% RUNS ON mzn20_fd % RUNS ON mzn-fzn_fd % RUNS ON minizinc_cpx % RUNS ON mzn20_mip %-----------------------------------------------------------------------------% % Langford's Problem (CSPlib problem 24) % % June 2006; Sebastian Brand % % Instance L(k,n): % Arrange k sets of numbers 1 to n so that each appearance of the number m is m % numbers on from the last. For example, the L(3,9) problem is to arrange 3 % sets of the numbers 1 to 9 so that the first two 1's and the second two 1's % appear one number apart, the first two 2's and the second two 2's appear two % numbers apart, etc. %-----------------------------------------------------------------------------% % MiniZinc version % Peter Stuckey September 30 include "globals.mzn"; %-----------------------------------------------------------------------------% % Instance %-----------------------------------------------------------------------------% % int: n = 10; % numbers 1..n % int: k = 2; % sets 1..k int: n = 9; int: k = 3; %-----------------------------------------------------------------------------% % Input %-----------------------------------------------------------------------------% set of int: numbers = 1..n; % numbers set of int: sets = 1..k; % sets of numbers set of int: num_set = 1..n*k; set of int: positions = 1..n*k; % positions of (number, set) pairs %-----------------------------------------------------------------------------% % Primal model %-----------------------------------------------------------------------------% array[num_set] of var positions: Pos; % Pos[ns]: position of (number, set) % pair in the sought sequence constraint forall(i in 1..n, j in 1..k-1) ( Pos[k*(i-1) + j+1] - Pos[k*(i-1) + j] = i+1 ); constraint alldifferent(Pos); %-----------------------------------------------------------------------------% % Dual model (partial) %-----------------------------------------------------------------------------% array[positions] of var num_set: Num; % Num[p]: (number, set) pair at % position p in the sought sequence constraint alldifferent(Num); %-----------------------------------------------------------------------------% % Channelling between primal model and dual model %-----------------------------------------------------------------------------% constraint forall(i in numbers, j in sets, p in positions) ( (Pos[k*(i-1) + j] = p) <-> (Num[p] = k*(i-1) + j) ); %-----------------------------------------------------------------------------% % Without specifying a sensible search order this problem takes % forever to solve. % solve :: int_search(Pos, first_fail, indomain_split, complete) satisfy; output [ if j = 1 then "\n" ++ show(i) ++ "s at " else ", " endif ++ show(Pos[k*(i-1) + j]) | i in 1..n, j in 1..k ] ++ [ "\n" ];