%-----------------------------------------------------------------------------% % FlatZinc built-in redefinitions for linear solvers. % % Sebastian Brand % Gleb Belov Corrected array_var_float_element and float_lin_lt_reif %-----------------------------------------------------------------------------% function var bool: reverse_map(var int: x) = (x==1); function bool: reverse_map(int: x) = (x==1); function var int: bool2int(var bool: x) :: promise_total = let { var 0..1: b2i; constraint (x = reverse_map(b2i)) ::is_reverse_map ; } in b2i; predicate bool_eq(var bool: x, var bool: y) = bool2int(x)==bool2int(y); %-----------------------------------------------------------------------------% % Strict inequality % % Uncomment the following redefinition for FlatZinc MIP solver interfaces that % do not support strict inequality. Note that it does not preserve equivalence % (some solutions of the original problem may become invalid). % predicate float_lt(var float: x, var float: y) = x + 1e-06 <= y; %-----------------------------------------------------------------------------% % % Logic operations % %-----------------------------------------------------------------------------% predicate bool_not(var bool: p, var bool: q) = let { var 0..1: x = bool2int(p), var 0..1: y = bool2int(q) } in x + y = 1; predicate bool_and(var bool: p, var bool: q, var bool: r) = let { var 0..1: x = bool2int(p), var 0..1: y = bool2int(q), var 0..1: z = bool2int(r) } in x + y <= z + 1 /\ x + y >= z * 2; % x >= z /\ y >= z; % alternative predicate bool_or(var bool: p, var bool: q, var bool: r) = let { var 0..1: x = bool2int(p), var 0..1: y = bool2int(q), var 0..1: z = bool2int(r) } in x + y >= z /\ x + y <= z * 2; % x <= z /\ y <= z; % alternative predicate bool_xor(var bool: p, var bool: q, var bool: r) = let { var 0..1: x = bool2int(p), var 0..1: y = bool2int(q), var 0..1: z = bool2int(r) } in x <= y + z /\ y <= x + z /\ z <= x + y /\ x + y + z <= 2; predicate bool_eq_reif(var bool: p, var bool: q, var bool: r) = if is_fixed(q) then % frequent case if fix(q) = true then p = r else bool_not(p,r) endif else let { var 0..1: x = bool2int(p), var 0..1: y = bool2int(q), var 0..1: z = bool2int(r) } in x + y <= z + 1 /\ x + z <= y + 1 /\ y + z <= x + 1 /\ x + y + z >= 1 endif; predicate bool_ne_reif(var bool: p, var bool: q, var bool: r) = bool_xor(p, q, r); predicate bool_le(var bool: p, var bool: q) = let { var 0..1: x = bool2int(p), var 0..1: y = bool2int(q) } in x <= y; predicate bool_le_reif(var bool: p, var bool: q, var bool: r) = let { var 0..1: x = bool2int(p), var 0..1: y = bool2int(q), var 0..1: z = bool2int(r) } in 1 - x + y >= z /\ 1 - x + y <= z * 2; % 1 - x <= z /\ y <= z; % alternative predicate bool_lt(var bool: p, var bool: q) = not p /\ q; predicate bool_lt_reif(var bool: p, var bool: q, var bool: r) = (not p /\ q) <-> r; %-----------------------------------------------------------------------------% predicate array_bool_or(array[int] of var bool: a, var bool: b) = if is_fixed(b) then % frequent case if fix(b) = true then sum(i in index_set(a))( bool2int(a[i]) ) >= 1 else forall(i in index_set(a))( not a[i] ) endif else let { var 0..1: x = bool2int(b), array[1..length(a)] of var 0..1: c = [ bool2int(a[i]) | i in index_set(a) ] } in sum(c) >= x /\ sum(c) <= x * length(a) endif; predicate array_bool_and(array[int] of