/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Guido Tack * * Copyright: * Guido Tack, 2005 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include "test/set.hh" using namespace Gecode; namespace Test { namespace Set { /// %Tests for domain constraints namespace Dom { /** * \defgroup TaskTestSetDom Domain constraints * \ingroup TaskTestSet */ //@{ static const int d1r[4][2] = { {-4,-3},{-1,-1},{1,1},{3,5} }; static IntSet d1(d1r,4); static const int d1cr[5][2] = { {Gecode::Set::Limits::min,-5}, {-2,-2},{0,0},{2,2}, {6,Gecode::Set::Limits::max} }; static IntSet d1c(d1cr,5); static IntSet ds_33(-3,3); static const int d2r[2][2] = { {Gecode::Set::Limits::min,-4}, {4,Gecode::Set::Limits::max} }; static IntSet ds_33c(d2r,2); namespace { static int minSymDiff(const SetAssignment& x, int i, const IntSet& is) { typedef Iter::Ranges::Diff DiffA; CountableSetRanges xr00(x.lub, x[i]); IntSetRanges xr10(is); DiffA a(xr00,xr10); typedef Iter::Ranges::Diff DiffB; CountableSetRanges xr01(x.lub, x[i]); IntSetRanges xr11(is); DiffB b(xr11,xr01); Iter::Ranges::Union u(a,b); return u() ? u.min() : Gecode::Set::Limits::max+1; } template static bool in(int i, I& c, bool eq=false) { if (eq && i==Gecode::Set::Limits::max+1) return true; Iter::Ranges::Singleton s(i,i); return Iter::Ranges::subset(s,c); } } /// %Test for equality with a range class DomRange : public SetTest { private: Gecode::SetRelType srt; IntSet is; public: /// Create and register test DomRange(SetRelType srt0, int n) : SetTest("Dom::Range::"+str(srt0)+"::"+str(n),n,ds_33,(n == 1)), srt(srt0), is(srt == Gecode::SRT_CMPL ? ds_33c: ds_33) {} /// %Test whether \a x is solution virtual bool solution(const SetAssignment& x) const { for (int i=x.size(); i--; ) { CountableSetRanges xr(x.lub, x[i]); IntSetRanges dr(is); switch (srt) { case SRT_EQ: if (!Iter::Ranges::equal(xr, dr)) return false; break; case SRT_LQ: if (!((!xr()) || in(minSymDiff(x,i,is),dr,true))) return false; break; case SRT_LE: if (!(xr() ? in(minSymDiff(x,i,is),dr) : dr())) return false; break; case SRT_GQ: if (!((!dr()) || in(minSymDiff(x,i,is),xr,true))) return false; break; case SRT_GR: if (!(dr() ? in(minSymDiff(x,i,is),xr) : xr())) return false; break; case SRT_NQ: if (Iter::Ranges::equal(xr, dr)) return false; break; case SRT_SUB: if (!Iter::Ranges::subset(xr, dr)) return false; break; case SRT_SUP: if (!Iter::Ranges::subset(dr, xr)) return false; break; case SRT_DISJ: { Gecode::Iter::Ranges::Inter inter(xr, dr); if (inter()) return false; } break; case SRT_CMPL: { Gecode::Set::RangesCompl drc(dr); if (!Iter::Ranges::equal(xr,drc)) return false; } break; default: GECODE_NEVER; } } return true; } /// Post constraint on \a x virtual void post(Space& home, SetVarArray& x, IntVarArray&) { if (x.size() == 1) Gecode::dom(home, x[0], srt, is); else Gecode::dom(home, x, srt, is); } /// Post reified constraint on \a x for \a b virtual void post(Space& home, SetVarArray& x, IntVarArray&, Reify r) { assert(x.size() == 1); if (_rand(2) != 0) { Gecode::dom(home, x[0], srt, is, r); } else { switch (r.mode()) { case Gecode::RM_EQV: Gecode::rel(home, Gecode::dom(x[0], srt, is) == r.var()); break; case