal(n_iv_min,n_iv_max))); GECODE_ME_CHECK(x1.eq(home,sin(x0.val()))); // Redo sin because with x0 reduction, sin may be more accurate return ES_OK; } template forceinline Sin::Sin(Home home, A x0, B x1) : MixBinaryPropagator(home,x0,x1) {} template ExecStatus Sin::post(Home home, A x0, B x1) { if (x0 == x1) { GECODE_ME_CHECK(x0.eq(home,0.0)); } else { GECODE_ME_CHECK(x1.gq(home,-1.0)); GECODE_ME_CHECK(x1.lq(home,1.0)); GECODE_ES_CHECK(dopropagate(home,x0,x1)); (void) new (home) Sin(home,x0,x1); } return ES_OK; } template forceinline Sin::Sin(Space& home, Sin& p) : MixBinaryPropagator(home,p) {} template Actor* Sin::copy(Space& home) { return new (home) Sin(home,*this); } template ExecStatus Sin::propagate(Space& home, const ModEventDelta&) { GECODE_ES_CHECK(dopropagate(home,x0,x1)); return (x0.assigned()) ? home.ES_SUBSUMED(*this) : ES_FIX; } /* * Bounds consistent cosinus operator * */ template ExecStatus Cos::dopropagate(Space& home, A x0, B x1) { GECODE_ME_CHECK(x1.eq(home,cos(x0.val()))); Rounding r; FloatVal x0Trans = x0.val() + FloatVal::pi_half(); int n_min = 2*static_cast(r.div_up(x0Trans.min(), pi_twice_upper())); int n_max = 2*static_cast(r.div_up(x0Trans.max(), pi_twice_upper())); if (x0Trans.min() < 0) n_min-=2; if (x0Trans.max() < 0) n_max-=2; FloatNum iv_min = r.sub_down(x0Trans.min(),r.mul_down(n_min, pi_upper())); FloatNum iv_max = r.sub_up (x0Trans.max(),r.mul_down(n_max, pi_upper())); aSinProject(r,x1,iv_min,iv_max,n_min,n_max); FloatNum n_iv_min = r.add_down(iv_min,r.mul_down(n_min, pi_upper())); FloatNum n_iv_max = r.add_up (iv_max,r.mul_down(n_max, pi_upper())); if (n_iv_min > n_iv_max) return ES_FAILED; GECODE_ME_CHECK(x0.eq(home,FloatVal(n_iv_min,n_iv_max) - FloatVal::pi_half())); GECODE_ME_CHECK(x1.eq(home,cos(x0.val()))); // Redo sin because with x0 reduction, sin may be more accurate return ES_OK; } template forceinline Cos::Cos(Home home, A x0, B x1) : MixBinaryPropagator(home,x0,x1) {} template ExecStatus Cos::post(Home home, A x0, B x1) { if (x0 == x1) { GECODE_ME_CHECK(x0.gq(home,0.7390851332151)); GECODE_ME_CHECK(x0.lq(home,0.7390851332152)); bool mod; do { mod = false; GECODE_ME_CHECK_MODIFIED(mod,x0.eq(home,cos(x0.val()))); } while (mod); } else { GECODE_ME_CHECK(x1.gq(home,-1.0)); GECODE_ME_CHECK(x1.lq(home,1.0)); GECODE_ES_CHECK(dopropagate(home,x0,x1)); (void) new (home) Cos(home,x0,x1); } return ES_OK; } template forceinline Cos::Cos(Space& home, Cos& p) : MixBinaryPropagator(home,p) {} template Actor* Cos::copy(Space& home) { return new (home) Cos(home,*this); } template ExecStatus Cos::propagate(Space& home, const ModEventDelta&) { GECODE_ES_CHECK(dopropagate(home,x0,x1)); return (x0.assigned()) ? home.ES_SUBSUMED(*this) : ES_FIX; } }}} // STATISTICS: float-prop