predicate fzn_lex_lesseq_bool_reif(array[int] of var bool: x, array[int] of var bool: y, var bool: c) = let { int: lx = min(index_set(x)), int: ux = max(index_set(x)), int: ly = min(index_set(y)), int: uy = max(index_set(y)), int: size = max(ux - lx, uy - ly), array[0..size+1] of var bool: b } % b[i] is true if the lexicographical order holds from position i on. in (c <-> b[0]) /\ forall(i in 0..size) ( ( b[i] -> ( x[lx + i] <= y[ly + i] ) ) /\ bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) <= 2 /\ ( b[i] -> ( x[lx + i] < y[ly + i] \/ b[i+1] ) ) /\ bool2int(b[i]) + (1-bool2int(x[lx + i])) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3 /\ bool2int(b[i]) + bool2int(x[lx + i]) + bool2int(y[ly + i]) + (1-bool2int(b[i+1])) <= 3 /\ bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3 ) /\ b[size+1] = (ux-lx <= uy-ly) % endif ; predicate fzn_lex_lesseq_bool_imp(array[int] of var bool: x, array[int] of var bool: y, var bool: c) = let { int: lx = min(index_set(x)), int: ux = max(index_set(x)), int: ly = min(index_set(y)), int: uy = max(index_set(y)), int: size = max(ux - lx, uy - ly), array[0..size+1] of var bool: b } % b[i] is true if the lexicographical order holds from position i on. in (c -> b[0]) /\ forall(i in 0..size) ( ( b[i] -> ( x[lx + i] <= y[ly + i] ) ) /\ bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) <= 2 /\ ( b[i] -> ( x[lx + i] < y[ly + i] \/ b[i+1] ) ) /\ bool2int(b[i]) + (1-bool2int(x[lx + i])) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3 /\ bool2int(b[i]) + bool2int(x[lx + i]) + bool2int(y[ly + i]) + (1-bool2int(b[i+1])) <= 3 /\ bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3 ) /\ b[size+1] = (ux-lx <= uy-ly) ;