Gecode::RM_IMP: Gecode::rel(home, Gecode::dom(x[0], srt, is) << r.var()); break; case Gecode::RM_PMI: Gecode::rel(home, Gecode::dom(x[0], srt, is) >> r.var()); break; default: GECODE_NEVER; } } } }; /// %Test for equality with an integer range class DomIntRange : public SetTest { private: Gecode::SetRelType srt; public: /// Create and register test DomIntRange(Gecode::SetRelType srt0, int n) : SetTest("Dom::IntRange::"+str(srt0)+"::"+str(n),1,ds_33,n==1), srt(srt0) {} /// %Test whether \a x is solution virtual bool solution(const SetAssignment& x) const { for (int i=x.size(); i--; ) { CountableSetRanges xr(x.lub, x[i]); IntSet is(-3,-1); IntSetRanges dr(is); switch (srt) { case SRT_EQ: if (!Iter::Ranges::equal(xr, dr)) return false; break; case SRT_LQ: if (!((!xr()) || in(minSymDiff(x,i,is),dr,true))) return false; break; case SRT_LE: if (!(xr() ? in(minSymDiff(x,i,is),dr) : dr())) return false; break; case SRT_GQ: if (!((!dr()) || in(minSymDiff(x,i,is),xr,true))) return false; break; case SRT_GR: if (!(dr() ? in(minSymDiff(x,i,is),xr) : xr())) return false; break; case SRT_NQ: if (!(!Iter::Ranges::equal(xr, dr))) return false; break; case SRT_SUB: if (!(Iter::Ranges::subset(xr, dr))) return false; break; case SRT_SUP: if (!(Iter::Ranges::subset(dr, xr))) return false; break; case SRT_DISJ: { Gecode::Iter::Ranges::Inter inter(xr, dr); if (inter()) return false; } break; case SRT_CMPL: { Gecode::Set::RangesCompl drc(dr); if (!Iter::Ranges::equal(xr,drc)) return false; } break; default: GECODE_NEVER; } } return true; } /// Post constraint on \a x virtual void post(Space& home, SetVarArray& x, IntVarArray&) { if (x.size() == 1) Gecode::dom(home, x[0], srt, -3, -1); else Gecode::dom(home, x, srt, -3, -1); } /// Post reified constraint on \a x for \a b virtual void post(Space& home, SetVarArray& x, IntVarArray&, Reify r) { assert(x.size() == 1); if (_rand(2) != 0) { Gecode::dom(home, x[0], srt, -3, -1, r); } else { switch (r.mode()) { case Gecode::RM_EQV: Gecode::rel(home, Gecode::dom(x[0], srt, -3, -1) == r.var()); break; case Gecode::RM_IMP: Gecode::rel(home, Gecode::dom(x[0], srt, -3, -1) << r.var()); break; case Gecode::RM_PMI: Gecode::rel(home, Gecode::dom(x[0], srt, -3, -1) >> r.var()); break; default: GECODE_NEVER; } } } }; /// %Test for equality with an integer class DomInt : public SetTest { private: Gecode::SetRelType srt; public: /// Create and register test DomInt(Gecode::SetRelType srt0, int n) : SetTest("Dom::Int::"+str(srt0)+"::"+str(n),n,ds_33,n==1), srt(srt0) {} /// %Test whether \a x is solution virtual bool solution(const SetAssignment& x) const { IntSet is(-3,-3); for (int i=x.size(); i--; ) { CountableSetRanges xr(x.lub, x[i]); IntSetRanges dr(is); switch (srt) { case SRT_EQ: if (!Iter::Ranges::equal(xr, dr)) return false; break; case SRT_LQ: if (!((!xr()) || in(minSymDiff(x,i,is),dr,true))) return false; break; case SRT_LE: if (!(xr() ? in(minSymDiff(x,i,is),dr) : dr())) return false; break; case SRT_GQ: if (!((!dr()) || in(minSymDiff(x,i,is),xr,true))) return false; break; case SRT_GR: if (!(dr() ? in(minSymDiff(x,i,is),xr) : xr())) return false; break; case SRT_NQ: if (Iter::Ranges::equal(xr, dr)) return false; break; case SRT_SUB: if (!