%-----------------------------------------------------------------------------% % Requires that the array 'x' is lexicographically less than or equal to % array 'y'. Compares them from first to last element, regardless of indices %-----------------------------------------------------------------------------% predicate fzn_lex_lesseq_bool(array[int] of var bool: x, array[int] of var bool: y) = % if (min(card(index_set(x)), card(index_set(y))) <= 25) then % let { int: size = min(card(index_set(x)), card(index_set(y))); % } in % sum(i in 0..size-1)(pow(2, (size-1-i)) * bool2int(x[i+min(index_set(x))])) % <= sum(i in 0..size-1)(pow(2, (size-1-i)) * bool2int(y[i+min(index_set(y))])) % else % my_trace ("lex_lesseq_bool(\(x), \(y))") /\ let { int: lx = min(index_set(x)), int: ux = max(index_set(x)), int: ly = min(index_set(y)), int: uy = max(index_set(y)), int: size = min(ux - lx, uy - ly), array[0..size+1] of var bool: b } % b[i] is true if the lexicographical order holds from position i on. in b[0] /\ forall(i in 0..size) ( b[i] -> ( ( ( x[lx + i] <= y[ly + i] ) ) /\ % bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) <= 2 /\ % ( b[i] -> ( x[lx + i] < y[ly + i] \/ b[i+1] ) ) % /\ ( bool2int(b[i]) <= bool2int(x[lx + i] < y[ly + i]) + bool2int(b[i+1]) ) /\ % bool2int(b[i]) + (1-bool2int(x[lx + i])) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3 % /\ bool2int(b[i]) + bool2int(x[lx + i]) + bool2int(y[ly + i]) + (1-bool2int(b[i+1])) <= 3 %% This guy is dominated by the 1st one above but helps: % /\ bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3 ) /\ b[size+1] = (ux-lx <= uy-ly) % endif ; % forall(i in 0..size) ( % ( b[i] == ( x[lx + i] <= y[ly + i] ) ) % /\ % if i < size then % ( b[i] == ( x[lx + i] < y[ly + i] \/ b[i+1] % ) ) else true endif % ); %-----------------------------------------------------------------------------%