predicate fzn_neural_net(array[int] of var float: inputs, array[int] of int: input_ids, array[int] of var float: outputs, array[int] of int: output_ids, array[int] of float: bias, array[int] of float: edge_weight, array[int] of int: edge_parent, array[int] of int: first_edge, NEURON_TYPE: neuron_type) = let { set of int: NODE = index_set(bias) } in let { set of int: INPUTS = array2set(input_ids) } in let { set of int: EDGE = index_set(edge_weight) } in let { array[NODE] of var float: neuron } in forall(i in index_set(inputs))(neuron[input_ids[i]] = inputs[i]) /\ forall(i in index_set(outputs))(neuron[output_ids[i]] = outputs[i]) /\ forall(i in NODE diff INPUTS) ( let { int: first = first_edge[i]; int: last = if i = max(NODE) then max(index_set(first_edge)) else first_edge[i+1] - 1 endif; array[int] of var float: ins = [neuron[edge_parent[j]] | j in first..last]; array[int] of float: ws = [ edge_weight[j] | j in first..last ]; float: b = bias[i]; } in neuron[i] = if neuron_type = NT_RELU then neuron_relu(ins,ws,b) elseif neuron_type = NT_STEP then neuron_step(ins,ws,b) elseif neuron_type = NT_LINEAR then neuron_linear(ins,ws,b) elseif neuron_type = NT_SOFTPLUS then neuron_softplus(ins,ws,b) else 0.0 endif ); %-----------------------------------------------------------------------------% function var float: neuron_relu(array[int] of var float: inputs, array[int] of float: weights, float: bias) = max(0.0, sum(i in index_set(inputs))(weights[i]*inputs[i]) + bias); function var float: neuron_step(array[int] of var float: inputs, array[int] of float: weights, float: bias) = (sum(i in index_set(inputs))(weights[i]*inputs[i]) + bias >= 0.0); function var float: neuron_linear(array[int] of var float: inputs, array[int] of float: weights, float: bias) = (sum(i in index_set(inputs))(weights[i]*inputs[i]) + bias); function var float: neuron_softplus(array[int] of var float: inputs, array[int] of float: weights, float: bias) = (ln(1 + exp(sum(i in index_set(inputs))(weights[i]*inputs[i]) + bias)));