(Iter::Ranges::subset(xr, dr))) return false; break; case SRT_SUP: if (!(Iter::Ranges::subset(dr, xr))) return false; break; case SRT_DISJ: { Gecode::Iter::Ranges::Inter inter(xr, dr); if (inter()) return false; break; } case SRT_CMPL: { Gecode::Set::RangesCompl drc(dr); if (!Iter::Ranges::equal(xr,drc)) return false; break; } default: GECODE_NEVER; } } return true; } /// Post constraint on \a x virtual void post(Space& home, SetVarArray& x, IntVarArray&) { if (x.size() == 1) Gecode::dom(home, x[0], srt, -3); else Gecode::dom(home, x, srt, -3); } /// Post reified constraint on \a x for \a b virtual void post(Space& home, SetVarArray& x, IntVarArray&, Reify r) { assert(x.size() == 1); if (_rand(2) != 0) { Gecode::dom(home, x[0], srt, -3, r); } else { switch (r.mode()) { case Gecode::RM_EQV: Gecode::rel(home, Gecode::dom(x[0], srt, -3) == r.var()); break; case Gecode::RM_IMP: Gecode::rel(home, Gecode::dom(x[0], srt, -3) << r.var()); break; case Gecode::RM_PMI: Gecode::rel(home, Gecode::dom(x[0], srt, -3) >> r.var()); break; default: GECODE_NEVER; } } } }; /// %Test for equality with a domain class DomDom : public SetTest { private: Gecode::SetRelType srt; Gecode::IntSet is; public: /// Create and register test DomDom(Gecode::SetRelType srt0, int n) : SetTest("Dom::Dom::"+str(srt0)+"::"+str(n),n,d1,(n == 1)), srt(srt0), is(srt == Gecode::SRT_CMPL ? d1c: d1) {} /// %Test whether \a x is solution virtual bool solution(const SetAssignment& x) const { for (int i=x.size(); i--; ) { CountableSetRanges xr(x.lub, x[i]); IntSetRanges dr(is); switch (srt) { case SRT_EQ: if (!Iter::Ranges::equal(xr, dr)) return false; break; case SRT_LQ: if (!((!xr()) || in(minSymDiff(x,i,is),dr,true))) return false; break; case SRT_LE: if (!(xr() ? in(minSymDiff(x,i,is),dr) : dr())) return false; break; case SRT_GQ: if (!((!dr()) || in(minSymDiff(x,i,is),xr,true))) return false; break; case SRT_GR: if (!(dr() ? in(minSymDiff(x,i,is),xr) : xr())) return false; break; case SRT_NQ: if (Iter::Ranges::equal(xr, dr)) return false; break; case SRT_SUB: if (!Iter::Ranges::subset(xr, dr)) return false; break; case SRT_SUP: if (!Iter::Ranges::subset(dr, xr)) return false; break; case SRT_DISJ: { Gecode::Iter::Ranges::Inter inter(xr, dr); if (inter()) return false; } break; case SRT_CMPL: { Gecode::Set::RangesCompl drc(dr); if (!Iter::Ranges::equal(xr,drc)) return false; } break; default: GECODE_NEVER; } } return true; } /// Post constraint on \a x virtual void post(Space& home, SetVarArray& x, IntVarArray&) { if (x.size() == 1) Gecode::dom(home, x[0], srt, is); else Gecode::dom(home, x, srt, is); } /// Post reified constraint on \a x for \a b virtual void post(Space& home, SetVarArray& x, IntVarArray&, Reify r) { assert(x.size() == 1); Gecode::dom(home, x[0], srt, is, r); } }; /// %Test for cardinality range class CardRange : public SetTest { public: /// Create and register test CardRange(int n) : SetTest("Dom::CardRange::"+str(n),n,d1,false) {} /// %Test whether \a x is solution virtual bool solution(const SetAssignment& x) const { for (int i=x.size(); i--; ) { CountableSetRanges