var bool: a, var bool: b) = let { var 0..1: x = bool2int(b), array[1..length(a)] of var 0..1: c = [ bool2int(a[i]) | i in index_set(a) ] } in length(a) - sum(c) >= 1 - x /\ length(a) - sum(c) <= (1 - x) * length(a); predicate array_bool_xor(array[int] of var bool: a) = let { var 0..length(a): m } in sum(i in 1..length(a))( bool2int(a[i]) ) = 1 + 2 * m; predicate bool_clause(array[int] of var bool: p, array[int] of var bool: n) = sum(i in index_set(p))( bool2int(p[i]) ) - sum(i in index_set(n))( bool2int(n[i]) ) + length(n) >= 1; % predicate array_bool_xor(array[int] of var bool: a) = .. sum(a) is odd .. %-----------------------------------------------------------------------------% % % Linear equations and inequations % %-----------------------------------------------------------------------------% predicate int_le_reif(var int: x, var int: y, var bool: b) = let { var 0..1: p = bool2int(b) } in aux_int_le_if_1(x, y, p) /\ aux_int_gt_if_0(x, y, p); predicate int_lt_reif(var int: x, var int: y, var bool: b) = int_le_reif(x, y - 1, b); predicate int_ne(var int: x, var int: y) = let { var 0..1: p } in aux_int_lt_if_1(x, y, p) /\ aux_int_gt_if_0(x, y, p); predicate int_lin_ne(array[int] of int: c, array[int] of var int: x, int: d) = int_ne(sum(i in index_set(x))( c[i]*x[i] ),d); predicate int_eq_reif(var int: x, var int: y, var bool: b) = aux_int_eq_iff_1(x, y, bool2int(b)); predicate int_ne_reif(var int: x, var int: y, var bool: b) = aux_int_eq_iff_1(x, y, 1 - bool2int(b)); %-----------------------------------------------------------------------------% predicate int_lin_eq_reif(array[int] of int: c, array[int] of var int: x, int: d, var bool: b) = aux_int_eq_iff_1(sum(i in index_set(x))( c[i]*x[i] ), d, bool2int(b)); predicate int_lin_ne_reif(array[int] of int: c, array[int] of var int: x, int: d, var bool: b) = aux_int_eq_iff_1(sum(i in index_set(x))( c[i]*x[i] ), d, 1 - bool2int(b)); predicate int_lin_le_reif(array[int] of int: c, array[int] of var int: x, int: d, var bool: b) = let { var 0..1: p = bool2int(b) } in aux_int_le_if_1(sum(i in index_set(x))( c[i] * x[i] ), d, p) /\ aux_int_gt_if_0(sum(i in index_set(x))( c[i] * x[i] ), d, p); predicate int_lin_lt_reif(array[int] of int: c, array[int] of var int: x, int: d, var bool: b) = int_lin_le_reif(c, x, d - 1, b); %-----------------------------------------------------------------------------% predicate float_le_reif(var float: x, var float: y, var bool: b) = let { var 0..1: p = bool2int(b) } in aux_float_le_if_1(x, y, int2float(p)) /\ aux_float_gt_if_0(x, y, int2float(p)); predicate float_lt_reif(var float: x, var float: y, var bool: b) = let { var 0..1: p = bool2int(b) } in aux_float_lt_if_1(x, y, int2float(p)) /\ aux_float_ge_if_0(x, y, int2float(p)); predicate float_ne(var float: x, var float: y) = let { var 0..1: p } in aux_float_lt_if_1(x, y, int2float(p)) /\ aux_float_gt_if_0(x, y, int2float(p)); predicate float_eq_reif(var float: x, var float: y, var bool: b) = aux_float_eq_iff_1(x, y, int2float(bool2int(b))); predicate float_ne_reif(var float: x, var float: y, var bool: b) = aux_float_eq_iff_1(x, y, 1.0 - int2float(bool2int(b))); %-----------------------------------------------------------------------------% predicate float_lin_eq_reif(array[int] of float: c, array[int] of var float: x, float: d, var bool: b) = aux_float_eq_iff_1(sum(i