/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Vincent Barichard * * Copyright: * Vincent Barichard, 2012 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include using namespace Gecode; /** * \brief %Example: Cartesian Heart * * There are many mathematical curves that produce heart shapes. * With a good solving effort, coordinates of a filled heart shape * can be computed by solving the cartesian equation: * * \f[ * x^2+2\left(y-p\times\operatorname{abs}(x)^{\frac{1}{q}}\right)^2 = 1 * \f] * * By setting \f$p=0.5\f$ and \f$q=2\f$, it yields to the equation: * * \f[ * x^2+2\left(y-\frac{\operatorname{abs}(x)^{\frac{1}{2}}}{2}\right)^2 = 1 * \f] * * To get reasonable interval starting sizes, \f$x\f$ and \f$y\f$ * are restricted to \f$[-20;20]\f$. * * \ingroup Example */ class CartesianHeart : public Script { protected: /// The numbers FloatVarArray f; /// Minimum distance between two solutions FloatNum step; public: /// Actual model CartesianHeart(const Options& opt) : Script(opt), f(*this,2,-20,20), step(opt.step()) { int q = 2; FloatNum p = 0.5; // Post equation rel(*this, sqr(f[0]) + 2*sqr(f[1]-p*nroot(abs(f[0]),q)) == 1); branch(*this, f[0], FLOAT_VAL_SPLIT_MIN()); branch(*this, f[1], FLOAT_VAL_SPLIT_MIN()); } /// Constructor for cloning \a p CartesianHeart(CartesianHeart& p) : Script(p), step(p.step) { f.update(*this, p.f); } /// Copy during cloning virtual Space* copy(void) { return new CartesianHeart(*this); } /// Add constraints to current model to get next solution (not too close) virtual void constrain(const Space& _b) { const CartesianHeart& b = static_cast(_b); rel(*this, (f[0] >= (b.f[0].max()+step)) || (f[1] >= (b.f[1].max()+step)) || (f[1] <= (b.f[1].min()-step))); } /// Print solution coordinates virtual void print(std::ostream& os) const { os << "XY " << f[0].med() << " " << f[1].med() << std::endl; } }; /** \brief Main-function * \relates CartesianHeart */ int main(int argc, char* argv[]) { Options opt("CartesianHeart"); opt.solutions(0); opt.step(0.01); opt.parse(argc,argv); Script::run(opt); return 0; } // STATISTICS: example-any