xr(x.lub, x[i]); unsigned int card = Iter::Ranges::size(xr); if ((card < 2) || (card > 3)) return false; } return true; } /// Post constraint on \a x virtual void post(Space& home, SetVarArray& x, IntVarArray&) { if (x.size() == 1) Gecode::cardinality(home, x[0], 2, 3); else Gecode::cardinality(home, x, 2, 3); } }; DomRange _domrange_eq1(SRT_EQ,1); DomRange _domrange_lq1(SRT_LQ,1); DomRange _domrange_le1(SRT_LE,1); DomRange _domrange_gq1(SRT_GQ,1); DomRange _domrange_gr1(SRT_GR,1); DomRange _domrange_nq1(SRT_NQ,1); DomRange _domrange_sub1(SRT_SUB,1); DomRange _domrange_sup1(SRT_SUP,1); DomRange _domrange_disj1(SRT_DISJ,1); DomRange _domrange_cmpl1(SRT_CMPL,1); DomRange _domrange_eq2(SRT_EQ,2); DomRange _domrange_lq2(SRT_LQ,2); DomRange _domrange_le2(SRT_LE,2); DomRange _domrange_gq2(SRT_GQ,2); DomRange _domrange_gr2(SRT_GR,2); DomRange _domrange_nq2(SRT_NQ,2); DomRange _domrange_sub2(SRT_SUB,2); DomRange _domrange_sup2(SRT_SUP,2); DomRange _domrange_disj2(SRT_DISJ,2); DomRange _domrange_cmpl2(SRT_CMPL,2); DomIntRange _domintrange_eq1(SRT_EQ,1); DomIntRange _domintrange_lq1(SRT_LQ,1); DomIntRange _domintrange_le1(SRT_LE,1); DomIntRange _domintrange_gq1(SRT_GQ,1); DomIntRange _domintrange_gr1(SRT_GR,1); DomIntRange _domintrange_nq1(SRT_NQ,1); DomIntRange _domintrange_sub1(SRT_SUB,1); DomIntRange _domintrange_sup1(SRT_SUP,1); DomIntRange _domintrange_disj1(SRT_DISJ,1); DomIntRange _domintrange_cmpl1(SRT_CMPL,1); DomIntRange _domintrange_eq2(SRT_EQ,2); DomIntRange _domintrange_lq2(SRT_LQ,2); DomIntRange _domintrange_le2(SRT_LE,2); DomIntRange _domintrange_gq2(SRT_GQ,2); DomIntRange _domintrange_gr2(SRT_GR,2); DomIntRange _domintrange_nq2(SRT_NQ,2); DomIntRange _domintrange_sub2(SRT_SUB,2); DomIntRange _domintrange_sup2(SRT_SUP,2); DomIntRange _domintrange_disj2(SRT_DISJ,2); DomIntRange _domintrange_cmpl2(SRT_CMPL,2); DomInt _domint_eq1(SRT_EQ,1); DomInt _domint_lq1(SRT_LQ,1); DomInt _domint_le1(SRT_LE,1); DomInt _domint_gq1(SRT_GQ,1); DomInt _domint_gr1(SRT_GR,1); DomInt _domint_nq1(SRT_NQ,1); DomInt _domint_sub1(SRT_SUB,1); DomInt _domint_sup1(SRT_SUP,1); DomInt _domint_disj1(SRT_DISJ,1); DomInt _domint_cmpl1(SRT_CMPL,1); DomInt _domint_eq2(SRT_EQ,2); DomInt _domint_lq2(SRT_LQ,2); DomInt _domint_le2(SRT_LE,2); DomInt _domint_gq2(SRT_GQ,2); DomInt _domint_gr2(SRT_GR,2); DomInt _domint_nq2(SRT_NQ,2); DomInt _domint_sub2(SRT_SUB,2); DomInt _domint_sup2(SRT_SUP,2); DomInt _domint_disj2(SRT_DISJ,2); DomInt _domint_cmpl2(SRT_CMPL,2); DomDom _domdom_eq1(SRT_EQ,1); DomDom _domdom_lq1(SRT_LQ,1); DomDom _domdom_le1(SRT_LE,1); DomDom _domdom_gq1(SRT_GQ,1); DomDom _domdom_gr1(SRT_GR,1); DomDom _domdom_nq1(SRT_NQ,1); DomDom _domdom_sub1(SRT_SUB,1); DomDom _domdom_sup1(SRT_SUP,1); DomDom _domdom_disj1(SRT_DISJ,1); DomDom _domdom_cmpl1(SRT_CMPL,1); DomDom _domdom_eq2(SRT_EQ,2); DomDom _domdom_lq2(SRT_LQ,2); DomDom _domdom_le2(SRT_LE,2); DomDom _domdom_gq2(SRT_GQ,2); DomDom _domdom_gr2(SRT_GR,2); DomDom _domdom_nq2(SRT_NQ,2); DomDom _domdom_sub2(SRT_SUB,2); DomDom _domdom_sup2(SRT_SUP,2); DomDom _domdom_disj2(SRT_DISJ,2); DomDom _domdom_cmpl2(SRT_CMPL,2); CardRange _cr1(1); CardRange _cr2(2); }}} // STATISTICS: test-set