in index_set(x))( c[i]*x[i] ), d, int2float(bool2int(b))); predicate float_lin_ne_reif(array[int] of float: c, array[int] of var float: x, float: d, var bool: b) = aux_float_eq_iff_1(sum(i in index_set(x))( c[i]*x[i] ), d, 1.0 - int2float(bool2int(b))); predicate float_lin_le_reif(array[int] of float: c, array[int] of var float: x, float: d, var bool: b) = let { var 0.0..1.0: p = int2float(bool2int(b)) } in aux_float_le_if_1(sum(i in index_set(x))( c[i] * x[i] ), d, p) /\ aux_float_gt_if_0(sum(i in index_set(x))( c[i] * x[i] ), d, p); predicate float_lin_lt_reif(array[int] of float: c, array[int] of var float: x, float: d, var bool: b) = let { var 0.0..1.0: p = int2float(bool2int(b)) } in aux_float_lt_if_1(sum(i in index_set(x))( c[i] * x[i] ), d, p) /\ aux_float_ge_if_0(sum(i in index_set(x))( c[i] * x[i] ), d, p); %-----------------------------------------------------------------------------% % Minimum, maximum, absolute value predicate int_abs(var int: x, var int: z) = let { var 0..1: p } in % z <= x \/ z <= -x aux_int_le_if_1(z, x, p) /\ aux_int_le_if_0(z, -x, p) /\ z >= x /\ z >= -x /\ z >= 0; predicate int_min(var int: x, var int: y, var int: z) = let { var 0..1: p } in % z >= x \/ z >= y aux_int_ge_if_1(z, x, p) /\ aux_int_ge_if_0(z, y, p) /\ z <= x /\ z <= y; predicate int_max(var int: x, var int: y, var int: z) = let { var 0..1: p } in % z <= x \/ z <= y aux_int_le_if_1(z, x, p) /\ aux_int_le_if_0(z, y, p) /\ z >= x /\ z >= y; predicate float_abs(var float: x, var float: z) = let { var 0..1: p } in % z <= x \/ z <= -x aux_float_le_if_1(z, x, int2float(p)) /\ aux_float_le_if_0(z, -x, int2float(p)) /\ z >= x /\ z >= -x /\ z >= 0.0; predicate float_min(var float: x, var float: y, var float: z) = let { var 0..1: p } in % z >= x \/ z >= y aux_float_ge_if_1(z, x, int2float(p)) /\ aux_float_ge_if_0(z, y, int2float(p)) /\ z <= x /\ z <= y; predicate float_max(var float: x, var float: y, var float: z) = let { var 0..1: p } in % z <= x \/ z <= y aux_float_le_if_1(z, x, int2float(p)) /\ aux_float_le_if_0(z, y, int2float(p)) /\ z >= x /\ z >= y; %-----------------------------------------------------------------------------% % Multiplication and division predicate int_div(var int: x, var int: y, var int: q) = let { var 0..max(abs(lb(y)), abs(ub(y))) - 1: r } in aux_int_division_modulo(x,y,q,r); predicate int_mod(var int: x, var int: y, var int: r) = let { int: bx = max(abs(lb(x)), abs(ub(x))); var -bx..bx: q; int: by = max(abs(lb(y)), abs(ub(y))); constraint r in -by..by; } in aux_int_division_modulo(x,y,q,r); predicate aux_int_division_modulo(var int: x, var int: y, var int: q, var int: r) = x = y * q + r /\ let { array[1..2] of var 0..1: p } in % 0 < x -> 0 <= r which is 0 >= x \/ 0 <= r aux_int_le_if_1(x, 0, p[1]) /\ aux_int_ge_if_0(r, 0, p[1]) /\ % x < 0 -> r <= 0 which is x >= 0 \/ r <= 0 aux_int_ge_if_1(x, 0, p[2]) /\ aux_int_le_if_0(r, 0, p[2]) /\ % abs(r) < abs(y) let { var 1.. max(abs(lb(y)), abs(ub(y))): w = abs(y) } in w > r /\ w > -r; predicate int_times(var int: x, var int: y, var int: z) = if card(dom(x)) > card(dom(y)) then int_times(y,x,z) else let { set of int: s = lb(x)..ub(x), set of int: r = {lb(x)*lb(y), lb(x)*ub(y), ub(x)*lb(y), ub(x)*ub(y)}, array[s] of var min(r)..max(r): ady = array1d(s, [ d*y | d in s ]) } in ady[x] = z endif; %-----------------------------------------------------------------------------% % Array 'element' constraints predicate array_bool_element(var int: x, array[int] of bool: a, var bool: z) = x in index_set(a) /\ forall(d in index_set(a))( x = d -> a[d] = z ); predicate array_var_bool_element(var int: x, array[int] of var bool: a, var bool: z) = x in index_set(a) /\ forall(d in index_set(a))( x = d -> a[d] = z ); predicate array_int_element(var int: x, array[int] of int: a, var int: z) = x in index_set(a) /\ forall(d in index_set(a))( x = d -> a[d] = z ); predicate array_var_int_element(var int: x, array[int] of var int: a, var int: z) = x in index_set(a) /\ forall(d in index_set(a))( x = d -> a[d] = z ); predicate array_float_element(var int: x, array[int] of float: a, var float: z) = let { set of int: ix = index_set(a), array[ix] of var 0..1: x_eq_d } in sum(i in ix)( x_eq_d[i] ) = 1 /\ sum(i in ix)( i * x_eq_d[i] ) = x /\ sum(i in ix)( a[i] * int2float(x_eq_d[i]) ) = z; predicate array_var_float_element(var int: x, array[int] of var float: a, var float: z) = let { set of int: ix = index_set(a), array[ix] of var 0..1: x_eq_d } in sum(i in ix)( x_eq_d[i] ) = 1 /\ sum(i in ix)( i * x_eq_d[i] ) = x /\ forall(i in ix)( % x_eq_d[i] -> a[i] = a2[i] a[i] - z >= (lb(a[i])-ub(z))*int2float(1-x_eq_d[i]) /\ z - a[i] >= (lb(z)-ub(a[i]))*int2float(1-x_eq_d[i]) ); %-----------------------------------------------------------------------------% % Domain constraints % XXX only for a fixed set predicate set_in(var int: x, set of int: s) = if s = min(s)..max(s) then min(s) <= x /\ x <= max(s) else exists(e in s)( x = e ) endif; % XXX only for a fixed set predicate set_in_reif(var int: x, set of int: s, var bool: b) = b <-> exists(i in 1..length([ 0 | e in s where not (e - 1 in s) ]))( let { int: l = [ e | e in s where not (e - 1 in s) ][i], int: r = [ e | e in s where not (e + 1 in s) ][i] } in l <= x /\ x <= r ); % Alternative predicate alt_set_in_reif(var int: x, set of int: s, var bool: b) = b <-> if s = min(s)..max(s) then min(s) <= x /\ x <= max(s) else exists(e in s)( x = e ) endif; %-----------------------------------------------------------------------------% % Auxiliary: equality reified onto a 0/1 variable predicate aux_int_eq_iff_1(var int: x, var int: y, var int: p) = let { array[1..2] of var 0..1: q_458 } in aux_int_lt_if_0(x - p, y, q_458[1]) /\ aux_int_gt_if_0(x + p, y, q_458[2]) /\ sum(q_458) <= 2 - 2*p /\ sum(q_458) <= 1 + p; % Alternative 1 predicate alt_1_aux_int_eq_iff_1(var int: x, var int: y, var int: p) = let { array[1..2] of var 0..1: q } in aux_int_lt_if_0(x - p, y, q[1]) /\ aux_int_gt_if_0(x + p, y, q[2]) /\ q[1] <= 1 - p /\ q[2] <= 1 - p /\ sum(q) <= 1 + p; % Alternative 2 predicate alt_2_aux_int_eq_iff_1(var int: x, var int: y, var int: p) = let { array[1..2] of var 0..1: q } in aux_int_le_if_1(x, y, p) /\ aux_int_ge_if_1(x, y, p) /\ aux_int_lt_if_0(x, y, q[1]) /\ aux_int_gt_if_0(x, y, q[2]) /\ sum(q) <= p + 1; predicate aux_float_eq_iff_1(var float: x, var float: y, var float: p) = let { array[1..2] of var 0..1: q } in aux_float_le_if_1(x, y, p) /\ aux_float_ge_if_1(x, y, p) /\ aux_float_lt_if_0(x, y, int2float(q[1])) /\ aux_float_gt_if_0(x, y, int2float(q[2])) /\ int2float(sum(q)) <= 1.0 + p; %-----------------------------------------------------------------------------% % Auxiliary: indicator constraints % p -> x # 0 where p is a 0/1 variable and # is a comparison % Base cases predicate aux_int_le_zero_if_0(var int: x, var int: p) = x <= ub(x) * p; predicate aux_float_le_zero_if_0(var float: x, var float: p) = x <= ub(x) * p; predicate aux_float_lt_zero_if_0(var float: x, var float: p) = let { float: rho = 1e-02 * abs(ub(x)) } % same order of magnitude as ub(x) in x < (ub(x) + rho) * p; % Derived cases predicate aux_int_le_if_0(var int: x, var int: y, var int: p) = aux_int_le_zero_if_0(x - y, p); predicate aux_int_ge_if_0(var int: x, var int: y, var int: p) = aux_int_le_zero_if_0(y - x, p); predicate aux_int_le_if_1(var int: x, var int: y, var int: p) = aux_int_le_zero_if_0(x - y, 1 - p); predicate aux_int_ge_if_1(var int: x, var int: y, var int: p) = aux_int_le_zero_if_0(y - x, 1 - p); predicate aux_int_lt_if_0(var int: x, var int: y, var int: p) = aux_int_le_zero_if_0(x - y + 1, p); predicate aux_int_gt_if_0(var int: x, var int: y, var int: p) = aux_int_le_zero_if_0(y - x + 1, p); predicate aux_int_lt_if_1(var int: x, var int: y, var int: p) = aux_int_le_zero_if_0(x - y + 1, 1 - p); predicate aux_float_le_if_0(var float: x, var float: y, var float: p) = aux_float_le_zero_if_0(x - y, p); predicate aux_float_ge_if_0(var float: x, var float: y, var float: p) = aux_float_le_zero_if_0(y - x, p); predicate aux_float_le_if_1(var float: x, var float: y, var float: p) = aux_float_le_zero_if_0(x - y, 1.0 - p); predicate aux_float_ge_if_1(var float: x, var float: y, var float: p) = aux_float_le_zero_if_0(y - x, 1.0 - p); predicate aux_float_lt_if_0(var float: x, var float: y, var float: p) = aux_float_lt_zero_if_0(x - y, p); predicate aux_float_gt_if_0(var float: x, var float: y, var float: p) = aux_float_lt_zero_if_0(y - x, p); predicate aux_float_lt_if_1(var float: x, var float: y, var float: p) = aux_float_lt_zero_if_0(x - y, 1.0 - p); %-----------------------------------------------------------------------------% %-----------------------------------------------------------------------------% annotation bool_search(array[int] of var bool: x, ann:a1, ann:a2, ann:a3) = int_search([bool2int(x[i]) | i in index_set(x)],a1,a2,a3); predicate array_int_maximum(var int: m, array[int] of var int: x) = let { int: l = min(index_set(x)), int: u = max(index_set(x)), int: ly = lb_array(x), int: uy = ub_array(x), array[l..u] of var ly..uy: y } in y[l] = x[l] /\ m = y[u] /\ forall (i in l+1 .. u) ( y[i] == max(x[i],y[i-1]) ); predicate array_float_maximum(var float: m, array[int] of var float: x) = let { int: l = min(index_set(x)), int: u = max(index_set(x)), float: ly = lb_array(x), float: uy = ub_array(x), array[l..u] of var ly..uy: y } in y[l] = x[l] /\ m = y[u] /\ forall (i in l+1 .. u) ( y[i] == max(x[i],y[i-1]) ); predicate array_int_minimum(var int: m, array[int] of var int: x) = let { int: l = min(index_set(x)), int: u = max(index_set(x)), int: ly = lb_array(x), int: uy = ub_array(x), array[l..u] of var ly..uy: y } in y[l] = x[l] /\ m = y[u] /\ forall (i in l+1 .. u) ( y[i] == min(x[i],y[i-1]) ); predicate array_float_minimum(var float: m, array[int] of var float: x) = let { int: l = min(index_set(x)), int: u = max(index_set(x)), float: ly = lb_array(x), float: uy = ub_array(x), array[l..u] of var ly..uy: y } in y[l] = x[l] /\ m = y[u] /\ forall (i in l+1 .. u) ( y[i] == min(x[i],y[i-1]) ); mzn_opt_only_range_domains = true;